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Given a l.m.c. *-algebra E with a b.a.i., the space of
representations <2 (F) and the enveloping algebra & (E) of
E are defined. Under a suitable condition for the extreme
points of E, Z(E), Z2(Z&(E)) coincide topologically, a fact
contributing to the openess of the map defining the topology
of Z2(K). Furthermore, one gets &(F )zl(i_rn%’(Ea), within

o
a topological algebraic isomorphism, where (E,) is the
inverse system of Banach algebras corresponding to E.

1. Introduction. There is a vast literature concerning repre-
sentation theory of abstract Banach *-algebras (resp. C*-algebras).
On the other hand, due to recent considerations, it would be
interesting and useful to have these results extended within the
frame of (non-normed) topological *-algebras, a fact arising not only
from the part of pure mathematics (e.g., function algebras), but
also from that of applications in theoretical physics (:quantum
mechanics).

The present paper provides within the context of l.m.c. *-
algebras, extensions of various results referred to Banach *-algebras
(resp. C*-algebras) representation theory. More specifically, if E is
a l.m.c. *-algebra with a b.a.i.,, <Z (&) will denote the non-zero
extreme points of “#(FE) (:continuous positive linear forms on E),
and “Z(K) the equivalence classes of all continuous topologically
irreducible representations of E. The set #(F) endowed with the
final topology 7;, induced on it by the mapé,: Z(E) — Z(E) (:an
extension of the classical “Gel’ fand-Naimark-Segal map”; Th. 3.4)
is called the space of represenmtations of K. Thus, the paper is
mainly concerned with the study of <#(F) and the openess of the
map 6z. To this study, the notion of the enveloping algebra & (K)
of E having by its definition the ecrucial C*-property (Def. 4.1),
plays an important role. Now, the openess of 6., with F a bQ
l.m.c. *-algebra with a b.a.i. (Def. 4.2) is obtained, leading thus to
the required openess of 6, (Th. 4.2), based besides on the fact that
the spaces <Z(K), #(K) coincide topologically with the corre-
sponding ones of & (E), when Z(&(F)) is locally equicontinuous
(Th. 4.1).

Furthermore, & (E/N(»,)), & (&, are isomorphic as topological
algebras (Lemma 4.3) where (E/N(p,), (F,) are the inverse systems
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of normed respectively Banach algebras corresponding to E [1], a
fact further applied to get an inverse limit decomposition of Z ()
in terms of (#(E,)) (Th. 4.3).

2. Preliminaries. We introduce in this section the notation
and terminology applied throughout.

A representation ¢ (or a *-representation) of a *-algebra E is
an involution preserving homomorphism of E into the C*-algebra
< (H,) of all bounded linear operators on some Hilbert space H,
(:representation space of E).

A representation ¢ on a Hilbert space H, is topologically
irreducible if H,, {0} are the only closed linear subspaces of H, left
invariant by ¢(%). Moreover, ¢ is called non-degenerate if {¢(x)(&):
xeE, ée H}~ = H, where “—” means norm-closure. On the other
hand, a vector &€ H, is called cyclic for ¢ if {s(x)(&):xe E}- = H,;
in that case ¢ is called cyclic. Now, the representations ¢, 4 of E
are equivalent, we write ¢ ~ (cf. [7]), if there exists a Hilbert
space isomorphism U: H, — Hy such that (z)oU = U-g(z), x € E.

A opositive linear form on a *-algebra E is a complex linear
form f on E with f(z*x) = 0, x€ E. If E has an identity e, then
we also suppose that f(e) = 1. The set of positive linear forms on
E is denoted by P(E). Now, if f, ge P(F) we write f = ¢, and we
say that f bounds g, if f — g = 0. Thus, an element fe P(E) is an
extreme point if ge P(E) and f = g implies g = Af with x€]0, 1]
(cf. also [7]).

A topological algebra FE (:topological vector space with a
separately continuous multiplication) is called locally m-convex
(Lm.c.) if it has a local basis %/ consisting of m-barrels, (ef. [11]
and [9; Chapt. 1, Th. 1.1]), where by an m-barrel we mean a subset
of E which is closed, convex, balanced, absorbing and idempotent.
We may always suppose that such a local basis is directed.

Given a l.m.c. algebra E with a directed local basis % =
{U,, ae A}, {p, ac A} will denote the family of submultiplicative
semi-norms (:gauges) corresponding to 7. Then, U,={x € E: p,(x) <1},
acA, [9; Chapt. 1, Lemma 2.3].

Now, by a l.m.c. *-algebra we mean a l.m.c. algebra E with
an involution * such that p (x*)=7p,(x), a€ A, xe E (cf. also [5; p.p.
6, 7]). If moreover, p (z*x) = p,(x)’, ac A, x€ E, E is called l.m.c.
C*-algebra. Note that if E is a l.m.c. algebra with an involution *
such that » () < p.(x*x), o€ A, x€ E, E is a l.m.c. C*-algebra.
By a Fréchet l.m.c. *-algebra, we mean a l.m.c. *-algebra whose
underlying locally convex space is Fréchet.

Furthermore, if N(p,) = ker (p,), ac A, (E/N(p.,)), (E, denote
the projective systems of normed and Banach *-algebras correspond-
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ing to £, where E, is the completion of E/N(p,), ae A (cf. [1],
[11]). The topology of E, is defined by the norm p,, with p.(z,) =
p,2), x,= 7w x) =2+ N(p, € E/N(p,), acA, where w, is the
quotient map of E onto E/N(p,). If E is a l.m.c. C*-algebra, each
E, acA, is a C*-algebra.

Now, E, will denote the respective unital l.m.c. *-algebra of
E, with corresponding family of semi-norms (p.) and involution*
defined respectively by pi(z, X) = p.(®) + [N], (x, M)* =(x*, X), (x,\) e
E =EdC.

On the other hand, a bounded approximate identity (:b.a.i.) on
E will be a net (e,),e,, with p,(e,)<1, ac A, ieIand lim p,(e,x—x)=

= lim p,(ve; — x), x€ E, ac A.

3. Space of representations of a lL.m.c. *-algebra. Let E be
a topological *-algebra (: *-algebra, which is also topological). Then,
by a continuous representation of E we shall mean a *-morphism ¢
of E into ~(H,), continuous relative to the uniform topology on
Z(H,). In the sequel, R(E) (resp. R'(E)) will denote the set of
all continuous (resp. continuous, topologically irreducible) representa-
tions of .E. Note that “equivalence of representations” defines an
equivalence relation “~” on R(E) (and hence on R'(E) too). In
this respect, (¢, ¢') in R(E) X R'(E) with ¢ ~ ¢’ implies (¢, ¢') in
R'(E) x R'(E).

Now, set . #(E) = R'(E)/ ~, and denote by [¢] the respective
class of ¢cR'(E) in SZ(&). In the rest of this section we work
out the appropriate material for defining <#(E) as a topological
space.

Let E be a l.m.c. *-algebra, and E; its weak topological dual.
Then, E| = |, U2, where U, is the polar of the neighborhood U,=
{xe E:p(x) <1}, acA. Thus, if F°(E) denotes the set of all
continuous positive linear forms on FE, and <Z(E) the non-zero
extreme points of Z#(F), we obtain

3.1) F(B) = U FE), Z(E) = U ZE)

with Z(E) = {f e PE): |fx)| =1, xe U,} and <Z(E) the extreme
points of A(E), ae A. The preceding sets being subsets of E, are
considered endowed with the relative topology; moreover, since
P(E)=PE)NUC U, F(E) (and therefore Z(KE)), acA is
an equicontinuous subset of F(K).

Furthermore, note that a consequence of (8.1) and [9; Chapt.
1, Lemma 1.2] is that for each fe Z?(E) there exists ac A with
| f(@)] £ pu(x) for every x € E. The next theorem extends an analo-
gous result of [5; Th. 4.1].
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THEOREM 3.1. Let E be a l.m.c. *-algebra. Then, for each
acA

F(E[N(p,) = Fu(E) = F(E.) ,

within homeomorphisms.

Proof. Let ace A and 2(E) the corresponding subspace of
P(K). Then, for each fe A(E), N(p, < N(f), so that we define
fa€ P(E/N(p,)) by fux,) = f(x), x,€ E/N(p,), and we denote its
extension to E, also by f,. Thus, the map

T B) — F(E[N(p))(resp. F(E)): f+—fa

1S a homeomorphism, the continuity being a consequence of the
equicontinuity of “#(E,), since then the weak topologies o((£,)!,
E/N(p.)), o((E,):, E,) coincide on &(E,), ac A [3;p. 23, Prop. 5]. []

By Theorem 3.1 it is clear that 7(F,) consists of all continuous
positive linear forms on E, with norm <1.

COROLLARY 3.1. Let E be as in Theorem 3.1. Then, for each
acA

Z(EIN(p.)) = Zu(E) = Z(E.) ,

within homeomorphisms. O

LEMMA 3.2. Let E be a topological algebra with a b.a.i. (e,); € ;.
Then,

(i) If E has a continucus multiplication, (e2),.; s a b.a.i.
for E.
(ii) If E has a continuous involution *, (ef);c; s a b.a.i.
for E. i

(iii) If in particular E is a lm.c. *-algebra, then (ei);c; =
(e; + N(Po))ier @€ A is a b.a.i. for both E/N(p,) and E, acA.

Proof. For (i) cf. [9; Chapt. 6, Lemma 11.1]. (ii) (ef);e; iS a
bounded net in E, since * is continuous. Moreover, for each z¢
E lim (efx — x) = lim (x*e¢;, — *)* = 0* =0, and similarly lim (ze}) =z,
x€ E. (iii) For each ac A define ¢! =m,(e;) =e¢;+ N(p,), then P, (ei)=
pe)<1, 1el, ac A. Furthermore, lim p (2,6, — x,)=1lim p,(re,—x)=
0, x,€ E/N(p,), ac€ A; by the same way =z, = lim (ex,), x,< E/N(p,),
acA. Hence, (€.);.; is a b.a.i. for E/N(p,), a«c A while this net
is also a Db.a.i. for E,, ac A (ibid.). N

LEMMA 3.3. Let E be a l.m.c. *-algebra with a b.a.i. (e;)es,
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and fe F(E). Then,
(i) f@*) = f(x), xc E (i.e., f is real or hermitian).

(i) [f@] = fellfe*2), ze B.

Proof. (i) f(*) =lim, f(z*e) =[7;p. 27, ()] lim, f(efx) =
F(im, efr) = (Lemma 8.2, (i) f@), xc E.

(ii) |f(®)]* = (Lemma 3.2, (ii)) lim,|f(efx)] < [7;p. 27, (2)]
lim, f(e¥e,) f(x*x), x€ E. Now, if f, is the element of F(E,) defined
by f as in Theorem 3.1, lim, f(efe,)=(Lemma 8.2, (iii)) lim, f,((e})*el) =
[7; Prop. 2.1.5, (W)]||f.|l. Actually, ||f.]l =1, since [fu(x)|=[f(@)|=
1, 2ze U,. ]

The above assertion (i) is actually wvalid for any topological
algebra with continuous involution and a not necessarily bounded
a.i. Every element fe Z2(F) satisfying conditions (i), (i) of Lemma
3.8 is called extendable.

PROPOSITION 3.4. Let E be a l.m.c. *-algebra with a b.a.i. (e,);c;.
Then,

(i) FEach fe PE) is uniquely extended to an element f,¢€
F(R) with f,(0,1) = || f.ll, where (0, 1) denotes the identity element
of K.

(ii) FEach element of FP(E,) extending f bounds f,.

(iil) If QE) ={he FE): 1O0,1) =1 (hlp.ll} and an element
of FP(E,) is bounded by an element of Q(E,), it must itself belong
to Q(E)).

(iv) fe B (E)=fie B(E,)— f,e B E), where E, is the com-
pletion of E, and f. the extension of f, to E..

Proof. (i) For each fe.Z°(&) define f: E—C: (x, M)—fi(x, )=
f(@) + )| f.ll, where f,e GP(E,) (cf. Th. 3.1). Then, f,€ P(E,) with
£i0, D) = || full.  Moreover, [fi(z, M| =[f(@)] + [N = p(2) + [N =
pi(z, \), (x, \) € E,, hence f, € F(E,).

(ii) Suppose that ¢ge F(E) extends fe P(H). Then, there
exists ye A with g e Z%(E)) and fe Z(K), hence ||g;|| = ||fr|| which
yields g = f..

(iii) Let g = h + k with ge Q(E)) and h, ke Z(E). Then, g >
hyk and h+k=g9= (.= (hlg) + (klz):. Moreover, h(0,1)=
(h1£):(0, 1), k(0,1) = (k[z).(0, 1), which implies &(0,1) = (h|z).(0, 1),
k0, 1) = (k|2).(0, 1), that is &, k € Q(E)). v

(iv) Let fe<Z(E) and ge F(R,) with f, =g. Then, f= gls,
i.e., gl = M, ve[0,1] and since g(0, 1) = 7 f,(0, 1) by (iii), we con-
clude g = M f;, M€]0, 1].

Conversely, let fe #(E) with f,e Z(E) and ge F°(E) such
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that f=g. Then, f— ge FP(E), so that (f — 9), = f, — 9. € ZP(E),
ie., fi =g, 9.€ Z(E); but then, g, = \fi,, A €[0, 1], hence also g =
A, Mve[0,1]. The second equivalence of (iv) is clear. O

REMARK 3.4. For E as in Proposition 8.4 and ¢ ¢ R(E) we define
¢ By — L (H,): (%, N) = ¢,(%, N) = ¢(x) + Midy,. Then, ¢ € R(E,) and
particularly g¢eR'(E) = ¢ € R'(E) = ¢ e R'(E,), where § is the
extension of ¢, to K.

Now, if f, f, are as in Proposition 3.4, L3 = {z ¢ E,: f.(z*2)=0}
1s a left ideal of E, and H, = E'I/Ly1 is a pre-Hilbert space with
inner product {z + L7, w + L7) = filw*z), w, ze E,. Denote by H
the respective Hilbert space, completion of H,. Then, one obtains

E|/L7, = E,/L3,

since ||/(e;, 0) + L7, — (0, 1) + Ly, | = filles, —1)*(es, —1)) = flele) —

fle) — fle) + ||full — 0 (cf. proof of Lemma 8.3 and note that

lim, f(e;)=(Th. 8.1, Lemma 8.2) lim, f,(e})=[7; Prop. 2.1.5, (v)] || f)-
On the other hand,

hence one finally obtains
(3.2) TL;,=H.

In this respect, the following extends [5; Th. 6.1], being actually
the analogue in our case of the standard Gel’fand-Naimark-Segal
construection.

THEOREM 3.4. Let E be a l.m.c. *-algebra with a b.a.i., and
fe P(E). Then, there exists a continuous representation ¢; of E
and a cyclic vector &y of ¢y such that flx) = {ps(x)(&fs), E5), X € K.

Proof. For each fe FP(H), 7. belongs to “P(E,) (Prop. 3.4), so
that [5; Th. 6.1] there exists a continuous representation g7, of E,
into ' (H) and a cyclic vector &7, of ¢7, in H such that

Fi@) = 67,()E7), &, e B
Thus, if ¢; = ¢7,|x and &, = &7, € H, one obtains
f@) = {p:(@)&p), &), TEH,

where &; is cyclic for ¢, as this follows by (3.2) and ¢(E)(&y) =
E/L3,. |
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Now, given a l.m.c. *-algebra E let, for each e A
(3.3) R(E) = {pe R(E): |¢@=) || = kp.(x), xc E}, k>0,

so that R(E) = U, R.(E). Thus, we can define ¢,c R(E/N(p,)) with
é.(2,) = (), x,€ E/N(p,), so that if ¢, denotes also the extension
of ¢, to E,, one has ||4.(z) || £9.(?), 2 € E, [T; Prop. 1.8.7]; hence || ¢(x) || =
P.(%), x€ E in such a way that one may assume t <1 in (8.3), for
each g€ R (F). Besides, if Ry(FE)={pc R'(F): ¢ € R, (E)} and FZ(E)=
R(E)[~, we get

(3.4) R(E)=limR/(E), R(E)=1lim R,(E,) %2 (K)=lim Z(E),

a a 4

within bijections [4; p. 92].

Now, if ¢, e R'(E,) and M is a closed linear subspace of
H,(=H,,) with ¢(E)(M)c M, then ¢,(E,)(M)cM. Hence, ¢ € Ry(E)=
¢, € R'(E/N(p,)) (resp. R'(E,)). Finally, notice that ¢ ~ + in RL(E)
implies ¢, ~ 4, in R'(E,). The above yields the following

PROPOSITION 3.5. Let E be a l.m.c. *-algebra. Then,

(i) R(E/N(p.) = R(E) = R(E,), a€A,

(ii) R'(E/N(p.) = RJ(E)= R'(E,), acA,

(iii) A(E/N(p,) = Z(H) = F(H,), ac A, within bijections.
]

The following Banach *-algebras analogue [7; Prop. 2.5.4]
extends also Corollary 6.4 of [5].

PROPOSITION 3.6. Let E be a lm.c. *-algebra with a b.a.i.
Let also fe FP(E) and ¢, the respective element of R(E) (cf. Th. 3.4).
Then, fe Z(E) = ¢;c R'(KH).

Proof. fe<Z(E) implies f,e <#(E) (Prop. 3.4, (iv)), so that
[5; Cor. 6.4] ¢f1€R'(E1), which implies ¢, = ¢7 [z € R'(E,) and since
¢s, = ($7)1, $7€ R'(E) by Rem. 3.4.

Conversely, let fe Z”(E) with ¢,e R'(E). Then, ¢, = (¢5),€
R'(E,) (Remark 8.4), so that ¢7,¢ R'(E,), which yields f,e.=Z(E) [5;
Cor. 6.4]; hence fe.<Z(K) by Proposition 3.4, (iv). N

Furthermore, one gets the next (cf. also [7; Prop. 2.4.1, (ii)].

LEMMA 3.7. Let E be a *-algebra and ¢, representations of
E into £ (H,), L (Hy) respestively. Let also & (resp. 1) be a cyclic
vector of ¢ (resp. ), with {$(x)(&), & = {(P(@)(®), N>, xe€ E. Then,
d~qr such that there exists a Hilbert space isomorphism U: H, — Hy



68 MARIA FRAGOULOPOULOU

with Ucg(x) = p(x)e U, x € K and UE) = 7. O

Now, regarding Proposition 3.6 we notice that for each ¢ ¢ R'(E)
there exists fe <F(E) such that ¢ ~ ¢,:Indeed, if £ is a ecyclic
vector of ¢, the formula f(x) = {(#(x)(¢), &), x € E defines an element
f of Z(E). Hence, (Th. 3.4) there exists ¢,c R(E) and a cyclic
vector &y of ¢, with f(x) = (3 (x)&)), &>, v E, so that (Lemma
3.7 ¢ ~ ¢; in R(K), i.e., ¢, R'(E), which by Proposition 3.6 implies
fe<Z(E). Hence, by Theorem 8.4 and Proposition 8.6 we now define
an onto map

(3.5) O0p: Z(B) — RZ(E): f—0:(f) = [4/] .

The set ZZ(E) equipped with the final topology 7, induced on
it by 6z, is called the space of representations of E.

In the next §4, under additional conditions for E we prove the
openess of the map (3.5).

4. Enveloping algebra of a l.m.c. *-algebra. We define below
the enveloping algebra & (E) of a l.m.c. *-algebra E with a b.a.i.
It is proved that the representation theory of K is actually reduced
to that of & (F) (Th. 4.1), the last algebra having the important
“C*.property”, hence its significance for the latter theory. On the
other hand, by further obtaining under appropriate conditions the
openess of the map 0., we finally get the same property for
the map (3.5) (Th. 4.2). Further applications, concerning topological
tensor product algebras, will be given elsewhere.

LeMMA 4.1. Let E be a l.m.c. *-algebra with a a.b.i. Then,
for any x€ K and a€ A, the following hold true:
(i) a=b=c=d, where

a = sup {||¢() ||: ¢ € R.(E)}, b = sup{||¢@)]: ¢ RL(E)},
¢ = (sup {f(z*x): f € FAE)DY?, d = (sup {f(x*x): f € Z(E)H"*,
rxe k.

(ii) For each ac A, the map v, E— R™: ¢ r,(x) = d, defines
a submultiplicative semi-norm on E, which is *-preserving and has
the C*-property.

Proof. The proof is an immediate consequence of [7; Prop.
2.7.1] since by Theorem 3.1, Corollary 3.1 and Proposition 3.5, one
concludes that
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a = sup {|| gu(2.) ||: 4. € R(E,)}, b = sup {||g.(x.) || ¢ € R'(EL)},
¢ = (sup {f(xkw,): fo € P (BN, d = (sup {fu(@ix,): fo€ F (B}
]

Regarding Lemma 4.1, note that b also coincides with
sup {||¢(x) [|: [¢] € FZu(E)} .

Furthermore, since || ¢(x)|] < p.(x), xe€ E for each ¢ec R (FE), one
obtains 7,(x) < p.(x) for any ac A, x€ E, that is each r,(ac A) is
continuous with respect to the given topology of E.

DEFINITION 4.1. Let E be a l.m.c. *-algebra with a b.a.i., and
(E, (r,)) the respective l.m.c. C*-algebra defined by Lemma 4.1.
Then, the “Hausdorff completion” of the latter, that is the algebra

/—\/
(4.1) & (E) = (B, (r))/I

with I = N {N(r,): a e A} a closed 2-sided self-adjoint ideal of E, is
called the enwveloping algebra of E.

In this regard, cf. also [6; p. 65] concerning Fréchet l.m.c.
*_algebras with identity. It is clear that (4.1) provides a complete
l.m.c. C*-algebra, whose topology is defined by the family (§,) of
submultiplicative semi-norms, extensions of q,, a € A to & (F), where
9 (x + I) = inf {r(x + 9):1€l}, x + I€(F, (r,)/I. Moreover, if (e;)
is a b.a.i. for E, the net (¢; + I) is a b.a.i. for & (E).

REMARK 4.1. A given l.m.c. *-algebra E with a Db.a.i. has the
C*-property iff », = p, for each a e A, that is one has then p,(x) <
r(x), with a € A, xe E : In fact, since E has the C*-property, each
E, is a C*-algebra, therefore E,, a € A has an isometric representa-
tion, say ., that is ||g.(2)|| = D.(2), z€ E, (cf. [7; Th. 2.6.1]). But
then, ||¢(x)| = v.(x), x € E with ¢ € R, (E) (Prop. 3.5).

Now, it is clear that every complete l.m.c. C*-algebra coincides
with its enveloping algebra. In the sequel E/I will stand for
(B, (r)/1.

THEOREM 4.1. Let K be a lm.c. *-algebra with a b.a.i., and
& (K) its enveloping algebra with £ (Z (K)) locally equicontinuous.
Then, #(E) = & (& (F)) and RB(E) = Z (& (K)) within homeomor-
phisms.

Proof. If fe.<#(E) there exists ae A with fe < (F) and
| f®)] < r.(x), xe E (Lemma 3.3, (ii)). Thus, we define ge < (E/I)
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with g(x + I) = f(x), * + I€ E/I. Denoting also by ¢ the respective
element of (& (E)) we have ge Z (£ (F)) = fe #(F). Now, the
map ¥: F (& (K)) — ZB(E):g— ¥(9) = f with f = gor, where 7: £ —
& (E) is the canonical continuous morphism (Def. 4.1), is a continuous
bijection. Moreover, the inverse of ¥ is certainly continuous for
the weak topology induced on its range by E/I. On the other hand,
let V be a neighborhood of g in (£ (E)) which we may always
assume to be equicontinuous/\b/y hypothesis. Then, the weak topo-
logies on V from E/I and E/I = & (E) coincide [3; p. 23, Prop. 5],
which proves the continuity of ¥-:.

Now, if ¢e R(E), there exists a € A with ¢e R, (E) and N(r,) C
N(¢), so that one gets ¢’ € R(E/I) with ¢'(x + I) = ¢(x), x + I€ E/IL
Thus, preserving the same symbol for the extension of ¢’ to & (F)
we have ¢' e R'(Z(F)) = ¢c R'(KE), so that the map »r:. Z(& (K)) —
RB(R): [¢']— r({4']) = [4] with ¢ = ¢'oz, is a homeomorphism as this
follows by the relation 706, = 0z°¥, since 6z, ¥ are continuous
and #(%(F)) has the final topology induced on it by 6., an
analogous argument being valid for the inverse of 7. O

Concerning the above theorem, we note that ¥, » are always
continuous bijections. Moreover, an element ¢c R(E) is non-
degenerate iff the element ¢’ € <Z (& (F)) is non-degenerate, and for
any (¢, ¢') € R(E) X R(Z (F)) the set ¢(E) is dense in ¢'(&(H)).

Regarding the local equicontinuity of <#(Z(F)) we note that
this, is equivalent with that of <Z(F) when for instance, & (F) is
barrelled (cf., for example, [9; Chapt. III, Cor. 5.31]). In this re-
speet (cf. also Def. 4.2 below as well as the comments following it.

Now, a topological algebra E is said to be a Q-algebra, if the
set of its quasi-regular elements is open. If E is a Q-algebra, the
same holds also true for its respective unital algebra E, [12; p.
174, IJ.

DEFINITION 4.2. A l.m.c. *-algebra E with a b.a.i.,, whose
enveloping algebra & (&) is barrelled (I.m.c.) Q-algebra, is called a
bQ l.m.c. *-algebra.

In case E is a Fréchet l.m.c. *-algebra, & (&) is by its defini-
tion Fréchet and thus barrelled. However, we still assume that
Z(E) is a Q-algebra to have the situation provided by Theorem 3
of [8], hence its application to the next result.

THEOREM 4.2. Let E be a bQ l.m.c. *-algebra with a b.a.i.
Then,
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0p: F(H) — FH(H)

18 a (continuous) open map.

Proof. Clearly 6, is continuous by the definition of the final
topology 7;, on Z(E). Now, by [8; Th. 3] & (F), is a C*-algebra
(cf. also [13; Cor. 5]), and since & (F)C & (&), (C means topological
algebraic imbedding) & (&) becomes —;Iso a C’_”:-algebra, so that
F (& (K)) is equicontinuous, and 6§, open by [7; Th. 8.4.11]. Thus
the assertion follows by Theorem 4.1 and the relation 6, = 706, °

T, O

In the rest of this section we relate & (E) with the decomposi-
tion of E as an inverse limit of Banach algebras {1], [11]. Namely,
we give Z(F) (Th. 4.3) as an inverse limit of the C*-algebras
% (K,), acA, which are the enveloping algebras of the Banach
algebras F,, ac A, corresponding to K. However, we still need the
following.

LeEMMA 4.3. Let E be a l.m.c. *-algebra with a b.a.i. Then,
4.2) & (B, = & (EIN(p.) = (B[} = & (E),, ac A,

within topological algebraic isomorphisms.

N

Proof. By Definition 4.1 & (E/N(p,) = (E/N(p.), t.)/I, with
to(2,) = sup {{| $a(@.) ||: g € R(E/N(Do))} = 74(%), 2.€ E/N(p,), aeA (cf.
Prop. 3.5 and Lemma 4.1) and I, = N(t,). Moreover, t, < p,, ac A,
hence t, has a unique extension %, to E,, ac A, so that if T, =

~ P et

N(ta)’ Z(Ea) :——- (an ta)/Ia’ a eA’ NOW, for Fa = (E/N(pa)9 ta)/Ia and
G,=(E, t,)/I, acA, consider the map

he F,— Gpeay + L— 2, + 1, acA,

which is an algebraic isomorphism into. Then, if @, Qa, ac A, are
the norms defining the quotient topologies of F,, G, « e A respec-
tively, one gets

Qu(x, + L) = t(x,) = Qux, + 1), z.€ E/N(p,), ac A,

which yields h,, « € A, as a topological isomorphism too. Now, since
by t. < P.Im (h,) is dense in G,, a € A, one obtains the first part of
the assertion. The last part of the statement is similarly proved.
Concerning the 2nd equality in (4.2), if M, = (E/I)/N(q,), ac A,
the map

ke M,— F:(x+ D,—2,+ I, acA,
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is an algebraic isomorphism. In fact, k,,ac€ A is a topological
isomorphism: Namely, Q.(x, + I,) < ¢,((x + I),), which yields the
continuity of k,. Besides, k;' is continuous iff p: (E/N(p.), t.) — M,:
z,— (® + I), is continuous, which is true since ¢,(o(x,) = 7.(x) =
ta(®a); o€ EIN(p), (€ A). EI

THEOREM 4.3. If E is a lm.c. *-algebra with o b.a.i., and
& (K) its enveloping algebra, then

Z(K) = lim & (K,) ,
«
within an isomorphism of topological algebras.

Proof. & (H) is by its definition a complete l.m.c. C*-algebra,
hence

(4.3) & (E) = l(iin & (E),

within a topological algebraic isomorphism, where (&£ (X),) is the
inverse system of C*-algebras corresponding to & (&) [2], [11; Th.
5.1]. Now, (4.3) and Lemma 4.3 yield the assertion. |

Theorem 4.3 has a special bearing on a previous result in [6;
Th. 4.3] referred to a Fréchet l.m.c. *-algebra with an identity.
On the other hand, by applying categorical language, since &
preserves continuous morphisms between l.m.c. *-algebras with
b.a.i’s (ef. also Th. 4.1) one may consider & as a covariant functor
between the categories of the respective algebras E and & (E).
Moreover, & is continuous (:preserves inverse limits) by Theorem
4.3 restricted to the full subcategory of Banach *-algebras.

The technique developed hitherto is further applied to the
case of topological tensor products [10], by considering & (E®. F)
and F (K @, F) with E, F suitable l.m.c. *-algebras and r an
“admissible” tensor product topology.
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