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We study the invariant subspace lattices for a one
parameter family of operators {T,}, on L?(0,1), « a complex
number, where

T.f(z) = of(@) + a S’f(t)dt ,
and their adjoints T%,
T*f() = of(®) + a Slf(t)dt .

The closed invariant subspaces for 7, are in one-to-one
correspondence with certain closed ideals of <%,, where <%,

is a Silov algebra with unit and in which the range 5%, of
the Riemann Liouville operator J,

(Jaf(m) - ﬁ%ﬂo(w - t)""lf(t)dt)

is embedded as a closed ideal. When » is a positive integer,
there is a complete lattice isomorphism between the closed
ideals of <%, and the n-tuples (E,, E,, ---, E,_,) of closed
subsets of [0, 1] where E, 2 F, 2 --+ 2 E,_, 2 derived set of
E,. Every closed ideal of -%7,, is the intersection of closed

primary ideals. Similar results carry over to a where the real
part of « is an integer and also to the adjoint operators.

1. Introduction. Not many operators have had their invariants
subspace lattices completely described. To name but a few, the in-
variant subspace lattice for the (simple) Volterra operator on L?(0, 1)
was completely determined by Donoghue [4] and a more general result
by Kalisch [7], that for the (simple) shift operator on I* by Beurling
[1]. Further investigation of the invariant subspaces for the weighted
shift operators have been made by Donoghue [4], Korenbljum [12],
Nikol’skii ([14], [15]) and many others.

The main object of this paper is to characterize the invariant
subspace lattices for a one parameter family of operators {T.}. on
L*(0, 1) (in general 1 < p < oo, but in some cases 1 < p < ) where

T.f@) = of@) + a | ot ,

feL®0,1),2€[0,1] and « is any complex number with integer real
part. (And hence for their adjoints, namely {T%} where T*f(z)=

385
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of (@) + agl )t

We convert the invariant subspace problem into an equivalent
problem where we characterize the closed ideals of certain Silov
algebras. Sarason [18] had employed this approach to characterize
all the closed invariant subspaces of T,. Our result is a generalization
of his. The equivalence of the two problems is established by using
analysis of Kantorovitz [10] on the funectional calculus of the opera-
tors T.,.

We prove that there is a complete lattice isomorphism between
the closed invariant subspaces of T,(n e N, the natural numbers) and
certain closed ideals of a Silov algebra .22, where % = {f: f"" is
absolutely continuous, f™eL?(0, 1)} with norm |f|,= | /"I, +
S F®0)| (Theorem 4.1). This correspondence is induced by the
Riemann Liouville operator J, on L?(0, 1) where

J.f(2) = —I—Sx(x — t)* ' f(t)dt, Re a (the real part of a) >0,
I'(a) Jo

I is the gamma function.

There is a complete lattice isomorphism between the closed ideals
of <2, and the n-tuples (E, E,, --+, E,.,) of closed subsets of [0, 1]
with B, 2 E, 2 .- 2 E,_, 2 derived set of E, (Theorems 3.19 and
4.3). Every closed ideal of <2, is found to be the intersection of
closed primary ideals. Several other algebras were known to have
this property. Stone [21] proved it for the algebra C[0, 1], Silov [19]
for C'[0, 1], Whitney [24] for C*[0, 1], Snol [20] for some algebras
lying between C[0,1] and C*[0, 1], Osadchii [16] for the algebra of
functions on the unit circle for which the nth derivatives are square
summable, Daly and Downum [3] for a subalgebra of C*'[0, 1] con-
sisting of functions whose (n — 1)th derivatives satisfy a bounded
Lipschitz condition.

Similar results carry over easily to the more general parameter
o, where Rea is an integer, and also the adjoints of these operators.

When Re a is not integral, the situation is more complex. Itis
not apparent that <2,, the range of J, is an algebra. Via functional
calculus, we show that indeed it is, for Rea = 1. Moreover it can
be embedded as a closed ideal of a Silov algebra with unit, <2,
which is a natural generalization of <%,. As is in the case of T,,
there is a one-to-one correspondence between the closed T.-invariant

subspaces and certain closed ideals of <%, (and hence of A). We
conjecture that all the closed ideals of “Z(n < Rea < n + 1) are

completely determined as in the case of k%?,b, by n-tuples of closed
subsets of [0, 1] satisfying certain conditions. We have not succeeded
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in proving this and we hope to return to the problem on a later
occasion. Kantorovitz ([10], [11]) showed that the operator 7, has
Cfunctional calculus if and only if |[Rea| < n. Imitating his argu-
ment, we found that for «, g€ C (the complex numbers) with Re a >
1 and 0 < Re B8 = Rea, T; has .2 -functional calculus.

Finally it should be remarked that Erdos [5] and Waterman [23]
had independently found all the invariant subspaces for the operator
T; on L?(0, 1) where T'; is defined as

~

Trg() = f@g@) — | f'®ebt ,
g€ L?0,1), [0, 1] and f is a function with some suitable conditions.
The particular case when f(t) =t gives T,= T_,. Furthermore,
Waterman, in [23], claims to have found all the closed invariant
subspaces for the operators {7_,}, n a positive integer, by using
recent results on L*-approximation by splines. However, our work

is conducted independently of his work which was not available to

us’.

2. The Silov algebra .ZZ,. The range .22, of the Riemann
Liouville operator .J,,

Jf®) = i | @ = 00t £ €120, 1, 200,11,

where ne N, 1 < p < oo, is given by

2, = {g: 9" is absolutely continuous, ¢ e L?(0, 1),
g90)=0,0=i=n—1}.

Clearly <&, is a subalgebra of the well known Banach algebra
C*[0, 1], the space of all complex valued functions with (n — 1)
continuous derivatives. But we will endow &, with its own norm.
As .2, has no unit, it is convenient to embed it in a larger algebra

%7% with unit, namely
P = B D DD - DCrDC
where the sum is direct. Thus
@, = {g: g™ is absolutely continuous, ¢ e L0, 1)} .

Define a norm |- |, on &/?n as follows: for ge.ém

191, = 91, + 2 19°0)] ,

t Still unable to locate this reference.
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where || - ||, denotes the L?-norm and |-| the absolute value. It is
easily seen that (5?1, |-],) is complete and .22, is a closed ideal of
,. The norm ||| - |||, defined as

gllls = g™l + Zllg“ I, g€,

(where || - ||~ is the supremum norm) is equivalent to |-|,.

Since for any g, he <2, |hgl, < c¢|h|.|g|, for some constant ¢
independent of g, h and =, @, can be made into a Banach algebra
by the equivalent norm |-|, where |g|, = ¢|g|,. Moreover B, is a
Silov algebra. (A commutative semisimple Banach algebra % is a
Silov algebra if for any closed subset F' of the maximal ideal space
@, of A and €9, x ¢ F, there is an element h €A such that i(x) =
1 and A(F) = {0}.) Henceforth we shall use the norm |-|, on P,
but the arguments used work for both norms.

Observe that for any fixed ¢ and a,0 <7 <% — 1, a€|0, 1], the
evaluation map E,,: %, — C defined as E; . (9) = 9% (a), ge.A, is
continuous.

It will be seen that the collection & of all the closed ideals of
%, which are closed under multiplication by the function x are in
one-to-one correspondence with the closed invariant subspaces of
T,. & consists of precisely those closed ideals of &, which lie in
#,. The collection Z* of all the closed ideals of .<Z, (and hence
&) can be neatly characterized and every closed ideal of B, is the
intersection of closed primary ideals.

3. THE MAIN THEOREM. Characterization of the closed ideals
of A,.
For any closed ideal _# in .&Z,, we define

Z(F)=Hull % and for 0 <¢t=<n—1,
Z(F) = {zel0,1]: f9(x) =0, VO< j < i, Vfe 7} .

Whenever there is no confusion, we abbreviate Z,(_#)as Z,,0 =1 <
n — 1.

REMARK 3.1. For any closed ideal .# in .&2,, deriv Z,< Z,_, <
Z, ., < -+ & Z, where deriv Z, is the derived set of Z,.

Each closed ideal .7 not only determines an n-tuple of sets Z,
Zy +++y Zy_y, but in fact is completely determined by these sets. We
shall now state the main theorem.

MAIN THEOREM 3.2. For any n-tuple of closed subsets (Ey, E,, - - -,
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E,_,) with deriv E,SE, .S F, ,Z---ZSE,C[0, 1], there exists a unique
closed ideal # in #, such that Z, = E,0<1=n — 1.

The following remark will be useful in establishing the uniqueness
part of the main theorem.

REMARK 3.3. Let E, F' be any closed subset of [0, 1] such that
derivFFS EC F. Then F\E consists of at most countably many
isolated points.

The existence of a closed ideal of .22, satisfying the required
properties is easily established. There is an obvious candidate.

THEOREM 3.4. Given B, 2 K, 2 --- 2 E,_,, closed subsets of [0, 1]

such that E,_, 2 deriv E,, there exists a closed ideal 7 in %‘7,, such
that Z, = E,0=i=<mn — 1.

Proof. . ={fe By f=fV=...=f9=0 on E,0<1=
n — 1}, has all the required properties.

There are some special ideals which play an important role in
the proof of uniqueness. For any =-tuple (E, E,, ---, E,_;) of closed
subsets of [0, 1] such that deriv&, S E, , S E,,< --- S E,, define

A Ey By - B, )={fe B f=f0= =F0=0
on B, 0<i1=n—1}.
We shall abbreviate .Z (E, E, ---, E) by # (E). Let
%(Eo, Ely ) E'n—l) = {f e%(Eo, En Tty En—l): f =0
in some neighborhood of E,_;},

and for any closed set F' in [0, 1],

S F) = (f e Z.,: f = 0 in some neighborhood of F}.

A By B, -+, B,_,) is clearly a closed ideal but _Z(E, E\, ---, E,_,)
and _Z (F) are ideals which may not be closed.

Two general results quoted below will be useful.

THEOREM 3.5. ([13], p. 225, Thm. 4). Let U be a Silov algebra
and F a closed subset of the maximal ideal space of . Let 7
be an ideal such that hull % = F. Then _Z(F)<S # and hull

_F(F)=F.

In other words, _# (¥F') is the smallest ideal with hull F.
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PROPOSITION 3.6. Let X be a Banach space and Y a dense sub-
space of X. If M is a closed subspace of X which is of finite
codimension, then MNY is dense in M.

Briefly, the process of establishing that every closed ideal of .2,
is uniquely determined by the closed subset Z,, 0 < ¢ < n — 1, consists
of three major steps. First we analyze the structure of the closure
S (F) of Z(F) where F is any closed subset of [0,1]. We then
prove that _Z(Z,(.#), -, Z,.,(F)) S~ and lastly we prove
A(Byy By = A (By -+, B,_,). It is immediate from the last
two steps that 7 = _Z(Z,( ), -+, Zn (F)) = A (Z,(F), -,
Zns(F)).

PROPOSITION 3.7. In 22, _Z () = #Z({(\}), v [0, 1].

Proof. Clearly _Z ({\})) & -#Z ({\}), so it suffices to show .Z ({\})S

A ((MD.
Let fe Z({\}), then f2(\) =0,0 <7 =<mn — 1. Define
_ _1 1
K, = [0, 1]\[x Lo+ m]
and

Fal@y = |\ e Ot A

where m is a positive integer. Then f,c_#Z({\}) and f,, — f in B,
since f¥'(t) — f9@) uniformly for 0 < j<n —1, and f" — f™ in
L?(0,1). Thus fe_#Z({\}). This completes the proof.

As a consequence, the closed primary ideals of <7, are easily
identified. (An ideal is primary if it is contained in a unique maximal
ideal.) Indeed, they have simple structures.

COROLLARY 3.8. Any closed primary ideal _# of P, is of the
form _#Z{\}, (A}, ---, (M), @, - -, @) where (A} = Hull _# and the multi-
plicity of N whithin the parenthesis is 1 +1 for 0 <1< n — 1.

Proof. By Theorem 3.5, _Z({\}) & A Since _£({\) = #Z{\)
and .#Z ({\}) has finite codimension, it follows that .# also has finite
codimension. Thus &° N _7 is dense in _7 since the set & of all poly-
nomials is dense in .&%,. This implies that Hull (&? N._#) = Hull .~
Further- more .’ N .~ is an ideal in &% and thus is a principal ideal
whose generator must be of the form (x—\)‘*' for some 0<71<n—1.
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Hence % = {fe.B,: f(\) = -+ = fFO(\) = 0}, that is & = _Z ({7},
tt Yy {7\'}7 ¢r Tt ¢)

REMARK 3.9. The argument used in Proposition 8.7 still holds
when the point X\ is replaced by an interval [a, ] < [0, 1].

LEMMA 3.10. Let F\, F, be disjoint closed subsets of the maximal
ideal space of a Silov algebra A. Let .75, 74 be closed ideals with
S F)y=71=12 Then FF, UF,)=_70_%

Proof. Clearly _Z(F,UF)<S _FFY)n _FF)=.NnA% To
show the reverse inclusion, let fe .4 N .4 Choose g,€%,7=1,2
such that

{ f in a neighborhood of F,
g1 =

1 in a neighborhood of F,

and

_ { f in a neighborhood of F,
9. = 1 in a neighborhood of F,.

Then f = g9, + h where he _Z(F,UF,). Observe that g,e. % (by
a property of Silov algebras ([13], p. 224, Thm. 38")), so we can choose
U,.c 2 (F,) such that U,,—g, as k— c. Then U,,U,,+ h—f.
Moreover, U, ,U,, + he Z(F,UF,), thus fe_ZF,UF,).

REMARK 3.11. The above result, which holds for a general Silov

algebra, enables us to conclude that, in é,b, S ) = #(F) for any
closed F' which is a finite disjoint union of points and closed intervals.

The following observation will be used.

Observation 8.12. Let {|a, b;]} be a countable disjoint collection
of intervals in [0, 1] such that f, f@, ---, f»" vanish at all the a,’s
and b’s. Then clearly the truncated function fXi.30;0a,5, %,
where X, is the characteristic function on .

We can now describe _# (F) for any closed subset F < [0, 1],
for this general case can be reduced to the situation of Remark 3.11.

THEOREM 3.13. In .2, _Z (F) = _# (F) for any closed F < [0, 1].

Proof. We only need to show .2 (F') S _# (F). Let fe Z(F).
The set F°, the complement of F' in [0, 1], being open, is a disjoint
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union of a countable number of open intervals (with the possible
exception that the interval with end point 0 or 1 might be closed
at that end). Let F° = g, (a,b,) (the union may be finite).
There exists N >0 such that || /™%,  @.pll, is very small. Let
G = UL, (a; b;). (Here G includes the interval with end point 0 if
there is one.) Define f = fX;; then by Remark 3.11 fe FACHE=
_#Z (F) and it approximates f, therefore f ¢ _# (F) and we have the
result.

COROLLARY 3.14. Let .# be a closed ideal of B, then 7 2
A (T ).

Proof. A(Z(F7)) = £ (Z(A) & A

LEMMA 3.15. Let _# be a closed ideal of <2, and let he 7 be
such that h(a) = 0 for some 0 =1 < n and some ac[0,1]. Then
for any neighborhood N, of a, there exists He _# such that support
(H)S N, and HY(@) =0 for 0 <1< n,l #*1, but H"(a) # 0.

Proof. Let k be the smallest positive integer < ¢ such that
h*®(a) = 0. Define

Q@) = (x — a)"*-h(x)

and g(x) = Q@) (1 + 25" C;- (¢ — a)’), where the C;’s are constants
vet to be determined. For [ < 4, g% (@) =0 while g¥(a) 0. The
fact that Q”(a) = 0 and Q™(a) = 0 for m < 4, enables the C;’s to be
suitably chosen successively so as to make g"“(a) =0 for 1 <I<n
while ¢g(a) remains unchanged for [ < 4. Let f be a C= function
on [0, 1] such that support (f) & N, and f = 1 in some neighborhood
of a. Evidently H = gf has all the required properties.

For any arbitrary f in any ideal .# of 2., the above lemma
annihilate its derivative (of any order < n — 1) at any point @ €[0, 1]
by the addition of some appropriate function in ..# but simultaneously
leaving all the other derivatives at a undisturbed.

LEMMA 3.16. For any closed ideal & of B, F 2 A(Z(F),
cony Zy( ).

Proof. Let fe #Z(Z(7), -+, Z,.(.7)); then f =0 in some
neighborhood U 2 Z,_,(#). Sinece Z, ,(#) 2 deriv Z,(_#), the
closed sets Z;(Z)\U must be finite for all 0 < j <n — 2. Using
Lemma 3.15, repeatedly if necessary, we can find Ge . # such that
the function K = f + G has the property that K“ vanishes on
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Zy(F),0=1=n-—1. Thus Ke.# by Corollary 3.14, and hence

feA
The simple well behaved function given below is worth noting,
for it makes the calculation on annihilation work very neatly.

LEMMA 3.17. Let
Q(x) = SO Sol o Son-lx[“:mdt d/rm,_l ¢ d’r1 ’

where [a, B3] S [0,1]. Then

Qlx)=0 for z=«
and
Q‘“(w)=% for asz=g, 0<sis=n-—1.

In the process of establishing _Z(&,, ---, E,_,)= # (&, ---, E,_)),
several reductions occur but the chief and final burden is shouldered
by the miniature case described in the main lemma.

MAIN LEMMA 3.18. Let

K@= [ |7 [rwatar,, o an,
0 Jo 0
where feL*0,1). Suppose {x;}7 is a sequence of distinct isolated
zeros of K such that o, <z, < --- and x;—1. Given € > 0, there
exist consecutive points a, b e {x;} and a function G such that

Gx) = Kx) for x<a
Gx)=0 Jor b=x=1
and
IK—-Gl, <e.

Proof. We may assume K to be a real function (for otherwise
we can write K as K, + 1K, with K,, K, real). Given ¢ > 0, there
exist @, a, -+, a,€{x;}? such that 0 <o, <a, < -+ <@, <1, the
a,’s are consecutive points in {z;}", and [[K™X, ull, < e.

Denote the largest interval of {[a,, a,], [a., as], - -, [@n_1, @.]} DY
[a, b]. Since K(a,) = K(a,) = -+ = K(a,) = 0, there exists ¢; € (a,, a,)
such that K'((;,) =0,1=<j=n — L.

| K*-2(b)| = S: _IK(n)(s)dsl
Zéen— 1B — )]’ (for p>1).
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Similarly |K9®)| < e[(n — 1)(b — a)]* -7, 0 < j <m — 2. When
p = 1, the estimates are

Ko@) S el(n — Db — a)] "=, 0Sjsn—1.

We shall confine ourselves to the case p > 1, for the same argument

works for the case p = 1. Denote the length of the interval [a, b]

by md,d >0. Let s,s, ---,s, be n equally spaced points in [a, b]

such that s, >8,> «-- >s,=aand b —s; =350,1 < j<m. Let
L(z) = K@) — 2.7-1 Q;(x), where

Qi) = S S .. {0"“lcjx[sj,b]<t)dtd1~n_l cedry,

and where the C;’s are constants yet to be determined.
Let G = LX,,,. We need L(b) = LY(b) = --- = L™ (%) =0 so
that G e <%, and we want |K — G|, <e. Now

K = Gl = [ K™ Xipulls + 3151

and
[Q;1n = [C;1(b — s,)" = | C;|(56)"” .

Observe that L(x) = K(x) for z < a,

j=1

L) = — G0

n!
L”’(b)zK”’(b)~iw, 1Z5i=n—1.
=t (n — 1)!

Hence we require

3, C5(j0) = K*(b)

zz, C,(jo) = 2K"2(b)
(*) 1. :
;Cj(ﬁ)“"l = (n — 1)1 K"(b)

Z C,(50)* = 0

and |C;|(58)"? < e,1 < j < n. Treating the C;’s as unknowns, (*) is
a system of simultaneous linear equations which can be solved by
Cramer’s rule. The determinant
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0 20 no
po |7 @y
@) (o)
= 0(20) - - - (na)lgggn(lc - 3)0
and
K»=1(p) 20 O )
2K »=2(b) (25) (nd)
_ 1 : : :
|C| = ) :
(n — 1! K¥(b)
0 @o - (mo)"|.

Since K9(b) < ¢[n(n — 1)o]*—4, 0 < j < n — 1, it is clear that,

dlean(n+l)/2—l+1/q

Gl =

a'n(n-{-l)/z

where d, is a positive constant which depends only on n. Therefore
|C,16Y" < die. Similarly there exist constants d; > 0 such that

ICj](ja)llpgdjey 2§9§'n,

where the d,;’s depend only on » and are independent of the choice
of b. Thus |K — G|, < Be, where B is a constant dependent only

on 7.
We are now ready to prove that .# is completely determined

by the sets Z,(.#), Z.(.7), - -+, Z,_,( 7).

THEOREM 3.19. For any closed ideal # of B, F = A (Z(7),
ooy Zig () = AL F), -y Ds( ).

Proof. Clearly . Z(Z(.7), ++*, Zo (7)) S I S A (Zy(SF), ++-,
Z._(_#)). Soit suffices to show .2 (Z,(_7), - - -, Zu (7)) C A2 F),
vy ().

Case A. Z, () =¢.

Since Z,,,,_l(j) = ¢, ./Z/(Zo(j), Tty Zn~1(j)> = /Z)(Zo(j); "ty
Z. (7)) by definition. Hence #Z(Z(.7), -+, Z,_.(7)) = A (Z(.7),
Z i)

14

Case B. Z, (7)) +# @.
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Let fe #Z(Z,(*), -, Z,_.(-*)). Being open, (Z, (7)) =
Uz (a,, b,), a countable (possibly finite) disjoint union of open intervals.
Given ¢ > 0, there exists N > 0 such that ||f" X, ..l <e.
AlSO fXyicitansy € Fue Let fi = flipay, L =k = N. It suffices to
show that each of the functions f, lies in _Z(Z(.F7), -+, Z,_(FA)).
Note that each interval (a,, b,) contains at most a countable subset of
Z,(_#) whose only possible limit points are end points a,, b, (by Remark
3.3). By a linear transformation, we can assume without loss of
generality that a, = 0 and b, = 1. Now there exists points s, ¢ € [0, 1]
such that 0 <s<?t<1 and [s,¢]NZ(F)=¢. We can find C~-
functions ¥,, ¥, such that y, + ¥, = 1 and ¥, is supported in [0, ¢] while
9, is supported in [s, 1]. Let ¢, = fiy, and @, = fiy,; trivially f, =
&, + ¢,. It suffices to show ¢, _#Z(Z,(.F), ---, Z,_.(F)) for ¢, can
be similarly dealt with by applying the affine transformation x —
1 — . It should however be noted that for any He .<Z,, the com-
position function defined as G(x) = H(1 — z) also belongs to <2, since
G9z) = (—1)HY(1 —2),1 £1 = n.

For ¢,, there are two subcases:

Subcase 1. F,= (Z(AN\Z,_.(F)N][E 1] is finite. Let F; =
(ZA(INZy (NN 1, 1S5<n—2, and F,, = Z, () N[t 1],
then F; S F,1<j<n—2and F, ;< {1}. Recall that by Theorem
8.13, #Z(Z)= _Z(Z) for any closed Z < [0,1]. Take Z = [0, s] U
F.. Since #(F, F, ---, F._, ¢) is of finite codimension in .2, and
is closed, then by Proposition 3.6, _#(Z)N A#Z (Fy, «+-, F,_, ¢) is
dense in Z(ZUPF,, -+, ZUF, ,, Z). Thus ¢, _#(Z,( 7), ---,
Zy s F ).

Subcase 2. F,= (Z(F)N\Z,..(F) NIt 1) = {w, «, ---}, where
2,~— 1. Note that Z,_.(.7) N [t, 1]={1}. #,0)=¢"(0) = -+ - =g V(0)=
0, so ¢,€.%7, and hence can be written in the form &,(x) = Sz b
Sw—lf(t)dw,b_1 ---dr,, for some felL?©,1). The Main Lemn(;ao3.18
irilplies that ¢, _Z,(Z2°(.7), ---, Z,_.,(_#)). This completes the proof.

COROLLARY 38.20. Ewery closed ideal .7 in .S, is the intersec-
tion of closed primary ideals of .2,.

Proof.
I = H(G(F),  , Loy i(F))
= ﬁl N Z{, 0 -, N, e, -0, 9)

i=0 1€ Z;(F)

where the multiplicity of ) within the parenthesis is ¢ + 1.



INVARIANT SUBSPACE LATTICES FOR A CLASS OF OPERATORS 397

REMARK 8.21. All the ideals in &7 are of the form # (&, ---,
E, )with0eE,, 0<i=<n — landderivE, CE, & --- € E, where
the E.’s are closed subsets of {0, 1].

4, Invariant subspaces of T, and closed ideals of 9:?,,: Their
correspondence and lattice structures. .J, is a homeomorphism from
L?(0, 1) onto .&Z,. Its bounded inverse, J,?, is naturally the differen-
tiation operator of order n on .Z,, namely

Jig(x) = E‘%g(@, ge. @, vel0,1].

Moreover, by Leibnitz’s rule and Fubini’s theorem,
JMJ,.f = T,.f for feL?0,1), where Mf(x) = xf(x), z€[0, 1] .
This similarity relation achieves the following correspondance:
& is a closed T,-invariant subspace of L?(0,1) = J, % e & .

(From here onwards & will include the improper ideal .2, and the
trivial ideal {zero funection}, similarly for the collection =) We
have thus proved the following result.

THEOREM 4.1. The map J, establishes a one-to-one correspondence
between all the closed T.-inmvariant subspaces and all the ideals in
& via the relation J;*MJ, = T,. Thus the closed T, -tnvariant
subspaces are in one-to-ome correspondence with the n-tuples (E, E,
<o, E,_) of closed subsets of [0, 1] where E,2 E,2---2 E,_ 2deriv
E,and 06 E,0=1=n — 1.

Observation 4.2. We note an interesting observation that falls
out immediately of our above discussion without further effort.
Let T¢ = T\T, --- T, (k times, ke N), then T! = J*M(x*)J,, where
M) f(x) = ¢(x)- f(2) (since T, = J*MJ)). So
THa) = o*f(@) + ko S F@)dt, £ e L0, 1) .
4]
The linear span {x*~!, 2*~', ' ...} is dense in L?(0, 1), therefore

the linear span of {x*, x*, x*, ...} is dense in the range of .&Z, of J,.
Thus

S is a closed T*-invariant subspace < J,.&” is a closed
ideal of .z, .

Hence all the operators in {77}, have exactly the same closed
invariant subspaces.
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The set Lat T, of all the closed invariant subspaces of T, is a
complete lattice under < where &4 < .97 if 4 S .94, Theorem 3.19
puts &" in a one-to-one correspondence with the collection of all
n-tuples {(E,, &, -+, E,_,): E;’s are closed subsets of [0, 1] such that
E,2E2---2FE,,2deriv E;}. Define an ordering on &* by
(B, E, -, E, )< (F,Fy,---,F, )ifE;2F;,0<j=<mn—1. This
makes (Z°*, <) into a lattice.

To show completeness of the lattice, consider any subset of &,
{(Bs, EY,---,E},):aclan index set}. It is clear that V, {(&s, Ef, - - -,
E: ) = (NE -+, N Ex)e&", and since the smallest element
(o, 1}, ---, [0, 1) e &™, (", <, A, V) is a complete lattice ([2], p. 49).
However, it can be checked that

A {(Eé!’ Ela, R E:—l)}

- (U %7, U E” U deriv (U E:), o, UBL U deriv(u E)) .
Similarly the subcollection &7 is also a complete sublattice of &”.

THEOREM 4.3. The map J, induces a complete lattice isomorphism
+: Lat T, — & which is defined as

W (L) = (G, Z(P), -+, Zui(SP))
where & eLat T, and &% = J ().

The proof is left to the reader.

5. The operators M + aJ, and M + aJ} with Rea =n. We
extend our results on T, to the operator U,: L*(0, 1) — L*(0, 1) where

Uf@ = of@) —n | f®)dt, f €120, 1), neN,
0
and their adjoint operators 7' and U} on L%0, 1)(1/p + 1/q = 1) where
Tif@) = af @) +n| fOdt, Feli1),
U@ = of@) —n| f®d, feL0).
Furthermore, the parameter can be allowed to be complex with
integral real part.
Let us first deal with the operator U¥. We shall work with

1<q9g< c instead of 1 < ¢ < .
Define an operator W, on L%0, 1), which is analogous to J,, as
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Wof@) = — | (@ — "=/ ®dt, £ € L0, 1)
r (n) %
The same argument used in §3 can be applied with slight
modification and we have the following result which is analogous to
Theorems 4.1 and 4.3.

THEOREM 5.1. (1=q¢< ). Via the similarity relation W;*MW,=
UZ, there is a complete lattice 1somorphism between Lat(U}) and the
lattice of all n-tuples (B, B, ---, E,_,) of closed subsets of [0, 1] where
E2FE 2 ---2FE,,2derivE,and 1e¢E,0<1<n — 1.

REMARK 5.2. The closed invariant subspaces of T} (respectively
U, on L*(0, 1)(1 < p < <o) are {{$*: & is a closed invariant subspace
of T, (respectively U})}, where

L= {gzseL"(O, 1): g:gﬁ(m)f(x)dx —0, ery} .

Now we turn to complex parameters with integral real parts.
The resulting operators are not more complex than those we have
investigated. In fact the real part of the parameter is the similarity
invariant of these operators. Kantorovitz ([10], [11]) and Kalisch
([8], [9]) had investigated the similarity invariants of the operators
M+ aJ, and M + «aJF where acC. We shall quote their result.

THEOREM 5.3. For B,v€R (the real numbers), the operators
M + BJ,and M + (B + iv)J, (respectively M+ BJ¥ and M+ (B + iv)JF¥)
acting on L*(0, 1)(1 < p < <) are similar.

Through Theorems 4.1, 5.1, 5.3 and Remark 5.2, we have now
obtained a complete characterization of all closed invariant subspaces
for the operators M+ aJ, and M + aJ; in the spaces L?(0,1),1 <
p < oo, for those complex values of « where Rea is a positive
integer.

6. The case of the parameter with nomnintegral real part.
When the parameter has nonintegral rerl part, the functions in the
range .2, of J, cannot be easily identified. Using results on funec-
tional calculus, we establish that <#,, for Rea = 1, is an algebra
without unit, and that it can indeed be embedded as a closed ideal
of a Silov algebra with unit in the same manner as have done for
P,

Forn<a<mn+1,neN, it is clear that v’¢ FH,forj<n — 1,
but the situation of 2" is governed by the values of p of the L?
spaces.
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PROPOSITION 6.1. For n<a<n+1,neN,
(@) if 1 =p<1/(a — n), then x"€ A,
() if »p = 1/(a — n), then x" ¢ Z,.

Proof. Observe that J,x~““™ = ¢x”, for some constant c.

(a) is trivial since =™ ¢ L*(0, 1).

When p=1/(a—n), then xz~~" ¢ L?(0, 1), but for any ¢<1/(a—n),
=@ e L%0,1). Hence the fact that J,: L0, 1) — L0, 1) is injective
implies that z" ¢ .%,.

We shall now define <2, accordingly: If 1 < p < 1/(a — n), define
By = B DCE D Cr" 2@ --- D C; for p=1/(a — n), define B, =
B, PCrPCx" P ---PHC. We will show that for some natural
norm, .22, is a Silov algebra with .22, as a closed ideal.

There' are some known properties of T, and the Riemann Liouville
holomorphic semigroups {J,: ® € C and Re a > 0} which are useful to
us. We shall quote them without proof and refer the reader to Hille
and Phillips [6], Kalisch [8], [9] and Kantorovitz [10], [11].

Recall that J, f(x) = 1/F(a)Sm(x — ) f(t)dt, f€L?(0,1). These
operators are injective and bofmded on L*(0, 1)(A = p < =) with
||l < 1/(B|I(@)|), where @ = 3 + v, ve R and 8 > 0. The inverse
J7* (which will also be denoted by J_,), with domain .&2,, is thus a
closed operator. We also have the identity (d/dx)J,..f () = J.f(x).
., is invariant under M; more precisely, MJ, = J,T..

For 1 < p < o, the semigroup {J,:acC. Rea > 0} admits a
boundary group of bounded operators {J,:ve€ R} on L*(0,1) with
purely imaginary parameters and |[|J;|| < ¢72 For B, veR,
JgTeryd oy = Ts; and for B >0, Jeiy = JpJ;; which implies that
Pprir = Fope

In the papers of Kantorovitz [10], [11], it was shown that the
operator T, is of class C* if and only if |[Rea|=<n. We say that
T, is of class C* if there is a continuous representation z: C*[0, 1] —
(L0, 1)) where <& (L*(0,1)) is the set of bounded operators in
L0, 1), such that z(1) = I (the identity operator) for the function
1) =1,te[0, 1], and z(x) = T,. Imitating the argument of Kan-
torovitz for the C*-functional caleulus, we shall establish the .Z,-
functional calculus for T,, denoting the map by 7... (When there
is no confusion, we shall just abbreviate z,, by 7). We will then
use this .7 -functional caleculus to prove that .22, is a Banach algebra
under a norm ||, which is a natural generalization of the norm | .|,
of g?,,

For 1=p < o,neN,T, has .#,-functional calculus.

~

ProposITION 6.2. The map t: . %, — F (L0, 1)) defined by 7(p) =
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J M), $e.B, 18 a continuous representation such that r(1) =TI
and z(x) = T,, where M(¢) is the multiplication operator on L*(0, 1)

by ¢.

Proof. That 7 is a representation is trivial.

7(¢) =§n‘,(7f)M(¢‘”)J,- (by Leibnitz’s rule), and therefore
°\J

j:

le@fll, = cllflls12la

where ”) =nl/jl(n — 7)! and ¢ is some positive constant depend-

ing only on n. Thus 7 is continuous and .&Z,-functional calculus is
established.

REMARK 6.3. It is trivial but useful to note that the operator
T, which is just M also has an gi,,-functional caleulus for ne N, 1 <

p < e, namely t(@)f = ¢-f, p€ B, f € L0, 1).
The next lemma is an imitation of an argument of Kantorovitz
[10].

LEMMA 6.4. (1 < p < o). Suppose that for some integer n =1
and some o, €C, Rea, =0, T, is of class {%7”(1 < p < ), then T, is
of class &, for all a in the strip 0 =< Re a = Re «,.

Proof. Let Reay=8,=20 and a =8+ iv, B, veR. For any
fixed polynomial ¢ and vectors f e L?(0, 1), g€ L0, 1)(1/p + 1/qg = 1),
define

() = &o(THf, 9, aeC,

where ¢(7,) is the polynomial ¢ in T,. Observe that for Rea <
Rea, = By, | TLll £ 14 (8 + v and || < e*%. Since ¢(T,) is a
polynomial in @, with operator coefficients, we thus have for any
e >0,

|0(e)| = 0(e”'") as [v|—— o
in the strip 0 £ Rea £ B, Furthermore,
e 8(To)f 1, = e (T_ap(To)IT ) f I,
therefore

|o(@)] < e £, g, | (T ]
= 0 f L gl s(Ta -

Now T, and T}, are of class ??,,, so there is some constant K > 0
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such that
(T || = Klgl, and |[¢(T3) || = K|l .
Thus

1900 + i) = Allfll1lgll[8la
198 + M| = Al fllsllgllila s

where A = Ke%i+/4, By the Paragman-Lindelof Principle ([22], p.
180),

|0(@)| = Allfllllgll,I¢ls, forall 0<Rea=4g,.
Therefore for 0 < Rea < g3,
18(T)|l = Aem =1 5], .

Since the polynomials are dense in 2,, the homomorphism é— o(T,)
can be extended continuously to a homomorphism 7 on .22,. Thus
T, is class 95,,.

An immediate consequence of Proposition 6.2 and Lemma 6.4 is:

COROLLARY 6.5. For neN,0=Rea=n(l<p< ), T, has
.@n-functional caleulus.

The .<2,-functional calculus of T, is explicitly determined below.

PROPOSITION 6.6. (1<p<c). For 0=Rea=n, %, is invariant
under M(¢), where ¢e§§n, and the B,-functional caleulus t: B, —
(L0, 1) for T, is given by

o(¢) = J_ M), 6 €., .

Proof. First let ¢ be any polynomial. Clearly M(g)J, = J.4(T,);
therefore ¢(T,) = J_,M(¢)J,. Since ¢ is a polynomial and z defines
the functional caleulus, 7(4¢) = ¢(T,), and hence z(¢) = J_,M(p)J,.

Now let ¢ e€.2#,. There exists polynomials {¢,} such that ¢,— ¢
in &,; in particular, ¢, — ¢ uniformly in [0, 1]. Therefore z(¢,) —
7(¢) and for any g€ L*(0, 1),

(1) $p-Jg —¢-Jug in L%0,1),
(2) J_otudog = 3u(To)g —> 7(g)g in L*(0,1).

The graph of J_, is closed in .2, x L?(0,1). Thus (1) and (2)
imply that ¢-J,9€.2, and J_.¢-J.9 = 7(9)g.
This proves that ¢(¢) = J_.M(¢)J,, for all ¢ € .Z2,.
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COROLLARY 6.7. For Rea = 1(1 < p < «)., is an algebra.

Proof. Without loss of generality, we may assume « to be real,
since A&, = Fre.. It suffices to consider only non-integral values of
« and we only need to show that 2, is closed under multiplication,
since .2, is invariant under M.

Writeaa =7 + r where n isan integer = 1,0 <r < 1. Letf, ge
L#0, 1).

YACAGRAOE Z:‘.o(:>Ja_j(f)J w90 -

Proposition 6.6 implies that for 0 < j < n,
Jaei(f) T amtn-5(9) € J,(L*(0, 1)) .

Thus J,(f)-J9) € S (L0, 1)) = J(L?(0, 1)) and hence the result.
On <, Rea >0, let us define |J,f |, = || fll,, f€L,(0,1). Then
J, is an isometry from L?(0, 1) onto 2.

PROPOSITION 6.8. (1 < p < ). For Rea =1, there exists a
constant ¢, > 0 such that for all f, g € L*(0, 1),

lJa(f)'Ja(g)la = ca]Ja(f) ]alJa(g) ]a .

Proof. We need to consider only real nonintegral «. Write
&« =mn + r where n is an integer =1 and 0 < » < 1. By Leibnitz’s
rule,

S (Tt o) S0t r(9)) = i(n >Jn+r—j(f)Jn+r——(n—-i)(g) .

i=o\ g

Therefore |J,.,(f) Jur.(9) | = 2= <?>|Jn+,_j(f)-Jr+,~(g)|r. For 1<
j < mn, by Proposition 6.6,

Jo1(9) J(Jaei(f)) = T i s @N T s(f)) -

Now
1
lJr+;i(g)ll _S.. m—j)”gllp »
therefore
| Jutr—i(F) T i@ | = 1 (Tr sl rs DN T i Ol
1 1
S L e EALE

Similarly there exists a constant K, > 0, dependent only on «, such
that
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[atr ()LD = KNI F ]9 1], -

Thus there exists a constant ¢, > 0 which depends only on «, such
that

{Jn+r(f)'Jn+fr(g)]a é calJn-*-r(f)lalJn-l-r(g) la ’ fOl' au f, ge Lp(o’ 1) .

Now we can norm % a Banach algebra. Our attention will be
restricted to the case when 1 < p < 1/(a — n) since the same argument
holds for the complementary case.

Every element F of <2, is of the form J, f+ Drtexs, feL”0,1),
¢, €C. We extend the norm |-|, on 2, to 2., namely,

Fle= 171+ Zled

then .2, is a Banach space with .27, as a closed ideal. Furthermore,
| -1, is equivalent to some Banach algebra norm, i.e., for any F, G ¢
., there exists a constant K,, dependent only on « and p, such that

|FGl. = K| Fa|Gla -

~

The map F'— F'%(a), 0 < j < a — 1, is continuous on .ZZ,.

As it would have been expected, the maximal ideal space of P
is [0, 1] and it is then evident that B, is semisimple. With C=
being contained in .22, it is clear that .22, a Silov algebra.

By carrying out the same argument used previously for .2,

functional calculus, we can establish the .Z,-functional calculus,
Rea = 1.

THEOREM 6.10. (1<p<e). For a,8€C, Reaz=l and 0=Reg=
Re a, Ty has B-functional caleulus t: G, — B (L0, 1)),
o(¢) = J_s M($) T, ¢ € T2 -

We conclude our discussion with the following remark.

REMARK 6.11. By virtue of the identity J_,MJ,= T, and the
fact that the polynomials are dense in .<Z, Rea > 1, the closed 7-
invariant subspaces are in one-to-one correspondence with the closed
ideals of <2, which are closed under multiplication by the function .

REFERENCES

1. A. Beurling, On two problems concerning linear transformations in Hilbert space,
Acta Math., 89 (1949), 249-255.
2. G. Birhoff, Latthce Theory, Amer. Math. Soc., 1948.



INVARIANT SUBSPACE LATTICES FOR A CLASS OF OPERATORS 405

3. J. T. Daly and P. B. Downum, A Banach algebra of functions with bounded wnth
differences, Trans. Amer. Math. Soc., 223 (1976), 279-294.

4. W. F. Donoghue, The lattice of invariant subspaces of a completely continuous quasi-
nilpotent transformation, Pacific J. Math., 7 (1957), 1031-1035.

5. J. A. Erdds, On a certain abelian algebra of operators and their invariant subspace
lattices, Proc. London Math. Soc., (3) 29 (1974), 77-97.

6. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc.,
Collog. Publ., Vol. 31, Amer. Math. Soc., Providence, R.I., 1957.

7. G. K. Kalisch, On similarity, reducing manifolds, and unitary equivalence of certain
Volterra operators, Ann. of Math., 66 (1957), 481-494.

8. ————, On fractional integrals of pure imaginary order in. L?, Proc. Amer. Math.
Soc., 18 (1967), 136-139.
9. ————, On the similarity of certain operators, Colloquia Mathematica Societatis

Janos Bolyai, 5, Hilbert Space Operators, Tihany (Hungary), 1970.

10. S. Kantorovitz, The C*-classification of certain operators in L?, Trans. Amer. Math.
Soc., 132 (1968), 323-333.

11. ————, The Ck-classification of certain operators in LP, II, Trans. Amer. Math.
Soc., 146 (1969), 61-67.

12. B. 1. Korenbljum, Invariant subspaces of the shift operator in weighted Hilbert
space, Mat. Sbornik, 89 (131) (1972), 110-137=Math. USSR Sbornik, 18 (1972), 111-138.
13. M. A. Naimark, Normed Albebras, Wolters-Noordhoff Publishing, Groningen, The
Netherlands, 1972.

14. N. K. Nikol’skii, Invariant subspaces of certain completely continuous operators,
Vestnik Leningrad. Univ., 20 (1965), No. 7, 68-77 (Russian).

15. ————, Invariant subspaces of weighted shift operators, Mat. Sbornik, 74 (116)
(1967), 171-190 = Math. USSR Sbornik, 3 (1967), 159-176.

16. N. M. Osadchii, The L%(I") algebras and the structures of their closed ideals, Ukr.
Mat. Zh. 26, No. 5 (1974), 669-670 = Ukr. Math. J., (1975), 548-549.

17. H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, Berlin-Heidel-
berg-New York, 1973.

18. D. Sarason, Topics in Operator Theory, Mathematical Surveys, No. 13, C. Pearcy,
ed., Amer. Math. Soc., Providence, R.I., 1974, 3-47.

19. G. E. Silov, On regular normed rings, Trav. Inst. Math. Stekloff, 21 (1947), 118 pp.
20. 1. E. Snol’, The structure of ideals in rings R,, Mat. Sbornik, (N.S.) 27 (69) (1950),
143-146 (Russian).

21. M. H. Stone, Applications of the theory of Boolean vings to general topology, Trans.
Amer. Math. Soc., 41 (1937), 375-481.

22. E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1939.
23. R. E. Waterman, Invariant subspaces, similarity and isometric equivalence of certain
commuting operators in L?, Pacific J. Math., 48 No. 2 (1973), 593-613.

24. H. Whitney, On ideals of differentiable functions, Amer. J. Math., 70 (1948), 635-658.

Received August 9, 1980. This paper is condensed from the author’s Ph. D. dis-
sertation at University of California, Berkeley, June 1978. The author wishes to ex-
press her deep gratitude to her thesis adviser Professor W. G. Badé and Professor D.
Sarason.

UNIVERSITY OF SCIENCE OF MALAYSIA
PenanG, MaLaysia






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California
Huco RosSI Los Angeles, CA 90007
University of Utah R. FINN and J. MILGRAM
Salt Lake City, UT 84112 Stanford University
C. C. MOORE and ANDREW 0GG Stanford, CA. 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAIIL

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuseript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent.
All other communications should be addressed to the managing editor, or Elaine Barth, University
of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $102.00 a year (6 Vols., 12 issues). Special rate: $51.00 a year to individual
members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A.
Old back numbers obtainable from Kraus Perlodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1981 by Pacific Jounal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 94, No. 2 June, 1981
Thomas E. Armstrong and William David Sudderth, Nearly strategic

TNEASUIES . .« vt e vttt ettt e e ettt e ettt et e e et e e 251
John J. Buoni, Artatrana Dash and Bhushan L. Wadhwa, Joint Browder

] 0110 1 4 259
Jack Paul Diamond, Hypergeometric series with a p-adic variable ......... 265
Raymond Frank Dickman, Jack Ray Porter and Leonard Rubin,

Completely regular absolutes and projective objects ................... 277
James Kenneth Finch, On the local spectrum and the adjoint .............. 297
Benno Fuchssteiner, An abstract disintegration theorem .................. 303
Leon Gerber, The volume cut off a simplex by a half-space ............... 311
Irving Leonard Glicksberg, An application of Wermer’s subharmonicity

theorem .. ... . e 315
William Goldman, Two examples of affine manifolds ..................... 327
Yukio Hirashita, On the Weierstrass points on open Riemann surfaces ...... 331
Darrell Conley Kent, A note on regular Cauchy spaces ................... 333

Abel Klein and Lawrence J. Landau, Periodic Gaussian

Osterwalder-Schrader positive processes and the two-sided Markov

property onthecircle ......... . i 341
Brenda MacGibbon, ¥-Borelian embeddings and images of Hausdorff

SPACES .« e v ettt e e e
John R. Myers, Homology 3-spheres which admit no PL
Boon-Hua Ong, Invariant subspace lattices for a class of
Chull Park, Representations of Gaussian processes by Wi
Lesley Millman Sibner and Robert Jules Sibner, A sub

for a class of invariantly defined elliptic systems .. ..
Justin R. Smith, Complements of codimension-two sub

Cobordismtheory ...,
William Albert Roderick Weiss, Small Dowker spaces .
David J. Winter, Cartan subalgebras of a Lie algebra and



http://dx.doi.org/10.2140/pjm.1981.94.251
http://dx.doi.org/10.2140/pjm.1981.94.251
http://dx.doi.org/10.2140/pjm.1981.94.259
http://dx.doi.org/10.2140/pjm.1981.94.259
http://dx.doi.org/10.2140/pjm.1981.94.265
http://dx.doi.org/10.2140/pjm.1981.94.277
http://dx.doi.org/10.2140/pjm.1981.94.297
http://dx.doi.org/10.2140/pjm.1981.94.303
http://dx.doi.org/10.2140/pjm.1981.94.311
http://dx.doi.org/10.2140/pjm.1981.94.315
http://dx.doi.org/10.2140/pjm.1981.94.315
http://dx.doi.org/10.2140/pjm.1981.94.327
http://dx.doi.org/10.2140/pjm.1981.94.331
http://dx.doi.org/10.2140/pjm.1981.94.333
http://dx.doi.org/10.2140/pjm.1981.94.341
http://dx.doi.org/10.2140/pjm.1981.94.341
http://dx.doi.org/10.2140/pjm.1981.94.341
http://dx.doi.org/10.2140/pjm.1981.94.369
http://dx.doi.org/10.2140/pjm.1981.94.369
http://dx.doi.org/10.2140/pjm.1981.94.379
http://dx.doi.org/10.2140/pjm.1981.94.407
http://dx.doi.org/10.2140/pjm.1981.94.417
http://dx.doi.org/10.2140/pjm.1981.94.417
http://dx.doi.org/10.2140/pjm.1981.94.423
http://dx.doi.org/10.2140/pjm.1981.94.423
http://dx.doi.org/10.2140/pjm.1981.94.485
http://dx.doi.org/10.2140/pjm.1981.94.493

	
	
	

