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Hypergeometric series with a p-adic variable and ratios
of such series, as originally considered by B. Dwork, are
evaluated at x=1. Koblitz’s conjecture on the limit of
ratios of partial sums of hypergeometric series in the super-
singular case is examined and a sufficient condition for the
validity of this conjecture is given.

Introduction. In studying the zeta function of a hypersurface,
B. Dwork was led to a study of ratios of p-adic hypergeometric
series. In [4] and [5] he showed that under certain conditions these
ratios had an analytic continuation beyond their disc of convergence.
N. Koblitz has recently shown, [6], that the value of the continua-
tion of Fla,b;1;2)/F(a’,b;1;2?) at =1 is I, (a)],(0)/(a + b),
where I", is Morita’s p-adic gamma function. Koblitz then con-
jectured that the ratio of the partial sums

F,(a, b;1;1)/F(a,b’;1;1),
where

Fa,bje;0) = 3 (@)u(b), "
on<rt (€)M
has a limit as s approaches infinity for all ¢ and b except for a
special case in which the ratio is 0/0. In addition, he gave an
expected formula in terms of I,.

In §1 we will calculate the value of the continuation of
F(a, b;c; x)/F(a’,b';¢';27) at © =1 for any appropriate a,d and c.
In §2 we will consider the value at © = 1 of hypergeometric series
in which ¢€Q, — Z, and of certain cases of generalized hypergeo-
metric series. It will be seen, in particular, that Dixon’s theorem
and Saalschiitz’s formula hold for p-adie variables. In the last
section we consider Koblitz’s conjecture, generalized to allow for
other ¢ and z. While we give some examples where the conjecture
is not quite true, the basic resuit is a condition on the size of
F(a', b';¢’; 1) which is sufficient to prove Koblitz’s conjecture and
its generalization to ¢ = 1. The proof this theorem connects some
of the results of §2, where ¢ was not in Z,, with Dwork’s work,
in which ce Z,.

1. Ratios of hypergeometric functions. If a,b and ¢ are in
Z,, then the hypergeometric series
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F(a, b; C; x) —— Z (a)n(b)n x'n,
20 (¢),m!
does not converge at x = 1 unless the series terminates. While the

series does not usually have an analytic continuation to = =1,
Dwork, in [4] and [5], has shown that the ratio

F(a, b; c; %)

Z (a, b;c; x) =
(a, b; 6; @) F(a', b';¢'; &)

has an analytic continuation to x =1 if certain conditions on a,b
and ¢ are satisfied. «’ is defined as (u + )/p, where # is the least
nonnegative integer = —u(mod p). When ¢ =1 and the conditions
on ¢ and b for Dwork’s theory are met, Koblitz, in [6], has shown
that

ﬁ(a,b;l;l):-%’%i;%)—.

Koblitz’s result can be generalized to allow for ¢ in Z, other
than 1. The result being the classical formula of Gauss, but with
the p-adic gamma function.

u'® is defined as (u®?), with u® = u. @© is u® .

THEOREM 1.1. If a,b,ceZ, and the following conditions are
satisfied for i =0,1, ---

(i) [e?]=1

(ii) if ¢ # 1, then @©, b < ¢®

(iii) [Fiy@®,b5¢?5 1) =1

then

Fl(a, b; c; )

e, by ey m) = F(a/, b"; ¢'; a?)

has an analytic continuation to x = 1 with the value

I'ye) (e —a —b)

(1) F(a,b;¢6;1) = Tc—alfe—b) "

Conditions (i), (ii) and (iii) are the assumptions Dwork showed
to be sufficient for the analytic continuation to x = 1. In order to
evaluate .# (a, b; ¢; 1), we need to replace (ii) and (iii) by a nearly
equivalent set of conditions.

THEOREM 1.2. Given that a,b,ccZ, and |c¢¥| =1, the assump-
tions @9, 8P < &9 and |Fy(a®, b?;¢?; 1) = 1 are equivalent to
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a;+b,=e¢

where a;, b, and ¢, are the ith digits in the p-adic expansions of
—a, —b and —ec.

Proof. It is an immediate consequence of the definitions that
a = a,. Hence the conditions a, + b, < ¢, are the same as a*“ +
b < ¢,

Suppose that @?, b < ¢® and |F,(a*”, b";¢®;1)| = 1 for all 1.
To prove Theorem 1.2 it is sufficient to work with ¢ = 0. The
given condition that |¢’| = 1 implies that ¢ + ¢ s O(mod p*). Suppose
that b < a@. Then,

Fia, bye;1) = 3, Z0@i (moq p) .
= (e);5!
If @=2¢, then b #0 leads to the contradiction Fy(a,b;¢;1) =0
(modp). Ifa<é,let M=¢—a If a+b>¢c then 1< M<hb.
This leads to a contradiction as follows.

1

D) (@1 — 2)%)|,-, = 0 (mod p) .
©)n

Fia, b5¢;1) =

Hence, @ + b < ¢.

Conversely, suppose a, + b, < c¢,. Again, it sufficient to work
with ¢ = 0. Obviously, @, b <¢. Let M=¢ —d@ Then b M=<¢
and a =c¢ + M (mod p). As before,

Fi(a, b ;1) = D2 *~(1 — )),,., (mod p) .
©)ur

Application of Leibnitz’s formula for the Mth derivative shows that

F(a, by e; 1) = 0 (mod p).

Proof of Theorem 1.1. Suppose a,ccZ, and ¢ satisfies (i) of
Theorem 1.1. Let

S(a,¢) ={b:be Z, and a, b, ¢ satisfy (ii) and (iii)}

and suppose S(a, ¢) is not empty.

The right side of (1) is continuous in b on S(a, ¢) and the nega-
tive integers in S(a, ¢) are dense in S(a, ¢). Koblitz observed that
in Dwork’s construction of .# (a, b; 1; x) the mapping b—.F (a, b; 1; 1)
is the uniform limit of a sequence of continuous functions and
hence continuous. This is equally true for b — F (g, b;c; 1), so it
is sufficient to prove (1) for the negative integers in S(a, ¢).

When b is a negative integer Gauss’ classical formula for
F(a, b; ¢; 1) reduces to
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This is an identity for polynomials and is therefore valid for p-adic
hypergeometric series.

If one uses the funectional equation of the p-adic gamma func-
tion and the result of Theorem 1.2 that @ + b < &, the expression

T (&T,(¢ —a —b)
T'(c — a)T,(c — b)

is seen to equal ¥ (a, b;¢; 1).

2. Hypergeometric series at * = 1. In this section we will
look at hypergeometric series and certain generalized hypergeometric
series which have some of their parameters in 2, — Z,. The follow-
ing elementary lemma will provide the convergence at =1 for
the series which will be considered.

LEMMA 2.1. Suppose u, v € 2,.
(1) If dist (u, Z,) < dist (v, Z,), then lim,_ . (u),/(v), = 0.
(ii) If dist (u, Z,) = dist (v, Z,) # 0, then

(1),/(v), is bounded as n runs through the positive integers.

Furthermore, the convergence in (i) is uniform over all u, v at
fixed distances from Z, and the bound in (ii) depends only on the
distance of u from Z,.

First we will consider a .F,. If suitable conditions are placed
on a,b,c then log Fl(a, b;c;1) can be expressed in terms of the
p-adic log gamma function G, in the same form as Gauss’ formula.
This result has also been demonstrated by Koblitz in a different
manner.

THEOREM 2.2. If beZ, and dist(e, Z,) < dist(c, Z,) then
log F(a, b;¢; 1) = G,(¢) + G,(¢c —a — b) — G,(¢c — a) — G,(c — D).

Proof. When b is a negative integer we can apply Gauss’
formula and the identity G,(x + 1) = G,(x) + logx to obtain the
theorem.

When a and ¢ are fixed, the series for F'(a, b;c;1) converges
uniformly with respect to bin Z,. Hence the mapping b—F(a, b; c; 1)
is continuous on Z,.

Before considering log F'(a, b;c; 1) it is necessary to be sure
that F'(a, b; ¢c; 1) is never zero.

Suppose that Fl(a,b;c;1) = 0. Then there a sequence of nega-
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tive integers, b,, approaching b, with

lim F(a, b;;¢; 1) =0 .

00

It follows from the formula for F(a, b;;¢; 1) that
F(—a,b;¢c—a;1) =1/F(a, b;;¢;1) .

Hence lim, .. F(—a, b;; ¢ — a;1) = . This contradicts the fact that
F(—a, b;e — a;1) is finite.

Now we know both sides of the eguation in Theorem 2.2 are
continuous functions of b in Z,, so the theorem follows.

If b is a positive integer, F(a, b;c; 1) can be evaluated in closed
form. This is just an application of one of Gauss’ formulas between
contiguous functions.

LEMMA 2.3, If b is a positive integer and dist(a, Z,) <
dist (¢, Z,), then

(¢c—1)---(c = b)
¢c—a—1---(c—a—0b)

F(a, b;¢; 1) =

There are classical formulas for the values of certain generalized
hypergeometric functions at x =1. We will consider two such
results for a ,F,, Dixon’s theorem and Saalschiitz’s formula. The
function F,(x) = ;Fy(a, b, ¢; d, ¢; x) is called well-poised if

l+a=b+d=c+e.
THEOREM 2.4. If beZ, dist(c, Z,) < dist(e, Z,) and F,(x) is
well-poised, then F,(x) converges for all x with (x| =1 and

S, ¢;1/2(c + e 4+ 1); 1)

(2) 3F2(1) = 2F1(b, e+ e 1)

Proof. If b is a negative integer, (2) is a polynomial identity
which is a special case of Dixon’s theorem for complex variables,
see [1].

In general, the p-adic convergence in (2) is a consequence of
Lemma 2.1. Lemma 2.1 also shows that if ¢ and e are held con-
stant, ,F,(1) is a continuous function of & on Z,. Since we have
already shown the denominator of the right side of (2) does not
vanish, both sides are continuous and the theorem follows.

A ,F, is said to be Saalschiitzian if e« + b +c¢=d +e—1. In
this case we have
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THEOREM 2.5. If JFy(x) is Saalschiitzian, b€ Z, and dist (a, Z,),
dist (¢, Z,) < dist (e, Z,), then

Foa, by c; 1) = 2F1(a, b;e; 1) '
y U, G,y 2F1(“, b;e—c;]_)

Unlike Dixon’s theorem, this result is not valid in general with
complex parameters. However, Saalschiitz’s theorem says that if b
is a negative integer the above formula holds. The usual continuity
argument establishes the result in general for p-adic parameters.

In the first section we considered ratios of hypergeometric
series with a,b,cc Z,. In the next section we will return to these
ratios and want to approximate ¢ by a number not in Z,. The
following theorem generalizes Theorem 1.1 to the case in which
c¢Z,

First we need to extend some definitions to allow for numbers
not in Z,. I',(x) is defined for x <€ Z,, but Morita showed that there
is a power series for I",(x) when ord (x) = 1. This series, together
with the equation for I',(x + 1) shows that I"',(x) has a natural
extension to

Z = {x:xe R, and dist (z, Z,) < 1/p} .

Let &, = {x: | + 4| < 1/p}. I, is holomorphic on each &, If
reg;, 0i<p—1, we will let Z =14 and 2’ = (x + Z)/p. Let

Fl(a, b; c; x)
F(a', b';¢;27)

Z (a, b; c; x) =

THEOREM 2.6. If a,b,ce &, be Z, and dist (e, Z,) < dist (¢, Z,),
then

e - A=Y,

where
1 if e=a+b
pc’ —a’—b") if a+b>c=a, b
ela, b, ¢) = o
(¢"—a'=b")[(c'—a’) tf a>c=b
(¢"—a'—b")/p(c' —a")(c'—b") if @, b>¢E

Proof. The conditions on a, b, ¢ guarantee the convergence of
both F(a, b;c;1) and F(a/,b";¢';1). If a and ¢ are held constant,
each side of the above equation is continuous in b on Z,. Hence it
is sufficient to verify the theorem when b is a negative integer.
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This is the same type of calculation made in Theorem 1.1 except
that there is no restriction that ¢ > a + b.

3. Koblitz’s conjecture. When Dwork showed that .# (a, b; ¢; )
had an analytic continuation for certain a, b, ¢, he wrote

“Z (a, b; c; x) = lim F,.\(a, b; ¢; @)
= Fi(a/, b'; ¢’; 27)
with
Fiabica) = 3, Da®a oo
= (0).n!
and then showed the limit on the right gave the continuation for
2 not near 0.
When Koblitz calculated # (a, b;1;1), see [6], he conjectured
that lim, . F,.(a, b; 1; 1)/F (a’, b’; 1; 1) exists for all a, b € Z,, provided
F(a', b';1;1) does not vanish, and that its value is

Ty(@)[,(0) [ l1ifa+b<yp

b b) = _
@OTars D= urbyifatizop.

While we will show that in certain cases this value for the
limit is not quite correct, it seems likely that in most cases the
conjecture is valid.

We will look at Koblitz’s conjecture in a more general setting.
Namely, under what circumstances does

= T . F,..(a,b;c;x)
F(x) = F(a, bjc; x) = lim =2 70 &
( ) ( ) 500 Fs(a/l, bl; C’; xp)
exist, what is its value and what relation is there between the
values of this limit for different values of x? We will not answer
these questions in general here, but will consider a special case
with 2 in a neighborhood of 1 and then focus on x = 1.

THEOREM 3.1. If a,ceZ,, ¢ is not 0 or a negative integer and
b and a — ¢ are nonnegative integers, then F(a,b;c; x) is a quotient
of holomorphic functions on each of the dises D(0,17) and D(1, 17).

Proof. If x€D(0,17), then clearly

F(a, b; c; x) = F(a, b;c; x)/F(a’, b'; ¢'; x”) .

In order to consider x€D(1, 1-) we refer to a result of Cassou-
Nogues, [2]. She showed that if n—a, can be extended to a uni-
formly differentiable mapping of Z, — Z,, then
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pS—1

e e
exists and defines a holomorphic function on D(1, 1-). The condition
that b and a —c¢ are nonnegative integers allows us to apply
Cassou-Nogues’ result separately to the numerator and denominator
after inserting a factor of p—*/p— into the expression for F(a, b; c; x).

As an example, let’s consider a =b =c =1. Then, F(x) =1+
2+ +--2?~* for 2 in both D(0, 1) and D, 1-).

The situation is not so simple when ¢ = 2 and b=c¢=1. Then,
if xeD(0, 1), F(z) = (1 — 2?)/(1 — )%, and if 2 e D(, 1),

Flx)=01—2")/1— )+ (@ — 1)/(x — 1 logz .

When 2 = 1, the natural generalization of Koblitz’s conjecture
is that if F(a’,b’;¢’,1) does not become 0 for large s, F(1) exists
and its value is given by the formulas in Theorem 2.6. In fact,
this conjecture is false in certain cases, but when we look deeper
into this problem we will see there are good reasons to expect it

to be true in many cases.
First, let’s look at some examples. If a€Z,and b = ¢ = 1, then

Fya,1;1;1) = (a +1)---(a + p* — /(@ — 1!,

and a short calculation shows F(a, 1;1;1) = pa’/a. Though F(1)
exists for all ae Z, if b = ¢ = 1, the value when @ # 0 is the nega-
tive of the result conjectured by Koblitz.

A direct calculation can also be made when b =2 and ¢ = 1.
In this case F'(1) exists for all a € Z, and agrees with Koblitz’s value
if @ =0 or 1, but is again off by a minus sign if @ > 1.

A different type of behavior occurs when b =1, ¢ = 2 and a is
a positive integer greater than 2. Here we can use the idea in
Cassou-Nogues’ work and find

Fla1:2:1) = 2% (1414 ... 1y
(a, ) a_1<+2+ +a-l)

This expression is discontinuous at each value of a.

We believe the cause of this complicated value of F(1) is that
b>¢. If cisl, ¢=p—1, so @ and b never exceed ¢ and diffi-
culties of this type probably do not occur.

For the remainder of this section we will take x = 1. One way
to look at Koblitz’s conjecture and its generalization to ¢ # 1 is that
we want to be able to reverse the limits in the expression

.. F,(a,b;v; 1)
1 ] g+1 » ) y ,
e e Fd, 5375 1)
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where v¢ Z,. While the examples already given show this cannot
always be done, we will show that if F(a’, b’; ¢’; 1) does not decrease
too rapidly as s—co and the digits in the p-adic expansion of —¢
are not too small, then the limits may be reversed. In proving
this result we will need to know where lim,_, F(a, b; v;1) = 0. The
following theorem answers this question.

Let Z* denote the positive integers, Z~ the negative integers,
Z.=Z7U{0} and Z_ = Z~ U {0}.

THEOREM 3.2. If a,b,ceZ, c¢Z_and ¢ Z,, then
lim F{a, b;v;1) =0

if and only if either
(i) b,ceZt with b =c¢ and if also a € Z™*, then a = ¢ or
(ii) beZ,a—ceZ, and b <c¢—a or
(iil) (@) or (ii) holds with a and b reversed.

Proof. If (i) holds then Lemma 2.3 shows that the limit is 0.
If (ii) holds the same result follows from the formula that applies
when be Z-.

Now suppose that none of (i), (ii) or (iii) hold. Gauss’ relations
between contiguous hypergeometric series are formal power series
identities, so we can use them with p-adic numbers. By letting
2 =1 in one of these identities the equation

(v —a)y —b)F(a,b;v+ 1;1) = v(vy —a — b)F(a, b; v; 1)
is obtained. This leads to

) 1y = Maly —a —b) e
Fla, b; ;1) = = 3
(a, b; v + m; 1) o by Fa, b;v; 1)

and also

Fla, by —m; 1) = L= 0= Mu(0 = b = My gy 1)
(v = Mmu(y —a —b—m),

If a —c and b — c¢ Z,, there is no problem letting v — ¢ in the
formula for Fl(a,b;v + m;1). If, however, say, o« —ceZ,, the
formula for Fl(a, b; v — m; 1) will be used unless ce Z+.

If ceZ* and ¢ —ce Z,, then Lemma 2.3 (with a and b inter-
changed and ¢ replaced by <) shows that unless (i) or (ii) holds,
lim,_, F(a, b;v;1) = 0.

Now assume that lim,., F(a,b;v;1) =0 and ¢ —¢, b —ce¢ Z,.
Then,

lim F(a, b; v + m;1) = 0 for m =0,1,2, --- .

i—c
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Let B, be a disc around ¢ + m with |Fl(a, b;v;1)| <1 when
v€B,. Let & be a finite covering of Z, chosen from the B,.
Inspection of the series for F(a, b;v;1) as a function of v shows
that F(a, b;v;1) is an analytic element on each set of the form
dist (v, Z,) = (0 real), and, hence, by Krasner’s Mittag-Leffler
theorem, must attain its maximum value at some v where
dist (v, Z,) = 6. When v is large, ||F(a, b;v;1)| = 1. This leads to
a contradiction if ¢ is chosen sufficiently small.

The above approach also works when a — ¢ or b — ¢ is in Z.,
so Theorem 3.2 is proved.

Note that if (ii) of Theorem 3.2 holds then an argument similar
to the proof of Theorem 1.2 shows that F\(a/,b’;¢’;1) =0 when
»° >0b'. Hence, as Koblitz did for ¢ =1, we must exclude this
possibility in order to be able to define F(a, b;c;1).

We can now give a sufficient condition for a generalization of
Koblitz’s conjecture.

THEOREM 3.3. Supposea,b,ceZ,,ce¢Z_,veR,—Z,, F(a’, b';c";1)+
0 when s is large, lim,,, F(a', b;v';1) =0, [¢]| =1 and 4f ¢ # 1,

then €@ > a® b"® for i=0,1,2, ---. Then, lim_ . p~Fa’, b';¢;1)=
o implies
lim Fo.(a,b;e;1) &(a, b, ¢) I',e){c—a—0)
s F(a’, b';¢'; 1) * 7 Te — a)l (¢ — b)
with
lifeza+b
ela, b, c) = Fezat

ple’ —a —b)ife<a-+b.

Proof. For simplicity, let

_ r,&r,z—a—0>5
g(z) = €(a, b, 2) Tz — ol —b) ze P

and

= F. . {a,b;z;1)
F (z2) = =2 ez
O Fw, e

with & = {x; dist (x, Z,) < 1/p}.
For ve€ & and each positive integer s there is the identity

Fyc) — gle) = F,c) — F,(v) + F(v) — g(v) + g(7) — g(c) .

Since g and F, are continuous at ¢, the terms F(c) — F,(v) and
g(v) — g(c) are small if v is close enough to ¢. The problem now is
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to choose v near ¢ so that F,(v) — g(v) is small.

By Theorem 2.6, g(v) = F(a, b; v; 1)/F(a/, b’;v"; 1), so

F(v) — g(7)
(3) _ F@, b7 DF,(e, b7 1) — F(a, b;v; DF(a';0';7; 1)
F(a, b7 DF(@, b';7'; 1) ’

At this point we will deal just with ¢ = 1. The case ¢ =1
will be treated afterwards. The basic result of Dwork’s article,
[5], shows that if a,b, € Z,, |v?| =1 and ¥ > a@®, b then

F@', b, c; 2")F,(a, b;c; x)
= Fl(a, b; ¢; )F(a/, b'; ¢'; %) (mod p**[[2]]) .

This is a formal power series congruence.

An examination of Dwork’s proof shows that if we take v in
<7, rather than just in Z,, the congruence is still valid provided
that v e <. (Only the proof of (1.3) of Lemma 1 of [4] uses
veZ, The result, however, can be proved with just ye &.) If
v=c¢-+48, |0 <1/p, then v = ¢' + 6/p. Thus if v is sufficiently
close to ¢, v € &. Furthermore, the conditions |¢“| =1, ¢ >a'?,
b carry over to v when v is close to e¢.

Since the series Fl(a, b;v;1) and F(a’,b’;7’;1) converge when
v ¢ Z,, Dwork’s formal congruence, with # = 1 becomes a numerical
congruence. That is, if v is sufficiently close to ¢,

Fa, 057" )F1(a, b;v; 1)
= Fl(a, b;v; DF(a/, b";7';1) (mod p°*') .

This gives sufficient control over the numerator in (3).

Since it is assumed that lim,., F(a’, d';v'; 1) = 0, there is some
positive M depending only on a, b, ¢ so that every neighborhood of
¢ containg a v ¢ Z, such that |F(a/, b";v;1)| > M.

Now for F.(a',b’;v';1). A necessary condition for the formula-
tion of Theorem 3.3 is that F,(a’,d’;¢’;1) =0 when s is large.
Hence, given s, when v is close enough to ¢,

|Fya, b7 )| = |Fya', b';¢51)] .

We are finally ready to show (3) is small when s is sufficiently
large. First, by the hypothesis of the theorem, if we are given ¢
we can choose S such that |p—F.,(a’, b';¢';1)] > 1/Me for all s > S.
Then, for each s > S, if v is chosen close enough to ¢ to satisfy
all of the conditions mentioned above and also chosen so [F(a’, b';v'; 1)| >
M, the above estimates can be put together to show

|F(v) — g <e.
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We can now conclude that
lim F(c) = g(e) .

When ¢ =1, the conditions ¢® > a@®, b are unnecessarily
restrictive. In order to handle this case we refer to Dwork’s first
paper, [4] involving the basic power series congruence used above.
In it he considered hypergeometric series of the form F(a, b;1; x).
We claim that Theorem 2 of [4], which establishes the congruence,
can be used if v is taken close to ¢. The point here is that n!/(v),
behaves as well as (a),/n! in Dwork’s theory. If one looks at
Corollary 1 on page 36 of [4] it is clear that the only possible
difficulty in having things upside down is that (i) may fail. The
following lemma shows there is no problem when v is close to 1.

LEMMA 3.4. Let z€2,, ord(z — 1) = 1. Then

where A, (n) = (z),/n!.
The proof is a simple induction.

The proof of Theorem 3.3 when ¢ = 1 continues in the same
manner as when ¢ = 1.

Theorem 1.2 and the case ¢ =1 of Theorem 3.3 suggest that
the conditions &% > @®, b in Theorem 8.8 can be weakened to
cv =a®, p,
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