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The following two questions are discussed in this article:
(1) under what conditions is a Hausdorff space embeddable
as a Z-Borelian subset of some Hausdorff space; and (2)
under what conditions is the Hausdorff 1 — 1 continuous
image of a “7-Borelian subset of a Hausdorff space a *-
Borelian subset of some Hausdorff space containing it. We
obtain necessary and sufficient conditions in answer to
question (1) in the case of a *; and necessary conditions
for “7-Borelian subsets of each class o if the containing
space is a perfectly o-normal >7,. Question 2 does not always
have a positive answer as is shown by an example of a
Hausdorff 1 — 1 continuous image of .*-Borelian subset of
a compact Hausdorff space which is not “Z-Borelian in any
Hausdorfl space containing it. In partial answer to question
(2) necessary conditions on the domain and the range of the
function are presented.

In §1 the necessary definitions are given. Many of the original
definitions for completely regular spaces such as bianalytic and
Borelian as well as the notion of a complete sequence of countable
covers are due to Frolik and can be found in [3]. The class of o-
bianalytic spaces is an enlargement of the class of bianalytic spaces.
In [8] the 27,-fiable spaces have already been introduced. For the
reader’s convenience, the definitions of these concepts have been
given again.

The motivation of §2 is to extend to a larger class of spaces
the well-known result that if f(X) is a metrizable 1 — 1 continuous
image of a .27 -Borelian subset of a compact metric space, then f(X)
is a .2 -Borelian subset of any of its metrizable compactifications.
An example is given of a Hausdorff 1 — 1 continuous image of a
2¢-Borelian subset of a compact space which is not a .2#-Borelian
subset of any Hausdorff space in which it can be embedded. However,
using some of the techniques that Frolik developed in [3] for comple-
tely regular spaces, necessary and sufficient conditions in order that
a 1 — 1 continuous image of o-bianalytic space X be a .2 Borelian
subset of some Hausdorff space are obtained. This result can be
applied to the cases where X is a .9#-Borelian subset of a Hausdorff
space Y and Y is either a perfectly o-normal .97, or has property
I (J10]) or is locally metrizable.

In §3 results are presented concerning the relationship between
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the Borel class of a .7 Borelian subset of a Hausdorffl ¢, space
and its complete sequence of countable covers as defined in [4].
Theorem 3.1, giving necessary and suffcient conditions for a space
to be embeddable as a .97, subset of some Hausdorff space, is an
extension of Frolik’s result for completely regular spaces [4].
Theorem 3.3 gives necessary conditions for subsets of perfectly o-
normal .97, Hausdorff spaces to be .7 -Borelian of class @. The proofs
depend on techniques developed by Frolik in [4].

1. Preliminaries. Throughout this article all spaces will be
assumed to be Hausdorff and the notation of Frolik in [3] and [4] will
be followed. If XY then X” will denote the closure of X in Y.

DEFINITION 1.1. Y is said to be a .97;-fication of a Hausdorff
space X provided that X can be embedded as a dense subspace of
Y and Y is a Hausdorff 9%, space (that is, Y is equal to a countable
union of its compact subsets). A Hausdorff space for which there
exists such a .97 -fication is said to be .97,-fiable.

DEFINITION 1.2. X is said to be a perfectly g-normal Hausdorff
2%, space if, in addition to being a Hausdorff .97, space, every closed
subset is a &, that is, a countable intersection of open subsets.

It should be noted that this definition does not imply that X is
normal; in fact, X need not be regular. For example, let 4, B be
two countable disjoint dense subsets of [0, 1] in the usual topology.
Let X = AU B endowed with the following topology 7 :0e¢. 7 if
and only if O = O’U(0”"N B) where O’, 0" are open subsets of [0, 1]
in the usual topology. X is clearly a nonregular Hausdorff perfectly
o-normal .97, space. Any perfectly normal .27, space is clearly a
perfectly o-normal .27 space.

DEFINITION 1.3. Let {X,}2, be a sequence of Hausdorff spaces
that are mutally disjoint. Then >, X; will represent the set X =
Uz, X; endowed with the following topology: O is open in X if and
only if O N X, is open for all 1.

DEFINITION 1.4. Let X be a Hausdorff space and let .2 (X)
denote the class of compact subsets of X. Then & (2#°(X)), the
class of 9#-Borelian subsets of X, is defined to be the smallest
class of subsets of X containing .2¢2°(X) and closed under countable
intersections and countable unions.

Let 2°(X) denote the class of zero sets of continuous funections
on X and .# (X) the class of closed subsets of X. Let Z (2 (X)),
the class of Baire subsets of X, and (¥ (X)), the class of .F-
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Borelian subsets of X, be defined by analogy to the definition of
FB (o (X)).

Definitions of .2#~-Borelian or .#-Borelian subsets of a space X
of class a for each ordinal a of second class (that is, for each « less
than the first uncountable ordinal) are given in [6] or [1].

DEFINITION 1.5. A Hausdorff space X has property I if for all
A, B in ¥ (X)(A\B) is in 97,(X) (that is, the intersection of A and
the complement of B is a %, subset of X).

The notion of a complete sequence of countable covers was
introduced by Frolik in [4] and [3]. The following definitions are
taken from there.

DEFINITION 1.6. A family of subsets {E)};... of a topological
space X is said to have the finite intersection property if every
finite subfamily has nonvoid intersection.

DEFINITION 1.7. p = {SZ)r_, is called a sequence of countable
covers of X if, for each n,

(1) 2%, consists of a sequence of subsets {H,}, of X; and

(2) Xc Un H,.

DEFINITION 1.8. A family & = {E}};.. of subsets of X is a pu-
Cauchy family if

(1) & has the finite intersection property; and

(2) for all », there exists a 7,€% and a set H,; €57, such
that E;, c H,;,.

DEFINITION 1.9. p¢ = {5£.}3., is said to be a complete sequence
of countable covers of X if, for each p-Cauchy family & = {E},..,
N:.. Ef = 2.

DEFINITION 1.10. A Hausdorff space X is said to have a complete
sequence pt = {75} of countable #-Borelian covers of at most class
a if

(1) g is complete in the sense of Definition 1.9; and

(2) for all j, 55 = {H;}i~, and each Hj; is a .#-Borelian subset
of X of at most class a.

If X is a completely regular space, 83X will denote the Stone-
Cech compactification of X.

The following definition can be found in [3].

DEFINITION 1.11. B(X) will denote the class of Borelian spaces
which are subsets of X. A space Y is said to be a Borelian space
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if there exists a Borelian structure in Y. A Borelian structure in
Y is a complete sequence {5~} of countable disjoint coverings of
Y satisfying the following two conditions:

(1) 2#.4, refines 57, for each =,

(2) if for each n M, and N, are elements of 5%, and there
exists a &k such that M, = N,, then N, M7 N Ne-. N = @.

DEFINITION 1.12. A Hausdorff space X is .Z%“analytic if it is the
continuous image of a .9%,; subset of a compact space.
Let us define the following new class of spaces.

DEFINITION 1.13. A Hausdorff space X is said to be g-bianalytic
if there exists a sequence {X;}, of subsets of X such that

(1) X=Ux X, and

(2) each X, is bianalytic; that is, both X, and (BX,\X,) are
completely regular #-analytic spaces for each 1.

We should note that the union in Definition 1.13 need not be
disjoint.

PRrROPOSITION 1.14. Ewvery bianalytic space is o-bianalytic. How-
ever, there exist completely regular o-bianalytic spaces that are mot
bianalytic.

Proof. The first statement is obvious. If X = N U {x} where N
is the space of the positive integers with the discrete topology and
2 €(BN\N), then Frolik showed in [5] that this space was not
bianalytic.

ProOPOSITION 1.15. There exists a o-bianalytic space which is
not @ ¢ -Borelian subset of any Hausdorff space.

Proof. Let X denote the Hausdorff space [0, 1] with the following
topology .7:0€ .7 if and only if O = O'U(0”"NQ) where O, O’ are
open sets in [0, 1] with respect to the usual topology and @ is the
set of rationals in [0, 1]. Since X = IU Q, where I is the set of
irrationals in [0, 1], X is o-bianalytic. In [7] it was shown that X
could not be embedded in any Hausdorff .9¢, space. Since any .9%-
Borelian subset of a Hausdorff space is necessarily contained in a
%, X is not a 97-Borelian subset of any Hausdorff space.

However, the following is true.

PropoOSITION 1.16. A .5%,-fiable (respectively regular) o-bianalytic
space s a 7 -Borelian subset of any of its OF,-fications (respectively
compactifications).
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Proof. Let X = U X, where X, is bianalytic and let K = U, K,
be a 7 ,-fication of X. Now in [5] Frolik showed that closed sub-
spaces of bianalytic spaces are bianalytic and that any bianalytic
space is a Baire subset and consequently a .27-Borelian subset of any
of its compactifications. Let X = Uz;-,(X; N K;). Each X, N K; is
a % “-Borelian subset of K.

2. 1 — 1 continuous images of .2%~Borelian subsets of Haus-
dorff spaces.

THEOREM 2.1. There exists a Hausdorff space X which 1s the
1 — 1 continuous image of a 2¢-Borelian subset A of a compact space
Y, such that X is not a .2Z~Borelian subset of any Hausdorff space
an which it can be embedded.

Proof. Let X be the Hausdorff space ([0, 1], .77) defined in
Proposition 1.15. We have shown that X is not a .2#“Borelian subset
of any Hausdorff space in which it can be embedded. It remains to
show that X is the 1 — 1 continuous image of a .2#~Borelian subset
A of a compact space Y. Let A = >\, A;; where A, = the irrationals
in[0, 1]and A, = {¢;} foreachi =1, A, N 4;,= @ # j) and U, {g.} =
@ = the rationals in [0, 1]. A is obviously a .9, subset of the one
point compactification Y of the space 3,2, B;; where B,= [0, 1] endowed
with the usual topology and B, = A4, for all 1 = 1. X is clearly a
1 — 1 continuous image of A.

THEOREM 2.2. A 27,-fiable 1 — 1 continuous image Y of a o-
bianalytic space X is a 2¢7~Borelian subset of any of its 57,-fications.
In particular, a regular 1 — 1 continuous image of a o-bianalytic
space 18 a Z-Borelian subsel of any of its f,-fications or com-
pactifications.

Proof. Let P be some Hausdorft .27,-fication of Y. Then P =
U K,, where K, is a compact subset of P for each =.

Since X is o-bianalytic, X = {J;z, X; where each X, is bi-
analytic.

For each ¢ and =, let

Yiu=rX)n &K, nY).

0

Now each Y, , is completely regular and Y = UUg,-.Y, .. Since
closed subspaces of bianalytic spaces are bianalytic, then each Y,,
is a 1 — 1 continuous image of a bianalytic space. Therefore, from
Theorem 13 [3] it follows that Y, , e B(P) for all 1, n.
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It follows from Theorem 11 [3] that Y,, is an element of the
family consisting of countable intersections of countable disjoint
unions of sets of the form (F N B), where F is a closed set in P
and Be # (% (P)). That is, for each 7 and =,

Y= f;] U (Fi; N Bij) where

Fi? is a closed set in P and consequently a %,

i» is a Baire subset of P and consequently a .2#-Borelian
subset of P.

Therefore ¥ = U7,-.Y;,. is a S#-Borelian subset of P.
The previous theorem can be restated as follows.

THEOREM 2.3. Let Y be a 1 —1 continuous of image of a o-
bianalytic space X. Then Y 1s a ¢ -Borelian subset of some
Hausdorff space if and only if

(1) Y s Hausdorf:

(2) there exists a sequence {R,}r.. of subsets Y such that

(i) Y=UiuR,
and for each m,

(ii) R,C R+, and

(ili) R, is closed and strongly regular with respect to Y; that
18, R, 1s a closed subspace of Y and for each closed set CC R, and
for each point y € (R,\C) there exist sets O, U open in Y such that
ye0,CcUand ONU = ©.

In fact, if conditions (1) and (2) are salisfied, Y is a ¢ ~-Borelian
subset of any of its Hausdorff °7,-fications.

Proof. Necessity of (1) and (2).

Let us suppose that Y is a 2#“Borelian subset of some Hausdorff
space. Then Y is Lindelof and Y is a subset of some Hausdorff .57,
space. It follows from Theorem 3.1 [8] that conditions (1) and (2)
are satisfied.

COROLLARY 2.4. A 7,-fiable (respectively regular) 1 — 1 con-
tinuous tmage of a Z¢-Borelian subset of a perfectly o-normal 55,
space is a Z-Borelian subset of any of its .O7,-fications (respectively
compactifications).

The following result in the case where the image was regular
was first proved by Sion in [9].

COROLLARY 2.5. Let X be a Hausdorff space which has property
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I. Then a 2%,-fiable (respectively regular) 1 — 1 continuous image
of a 27-Borelian subset of X is a .2¢¥~Borelian subset of any of its
i~ fications (respectively compactifications).

Proof. If Y is a .2#~Borelian subset of X then Y is contained
in a .97, subset Z of X. In [10] it was shown that a space Z with
property I satisfies the following condition: for all Ae .2 (Z) and B
open in Z, AN Be 2, (Z). Since Z is also a .%, then property I
implies that it is perfectly o-normal .o7.

COROLLARY 2.6. A regular 1 — 1 continuous 1mage X of a .2£-
Borelian subset of a metrizable 27, space 1s a Zi~Borelian subset
of any compactification of X or of any Hausdorff 5%, space containing
X.

Theorem 1.10 can now be applied to regular locally metrizable
spaces.

COROLLARY 2.7. Let X be a regular locally metrizable space and
let Abe a Z7-Borelian subset of X. A o7-fiable (respectively regular)
1 — 1 continuous image of A is a Z~Borelian subset of any of its
Jo-fications (respectively compactifications).

Proof. If A is a ¢“Borelian subset of X, then A is contained
in a .97, of X. This .9, is Lindelof and therefore paracompact [2].
It follows from [11] that this .27, is metrizable. The result now
follows from Corollary 2.6.

3. %-Borelian subsets of Hausdorff .27, spaces and their
complete sequences of countable covers. It would be interesting to
characterize for each a the Hausdorff spaces that can be embedded as
27-Borelian subsets of class a of some Hausdorff .27 space. Theorem
3.1 answers this question in the particular case of a .97, This is
a generalization of Frolik’s result in [4] for completely regular spaces.

Theorem 3.3 gives necessary conditions for a subset of a perfectly
g-normal .2, space to be a _Z¥“Borelian subset of class a. This
theorem is proved by a method similar to that used for Theorem 9
of [4].

Both these theorems depend upon the notion of a complete
sequence of countable covers defined by Frolik in [4].

THEOREM 3.1. Let X be a Hausdorff space. Then X can be
embedded in some Hausdorff space Y as a .97, subset if and only
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2f the following two conditions are satisfied.
(1) There exists a sequence {X,}o-, of subspaces of X such that
(i) X=Uw X
and for each m,
( ii) Xn c Xn+1y
(iii) X, is closed and strongly regular with respect to X.
(2) There exists a complete sequence Y = {5757 of countable
closed covers of X (that 1is, each member of each cover is closed
m X).

Proof. Let us suppose that X can be embedded in some Haus-
dorff space as a 97, subset. Then X can necessarily be embedded
in some Hausdorff .2#, space and condition (1) now follows from
Proposition 1, [7]. Condition (2) follows from Proposition 4, [4].

Now, conversely, let us suppose that conditions (1) and (2) are
satisfied. Condition (2) implies that for each %n{s# N H,, is a
complete sequence of countable closed covers of X,. Now, since X,
is regular and has a complete sequence of countable closed covers,
it follows from Proposition 3, [4] that X, is Lindelof. Therefore
X = U;-: X, is Lindelof and we have by Theorem 3.1 in [8] that X
is embeddable in a Hausdorff .9, space ¥ = (Uy-. K,, 7) where, for
each n, K, = X, and K,C K,,. (The topology = was described in
[8].)

Let us consider the following subspace of Y:

A-NUQ@EmNL",
where each 5% in g consists of {H;}=,; the X, satisfy condition
(1); K, = X, for each n; and ( )%= represents the closure of
( )in K,.

Now A is obviously a 5%, subset of Y and A contains X. Let
us suppose that there exists ¥y € (A\X). Since y € Y, then either y € K,
or else there exists an n, such that y ¢ (K, \K,) for all m < n, (If
ye K,, we shall let n,=1.) Now let &2 be the family of all closed
neighborhoods of y in K,; let & be the family of all closed subsets
F of X such that y € F%» (the closure of F in K,) for some n = n,.
Clearly, 2 N X = {DN X: De &2} is a subfamily of &.

We claim that & is a p-Cauchy family. To show that & has
the finite intersection property, let F,, F, be members of &. There-
fore, y € (F\*» N Fy*» N K,,) for some m = n, and » = n,. Therefore,
as it was shown in [8], y € (F, N X,,) " N (F; N X,)*%). From Lemma

1, [8] we have that X, is strongly normal with respect to X and
consequently X, is a normal subspace of X. Since disjoint closed
subsets of a normal space have disjoint closures in their Stone-Cech



2 -BORELIAN EMBEDDINGS AND IMAGES OF HAUSDORFF SPACES 377

compactifications, it follows that F, N F, # ¢. Thus & has the finite
intersection property.

Since y € A, then for all j there exists an 7; and an n; such that
(X.; N Hy)e &, Thus & is a p#-Cauchy family. Since ¢ is complete
Nzes EX = @. This is impossible because Nzex EX C Nzes EY C
Noeo DY = Npesy DX = {y}, and y € (A\X). This contradiction proves
that A = X.

As a corollary we have the following result due to Frolik
(Theorem 7, [4]).

COROLLARY 38.2. A completely regular space X is a 5%,, subset
of some Hausdorff 97, space if and only if X has a complete sequence
of countable closed covers. In particular, a completely regular space
X is a 5%,, subset of its Stone-Cech compactification B3X if and only
if X has a complete sequence of countable closed covers.

Proof. Let X, = X for each n in condition (1) of Theorem 3.5
and the proof follows immediately.

THEOREM 3.3. Let X be a perfectly o-normal ¢, Hausdorff space.
If Y is a #~Borelian subset of X of class «, then Y has a complete
sequence of countable Z-Borelian covers of at most class a.

Proof. We shall proceed by transfinite induction. For the case
a = 2 the result follows from Corollary 3.6.

From the assumption the result is true for all 3 < @, we must
prove the result is true for a in the following three cases.

Case (1). a = o, where «a, is a limit ordinal.

Since Y is a .%~Borelian subset of X of class a, then Y = N;.. Y,
where each Y, is a 22-Borelian subset of X of class B, < a,. Thus
each Y, has a complete sequence #, = {S#5"}5., of countable .#-Borelian
covers of class at most B,. Let us consider the sequence p =
{4 N Y}y ;= Now p is a sequence of countable .#-Borelian covers
of Y of at most class «, and g is complete from the proof of Theorem
9, [4].

Case (2). o = a, + m (where «, is a limit ordinal and m is odd).

Since Y is a .%~Borelian subset of X of class a = a, + m,
then Y = Uz.,Y, where each Y, is a .%-Borelian subset of X of
class (@ — 1) and each Y, has a complete sequence p, = {5£"}5, of
countable .#-Borelian covers of at most class (@ — 1).

Let us define for each 7 the following sequence {T',}7-, of subsets
of X: T, = &,
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.,L=L”JY,c forall n=1.
k=1

Let us consider the following sequence pt = {_#;}5., of countable
covers of ¥ where for each j:

A ={HEN (Y \T,_ )5z » Where for each » and j,
%” = {'H.’/”:}:ll .

Since X is perfectly o-normal .9, we can easily verify that, for
all j, each element of _#; is a .#-Borelian subset of Y of at most
class a.

To show that # is complete, let & be a maximal p¢-Cauchy family.
Clearly there exists an n such that & is a p,-Cauchy family. By
Proposition 2, [4], @ = Nsex EXC Y, Y. Therefore, Nzes EY + @
and x is complete.

Case (8). a = a, + m (where «, is a limit ordinal and m is even).
We can use the same method of proof as for Case (1).
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