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ZONAL MULTIPLIERS ON THE HEISENBERG GROUP

GIANCARLO MAUCERI

We investigate L? boundedness of zonal multipliers on
the 2n + 1-dimensional Heisenberg group H". These are
multipliers which are invariant under the group SU(n) acting
in the noncentral variables. The result is then applied to
derive sufficient conditions for L? boundedness for a class
of multipliers associated with SU(n) invariant operators in
the enveloping algebra of H”. A necessary condition is also
obtained with the aid of group contractions.

1. Introduction. The purpose of this paper is the extension
to higher dimensional Heisenberg groups of some of the results of
[4]. The main tools in the proof of the multiplier theorem in [4]
are the machinery developed by Coifman and Weiss in [1] and the
Fourier analysis on the Heisenberg group [9].

Both of them are available in the more general case of the 2n +
1-dimensional Heisenberg group H". However it turns out that a
strict imitation of the methods of [4], if at all possible, would produce
prohibitively long and involved proofs.

These difficulties can be avoided if we restrict our attention to
the sub algebra of multipliers which are invariant under the action
of the group SU(n) acting in the noncentral variables.

We call these multipliers zonal multipliers. It turns out that
zonal multipliers are convolution operators with a zonal tempered
distribution on H".

One can show that these convolution operators on H" may be
realized as averages over SU(n) of convolution operators transferred
from H"'. Thus we reduce the problem of finding sufficient condi-
tions for their boundedness in L?(H") to the corresponding problem
in H»'. A repeated application of this argument will enable us
eventually to apply the multiplier theorem in [4].

This method, which is a generalization of the classical method
of rotation used by Calderdn and Zygmund to deal with singular
integrals with odd kernels, is due to Coifman and Weiss, who applied
it to several problems in harmonic analysis [2].

Next, in §4, we consider a particular algebra of zonal multipliers
on H” defined in terms of their symbol F', which is a function defined
in the sectors S,={(\, r) e R:r=n|A|>0}. For these operators the
conditions of the multiplier theorem assume a particularly simple
form, being expressed in terms of growth conditions on the derivatives
of the symbol.
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In the last section we investigate a relationship between L*
multipliers of H™ and L” multipliers of C* with the aid of group
contractions.

Some of the results of this paper were announced without proofs
in [3].

2. Fourier analysis on the Heisenberg group. In this section
we recall the basic facts of harmonic analysis on the Heisenberg
group. The main references here are the papers [8] and [9] of
Geller.

The 2n + 1-dimensional Heisenberg group H" is the nilpotent
Lie group whose underlying manifold is R x C*. The multiplication
is given by:

&2, 2)=C+t'+ 0k, 2),2z+2), teR,z 2 cC"

where @ is the skew-symmetric bilinear form @(z, 2’) = 2.9 m >, 2,;Z;
on C* x C*. Sometimes we shall also use coordinates (¢, «, ¥) € R X
R*™, where z = 2 + 1y. The Haar measure is the Lebesgue measure
dtdzdz on R x C*.

The group SU(n) acts as group of automorphisms of H” in the
following way:

u-(t, z) = (&, u-2)

for we SU), (t, z) € H".

We say that a function f: H* — C is zonal if f is invariant under
the action of SU(n).

It is well known that the infinite dimensional representations of
H" are parametrized by R*, the set of nonzero real numbers, and
that they can be realized on L*R*) as follows. For every ac R*,
let ©; be the corresponding representation. Then for ¢ ¢ L*(R"):

i(t, @, PIPE) = X ETVP(E — @) .

Given a function f e L'(H™) the Fourier transform of f is the
operator valued function:

fo =\ e, amatt, )dtdedz .

Choosing an appropriate orthonormal basis in the space of each
representation x;, one can give an explicit expression of the matrix
coefficients of operators FOu) in terms of f.

For every ne R* let {4, ,: a € N*} be the orthonormal basis in
L R") defined by
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Sai(E) = ]I:I i)y = (a, -+, a,)EN", £ = (&, -+, &)ER".

Here
Sa(8) = 2N E2A(2| M)

is the Hermite function 27 scaled by a factor 2|\ |2
Given multiindices m € Z", a € N*, we shall use the notation:

mi = max(m,, 0) ; m; = —min(m,, 0) ;
mt=(my, -, m); m-=(mp, -, my)
m| = S m,; al =l a,l

at+tm= (@ *tm,- -, a,xtm,).
Define the partial isometries W (A) on L*R") by:

WrNE£,: = (—1)™ 0 gim+ 355 4m— TOr A >0
Warn) =Wae(—n)* for A< 0.

Then {Wr(\): me Z", a € N*} is for every » € R* an orthonormal basis
in the Hilbert space of Hilbert-Schmidt operators on L*(R™).
Given a function f, to find f write:

f(t; Z) = me(t; 7‘17 Ty ’rn) eXp (7’ Z mkek)

meZn

where z; = 7,¢'%, and denote by .#,f,, the Euclidean Fourier transform
of f,. with respect to the variable ¢, i.e.:

Fihal 1 ey m) = | Gl 7y e,
R

Then, denoting by L% the Laguerre polynomial of degree j and type
k and by

k — .7' Ve k/2T k —3/2
b = (L) - Liee

the corresponding Laguerre function, we have:

2.1) o) =3 S RO HWEON

mesLm aeN®
where
@2 R )= o\ Fifalh o m) TLLEH@IN e
¥ =1

The inversion formula is:
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( f(ty Bty zn)
2.3) net n
= 2 e SRRy ) [LUz@In D) h [ *dh expti Smidy) .

For a zonal function f(¢, z) = fi(¢, |z]) one has Rr(\; f) = 0 for m =0
and R,(\; f) = RS f) if |a] = |B] [8]. Hence we write Ry(\; f)
for R.(\; f) when f is zonal and |a| = N.

Now if we denote by P®(\) the projection on the <N 27_% 1— 1)
dimensional subspace of L*(R") spanned by {$#,:: |a| = N}, NeN, it
is not difficult to see that

FO = 3 By(v; FIPYO)
where

By(\; f)
(2.4) NI S

+oo \
= Oni T T 2 DIF @I e

0

and ®,,_, is the surface area of the unit sphere in R**. The inversion
formula becomes:

215—1

frn+1

@5 At =2 e 3RO HLF@IM e A
NeN

We also have the following Plancherel formula:

2t e En = DL
171 = 2, SR PR = Dl pran,

3. Zonal multipliers. A left multiplier of L?(H"),1 < p £ oo,
is an operator valued function M defined on R* and taking values
in <Z(L*R™), the algebra of bounded operators on L*R"), such
that the mapping f+ Mf defined by

(MF)"() = MOOFO) neR*, feLn LY(H")

extends to a bounded linear operator on L?(H™). Right multipliers
are also defined in an obvious way.

We say that a multiplier M is zonal if M commutes with the
action of SU(n) on L*(H™).

It is not difficult to prove, using the fact that every L* multiplier
is an L? multiplier [10] and the Plancherel formula, that M is zonal
if and only if

M) = VZ RyO)PF(N) neR*,

where {R,;: Ne N} is a uniformly bounded sequence of measurable
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functions of A e R*. It is not hard to see also that if M is zonal
then M is a left L? multiplier if and only if M is a right L*? mul-
tiplier. Therefore in the following we will not distinguish any more
between left and right zonal multipliers.

It is well known that L? multipliers are operators of convolution
by tempered distributions on H* [12]. The following theorem shows
that, at least when such a distribution is a continuous zonal function
with compact support, the question of the L? boundedness of the
corresponding operator can be reduced to the analogous question in
lower dimension.

THEOREM 3.1. Suppose k, is a continuous function on R X R
having compact support. It the kernel k(t, z) = |2|%,(t, |2]) defines
a bounded convolution operator on LP(H™*) with norm N,, then the
kernel h(t, 2) = k)(t, |2]) defines a bounded convolution operator on
LP(H™) with morm mnot exceeding (@, _./@,_5)N,, where w,_, is the
surface area of the unit sphere in RE.

Proof. The proof is based on an extension of the rotation method
of Calderon-Zygmund due to Coifman and Weiss [2]. We give a
sketch of the argument for completeness.

Given a function f e L?(H"), first one shows that 1t is possible
to express the convolution h=xf as an average over SU(n) of certain
transferred operators on L?(H"). Then one shows that the L? norm
of the transferred operators can be bounded by N,. The conclusion
then follows by an application of Minkowski’s integral inequality.
More precisely one has:

haftt, z) = 2= | qul K, 2 U £t 2)dtdzdz

g JSU ()

where for every fixed uwe SU(n) U* is the isometric representation
of H*' on L*(H™) defined by:

Ui, [ty 2) = f(E, uz)™(t,, 2)) -

Note that we are identifying H"~* with the subgroup of the elements
of H™ of the form (¢, 2, - - -, 2,1, 0).

Since SU(n) acts as a group of automorphisms of H" it is easily
checked that U* is a representation of H"',

The fact that the norm of the transferred operator

Usk)f = Syn_lla(t, UL, fdtdzdz

is bounded by the norm of the operator of convolution by % on
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L*(H"") then follows from the general result on transference [2]
and the amenability of H™.

Now we want to use Theorem 3.1 to deduce sufficient conditions
for the boundedness of a generalized convolution operator in terms
of the corresponding multiplier.

In this connection we introduce the difference operator <, defined
on sequences {Ry: Ne N} of functions of € R* by:

DRy = (N + 0 — DRy(\) + NRy_, () for N =0
= (n — DR,M) for N=0.

THEOREM 3.2. Let M(\) = Dyew Bx(W)PF (), n = 2, where
{Ry: Ne N} 1s a uniformly bounded sequence of complex wvalued
continuous functions of n€ R*, and

m\) = 3, ZuRy(MP ()

If the operator valued function m defines a zonal multiplier of
L*(H*) then M defines a zonal multiplier of LP(H™).

Proof. Assume first that M is the Fourier transform of a
continuous funetion k{t, z) = k,(t, |z|) with compact support. Then:

RO\ = @,V S* ® Foht, LA N e e |

(N +n — 1)1 Jo

If the kernel k(t, |z|) = |2%k(¢, |2]) defines a bounded convolution
operator on L?(H"'), then by Theorem 3.1, h defines a bounded
convolution operator on L?(H"). The Fourier transform of % is

kOV) = 3 By(vi KPP (0)

where

= Our— = SR, LN )

N4 n—2)1 de ’
exp(— | n|rHr*idr .

Therefore from the classical formulas (see [5]):

Ly *x) = Ly '(x) — Ly(w) N=1
Ly*x) = LY (x) =1

it is easily seen that
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Ry k) = P2 [(N 4+ n — DRy(W) — NRy_(\)] for N=1

and

Ry(r; k) = 2223 (n = DR .
2n—1
This proves the theorem when M is the Fourier transform of a
continuous function with compact support. For the general case we
shall show that M can be appropriately approximated by multipliers
which are Fourier transforms of continuous functions with compact
support.
Given a function f defined on H™ let

T f (T, &)

= | explitte + <& @ + <, WL, =, y)dtdady

be its Euclidean Fourier transform. The following lemma gives the
connections between the different transforms of a zonal function.

LeMmA 3.8. Suppose f is a zonal function in LYH"); thus
f@, z) = fiQ, |z]) and F.f (7, {) = (F1 . )z, L.

Then for almost every T, p, N

3.1 (Frfh(z, 0) = C, 2 By [ILY(0%/2]7]) exp (—p*/4|7])

< Ly = =7 N! e = n—1(g2
) T30 = mE | (Frafnn, 9Ly (5120

X exp (—s*/4|ns* ds

whese both the series and the integral converge in L7,

Proof. Assume first that f is in 7(H"™), the Schwartz space of
fast decreasing functions on H". Since it is easily seen that the
Fourier transform in R* of L% '@\ |z]) exp(—|n]|z]®) is

@INDTLE (11218 ) exp (= 1CP/AIND

taking the Fourier transform .&,, of both sides of the Fourier
inversion formula (2.5) we get (3.1). A similar argument yields (3.2).
The general case f e L*(H") follows by a limit argument.

LEMMA 3.4. Suppose M satisfies the hypothesis of Theorem 3.2.
Then there exists a family {k. ,: €, @ > 0} of continuous zonal functions
with compact support such that:

(1) MQ\.) is tn the weak operator closure of {I-Es,(,(x): g, ¢ >0}
for every )€ R*,
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(ii) The L* multiplier norms of IZE,(, are bounded by a constant
times the L* multiplier norm of M.

Proof. First we show that M is the strong operator limit of
operators T, ¢ > 0, where T.f = k.»f is the operator of convolution
by a continuous functions k. in L*(H"). Moreover k. can be chosen
so that the norm of 7. on L?(H™) is bounded by a constant times
the norm of M on L*(H") and for every »e R* M(\) is in the weak
operator closure of {l@(k): e > 0}.

Let @, be the function defined by:

PN = 3 e IR ()
NeN
By [9, Theorem 1] @.€.%”(H") for every ¢ > 0.
Moreover from (2.4) it follows easily that

P (t, ) = e~ 2p (7 g7V'z) |

By (2.4) and the Lebesgue dominated convergence theorem S P dtdzdz =
Hn

lim;_, Ry(»; @) = 1. Hence {p.: ¢ > 0} is an approximate identity for
the convolution.

Let Conv,, 1 £ p < oo, denote the Banach algebra of all bounded
operators on L?(H") commuting with right translations. It is well
known that Conv, can be identified with the algebra of left multipliers
of L*(H") and that Conv,c Conv, for every 1< p =< + c [10].
Hence the function k. = M, is in L*H"). Moreover, since k., =
M(p..xp.,,) = (MP.)*P.,, k. is also a continuous function. It is also
obvious that M(\) is in the weak operator closure of {IEE(N): e > 0}.
Let T. be the operator of left convolution by k.. Then || T |conv, =
H MHCOBVp H Py Hl

To finish the proof of the lemma we need to recall some facts
about the algebras A,. For p =1, A, is the space C,(H") of the
continuous functions vanishing at infinity. For p > 1, 4, is the
smallest Banach space of continuous functions on H™ containing all
the functions of the form f = u=v, we L*(H"™), ve L*(H"), p, p’ con-
jugate exponents. It is well known [11] that A, is a Banach algebra
for the pointwise multiplication and that Conv, is the Banach dual
of A, via the pairing:

(T, uxvy = {u, TO) .
The algebra A, operates on Conv, as follows:
P-T, fr =T, - f>

for TeConv,, @, f € A,. In particular when 7T is the convolution by
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a function h e L'(H"), the product @-T corresponds to the ordinary
product @h. Now let @ be a zonal C= function on H*, with compact
support, such that ® =0 and |@],=1. Define F, = pxp, and
F (t, 2) = F\(0%, o2), for 6 > 0. Then F, is in A, and its norm is
bounded by a constant ¢, independent of ¢.

Let k., = F.k.. We claim that the family {k. ,: ¢, ¢ > 0} satisfies
the conclusion of the lemma. Clearly k., is continuous and has
compact support. Moreover since for every feA,:

I<F0'TE) f>‘ = I<T5; va>| é C:DHMHCOHVprHAp

the norm of (F, k)" as L* multiplier does not exceed C,|| M ||conv,-
To prove (i) observe first that the Euclidean Fourier transform of
k is a continuous function vanishing at infinity in the strip {(\, {):
0<r, = |n|<r)}). Indeed by Lemma 3.3 (F_ k)N, O) = (F k)N, [L])
where

(F 13k, 0)
= ¢ 2 By(v) exp[—e@N + 1F[M[ILET(0%/2| 1 [) exp (—0°/4 |1 ]) -

From the inequality (see [5]):

|Li(@) e < gj\ﬁﬁ,)i <+ k)Y for k=0

and the assumptions on Ry(\) it follows that the series is uniformly
convergent in the strip {(\, {): 7, = |»] = 7} to a continuous function
vanishing at infinity. On the other hand since F,(0,0) = ||@|, =1
and || 7, ,F||, is bounded by a constant independent of o, { #,,F,: ¢ > 0}
is an approximate identity for the ordinary convolution in R**.
Thus 7, ,(F.k.) = .7, ,F,« 5,k converges uniformly to .&, k. in the
strip {(\, 0): 7o < |N| = 7,}. Hence by (3.2) and the Lebesgue dominated
convergence theorem R,y(\; k.) = lim,_ . Ey(\, F k). So M(O) is in
the weak operator closure of the set {ZEE,D(N): g, 0 > 0} and the lemma
is proved.

The proof of Theorem 3.2 now follows by an approximation
argument. We omit the details.

REMARK. The same arguments in the proofs of Theorems 3.1
and 3.2 can be used to obtain weak type (»p — ») estimates for the
multiplier M on L?(H") from the corresponding estimates for m on
L?(H*) [2, Theorem 2.6] for 1 < p < co.

We now consider a consequence of Theorem 3.2. First we need
to introduce some more notation. Given a sequence {Ey(\): Ne N}
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of functions of »e R* define the following difference-differential
operators:

D.Ey(\) = [(N + D/2IN][Bye:(V) — By(V)]
D_Ry(\) = [N/2|N][Ry(M) — Ry_i(V)]

D.Ry(\) = —Ry(\) + (NWIRy(V) — Ry_,(\)]
D,Ry(\) = —Ry(\) + [(N 4+ DA [By (V) — By,

where Ry()\) denotes the derivative of Ry(\) with respect ton. We
think of D, and D_ as “operators of order one” and D, and D, as
“operators of order two”. For every positive integer j let 47 denote
any product of order j of the operators D,, D_, D, and D,. So, for
instance, 4 denotes either D, or D_, 4* denotes either D, or D, or
D.D_ and so on. Let <" be the product &, --- &,. Finally let
i 8 >0, be the projection > PP(\)(s = @N + 1)|\] < 2s).

Then iterating Theorem 8.2 and specializing the multiplier

theorem in [4] to the case of zonal multipliers, we get:

COROLLARY 3.4. Let {Ry(\): N N} be a sequence of uniformly
bounded functions in C*R*) such that

(3.3) sup | L2 R)|| M= & s
—o0 HS

8>0 I

for every j =0, ---,4. Then the zonal multiplier defined by the
operator valued function M) = Diyey ByOOPP(N) is bounded on
LP(H™),1 < p < oo.

4. An algebra of zonal multipliers. Let $" be the Lie algebra
of H*. A basis of §” is given by the left invariant vector fields:
0 0 0 = 0 .0

Zj = — + 'L.Ej——, Z — W—

T=_, e
at 3z, at 0%; ot

j=1, . n.
The differential operator 7T spans the center of ™ and its Fourier
transform is dz,(T) = ianI, where dx; denotes the derived representa-
tion of m,. It is also clear that 7 is invariant under the action of
SU(n). Next consider the left invariant differential operator

= >X&Z + 7;2) .

It is well known that & is hypoelliptic and that it plays much the
same fundamental role on H" as the Laplacian does on R" [6]. In
particular & is SU(n) invariant. Its Fourier transform is [7]:

A7 () :NZ}V(ZN + n)IM PP neR*.
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Denote now by S, the sector {(\, ») e R%: r = n|x\]| > 0}. Let &, be
the family of all functions F' in C"*%S,) such that

(4.1) |0'F@)| = Cla|™", =zeb,

for all pairs I e N* such that |I| =1, + I, < n + 3. Given a function
Fe 7, let M(—iT, &) be the multiplier defined by

My(—1T, Z)\) :Nzl‘NFO\J’ 2N + n) NP (M) neR*.

Then _#, = {(My(—iT, &¥): Fe #,} is a *-algebra of zonal multipliers
of L*(H™).

THEOREM 4.1. The set _#, is a *-algebra of zonal multipliers
of LP(H"),1 < p < eo.

Proof. The proof is by induction on . The case n = 1 follows
from Corollary 3.4 using Taylor’s formula to express the difference-
differential operators in (3.8) in terms of derivatives of F. We
consider in detail only the case of D, which is already entirely
typical. Let » = (2N + 1)|\|. Then:

DF(\, )= —0;F(\, r) — @N + 1) sign(\)o, F'(\, 1)
+ 2o, 1 - Fo, 7 - 2]

for N=1 and
D.F(\, )y = —0;F(\, v) — sign(\)o, F'(n, 7)
for N =0. Hence for N = 1:
D F(\, r) = —0:F(\, r) — (2N + 1) sign(\)o,.F'(\, 7)
N

+; S:ﬂzm <87F(7\” ) + Sia%F()\', t)dt)ds .

Since » = |\| and, for N =1, r — 2|n| = /3, from (4.1) follows that
4.2) |DF(, @N + 1)[n))| < C'@N + 1) |n] for NeN.

It is not hard to see now that (4.2) implies (3.3) for 4* = D,.

Next assume the theorem proved for n — 1, » = 2. By Theorem
3.2 the operator M(—1iT, &) is bounded on L*(H"),1 < p < oo,
provided that the multiplier

m(n) = NZ Z,F(\, 2N + n) I NDPF (M) e R*

is bounded on L*(H"-'). We claim that m is of the form M(—iT, &)
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where Ge %, ,. Indeed let G be the function defined by

GOy 1) = 2| 30 7+t + Z O, 7 ) = F, 7= (D]

for » = (n + 1)|n|, and by
GO\, 1) = (n— DF(N, 7 + (M)

for (n — 1)|A] £ r £ n|\]| and still undefined for n )| <7 <(n + 1)|\].
It is easily seen that: <, F(\, 2N + n)|x]) = GO, CN + n — 1)|\])
for neR*, Ne N. Moreover G is n + 2 times differentiable and
|0'G(x)| < Clz|~"" for |I| < n + 2 for every x = (A, ) such that either
0<(nm—DN=Er=Zn/ror0<(n-+1)|xn =7 Therefore, in order
to complete the proof of the theorem, we need only to show that
the function G can be extended to a C*** funection satisfying the
inequalities (4.1) in all the sector S,_,. This is precisely the purpose
of the following lemma.

LEMMA 4.2. Let & be a region in R® which is the union of
two cones F, = {(n, r)ier ENZ e, v, N> 0} and F, = {(\, 7)o =
MNZ e, T, >0 where 0 ¢, < e, < e <e,. Assume that f is a
Junetion in C*(F ) such that

(4.2) [0 f(x)] = cla|™ xes

whenever || =1, + 1, = k. Then there exists a function E(f) defined
and k times continuously differentiable in the region < = {(\, 7):
cr = NZE e, 7, > 0} which extends f and satisfies

(4.3) 0'Ef(@)| = Clz|™" 2ze @

whenever |l < k.

Proof. The proof is based on Whitney’s extension theorem.
Let £ be the region between the two cones, i.e., 2 = {(\, 7): 0 < ¢r <
A < ¢r}. Then there exists a collection of squares with sides parallel
to the axes @, Q., ---, @, - -- such that

(1) UQ,= 2.

(2) the @, are mutually disjoint.

(3) diam(Q,) = dist(Q,, 7 ) < 4 diam (Q,).

For the proof of this and the following facts we refer the reader
to Chapter VI of Stein’s book [13]. Denote by QF the square which
has the same center as Q,, but is expanded by a factor (1 + ¢), where
¢ is a fixed number, 0 < e < 1/4. Then each point of 2 is contained
in at most a finite number N of the cubes @}. Given the covering
{QF} of 2 there exists a partition of the identity {®}} subordinated
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to it such that
(4.4) [0°pi(x)| = A(diam @)~/ .

For each square @, fix a point p, €. of minimum distance of &
from @,. Notice that such point exists, even if & is not closed
because the origin is not in .#. The definition of E(f) is as follows:

E(f)@) = f(x) if zes

4.5
5 E(f)@) = X Plo, p)pi(x) zef

where P(z, p;) is the polynomial giving the Taylor expansion of f
about the point p,, that is

P(x, p,) = —lfl(p")(x —p) xef.

L=k |

It is then clear by Whitney’s theorem [13, Ch, VI, 4.7], that E(f) ¢
C*< U ). It remains only to show that the inequalities (4.3) are
satisfied. Remark that by (4.2)

Jl+gisk-1

vf@ = 3 LW g+ Ry 15 k-1
and
df(x) =0 f(y) + Bi(w,y) |il=k
where #z, ye. % and |R;(x, y| < cmax{|z|™ |y|*}|x — y|*""'. Now

let P;(x, y) be the Taylor polynomial of ¢’f about the point y, i.e.:

Pz, y) = >} a—jfﬁﬂ(x—y)l ye s, xR .

1l+jisk

Then as in [13, p. 177] it is not hard to see that

li+i=

(4.6) Pi(x, b) — Py(x, a) = Zk R, (b, a)~(x Z, b)"

for a,be.&, xcQ. Now since dist(QF, & ) is comparable with
diam (Q,) there exist positive constants d,, d, d; so that for xe
QF |z — p;| = di|pi] and d,|p,| = |z = ds] 4]

Let |j| < k and consider ¢’E(f)(x) for x€ 2. By (4.4):

VE(f) (@) = >, 0'P(x, p)Pi(x) + other terms .

Disregrading the other terms for the moment and observing that
ajP<x, pl) = Pj(x, pz) we get:
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S 9P, p)Pi@)| = 3 S ﬂﬁﬂﬁlx—pil"' < clo .

PRIZ TR
The other terms are themselves sums of expressions like:
2. Pi_i(@, p)o'pi(x)

where 0 < |I|,l = j. Since >, d'pf(x) = 0 for x € 2 these sums are
in turn equal to:

4.7 Z[ —ix, ) — Pi_(x, a)|oip(x) ae 7 .

Choose a to be the point of minimum distance of x from .&#. Then
since the angle between &, and ., is less than 7/2, there exists a
constant C, > 0 such that C,|z| =< |e| = |z|. Notice also that we
have |a — p;| < 2|2 — p;|. Therefore by (4.4), (4.6) the expression
(4.7) can be majorized by:

c'; max(la|=*, |p:|™) |z — p, |9

which in turn is not larger than ¢"|z|-'.

5. Multipliers and group contractions. In this section we
study a relationship between L? multipliers on H” and L” multipliers
on C*, with the aim of obtaining necessary conditions for the boun-
dedness of a multiplier on L?(H"). The main tool here is the con-
traction of H” to C" introduced by Geller in [8].

Let

F(t, &) = S fult, 7) exp(icm, 0))

where re R", 6 [0, 27]", m € Z" and z,=7r,¢"%, be a function in &7 (H")
and consider its Fourier transform F(\) = X...RrOv £)W2r(\). The
contraction process on the Fourier transform side consists in taking
the limit of RZ(\; f) as »—0 and @ — + « in such a way that
(2a; +n)In| — 75, for j=1, ---, n. Let R™(r,, ---, r,; f) be this limit.
It is well known that for £ > 0 the Bessel function of order & J,(2rp)
is the limit as A — 0 and 2j|x| — p of 42|\ |7?), uniformly for p in
a compact set. Therefore from (2.2) and the Bessel transform for-
mulas [14, Ch. 2, Theorem 1.6] the function
S (—=D)™R™ry, - -+, v, f)exp(i(m, 0 — /2))

meZn

is the Euclidean Fourier transform of the contracted function f%(z) =

Sf: £t 2)dt.
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The contraction process has a right inverse. Given a function
@ € S (C") such that

P0) = 3 (=L™"p, (04, - - -, 0i/4) exp(ilm, O — 7/2))

where {, = p,e%, (m, ) = >, m0,, the operator valued function
P = 2 Pul@ay + ) [N, -+, @ay + ) M)W (V)

is the (noncommutative) Fourier transform of a function f ¢ &7 (H"),

which contracts to the inverse (Euclidean) Fourier transform of ¢.
Now let M be a bounded function on C* such that

M) = 5, (~ 1" Mo(r3/4, -, 73/4) exp(i(m, 0 — L), cec,

where as before, {; = r;¢%7 and M, are for every m e Z" almost
everywhere continuous on R7?. For every ¢ > 0 define the operator
valued function M, by:

M) = 3 M, (2o, + n)[nle, -+, Ca, + n)INe)WI(M) neR*.

THEOREM 5.1. If M, is for every ¢ > 0 a multiplier or L*(H")
with morm independent of &, then M 1is a multiplier of L7(C*).
Moreover || M||conv,cm = 27 lim sup._ || M. ||conviam-

Proof. Let q be the index conjugate to p. It suffices to show
that I = S Mf(2)g(z)dzdz is bounded in absolute value by ¢|| f |, |l g/,
cr

whenever f, g € C,(C™), with ¢ independent of f and g. We may as-
sume that M, decreases rapidly, say

| M, (73, -+, 12)| £ crexp[—c(m]* + )],

where 72 = >, 7%, replacing if necessary the multiplier M by the
multiplier M°(c > 0) defined by

M©) =2 (=)™ M(rif4, - -+, v3/4) expl—o(Im[* + 7%)
+ i{m, 6 — w/2)]

and observing that the constant ¢ will not depend on ¢. Therefore
we may apply Fubini’s theorem and the Fourier-Bessel transform to
write:

crjc

X 1;[ (100000 f (2 — 2))g(2)d2'dZ'dzdZ

I= o S~ expam, o)) | | | Mo4, -, 02/
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with obvious notation. Now choose two functions @ and « in the
Schwartz space .&“(R) such that ||, = [|4 ], = 1 andggﬁ(x)«}(—x)dx -
1, and define fi(t, z2) = e ™*@(t) f(e7%2); gi(t, z) = e ™ (t)g(e™*%) for
(t,2) € H*. Then f!eL?(H"), g'c L'(H") and | f?|, = &"*?|| fl,,
gl = e*¥ " g |l

Let I, —S M. figidtdzdz. By hypothesis there exists A, inde-
pendent of ¢, f, g, such that |I.| < Al f?],]|9¢ll,. We claim that there
exists a constant ¢ depending only on » such that lim, I, = ¢I. In
fact:

L=e~v~2”“§ g S e S SO M (2a + M)
H™ ) H?

7Z’Ib+1 oo m

X TS @I |ZP)P(E — ¢ — 0z, 2)W(Of (e — )g(e™2)
X [N |"dNdtdzdzdt'dz'dz’ .

Making the change of variables { = ¢ %, {' = ¢’ and performing
the integrations in ¢ and ¢/, we get:

2%_l oo % A
Is = g" S S S ez(m,é’ >e1,)s D(C,¢") ()")’V( )\,)
cnyecn) o

7z'n+1
X EMM((Zak + n)[\]e) Hl""”(lelE!CH?)
X f(& — g In|"dndldlal’al’ .
Now consider the sum

G.1) e n" X Ma(@an + ) [N, ooy 2oy + n) [N fe) TLERH @I e[ CLP) -

From the asymptotic formula of Hilb’s type [15, Theorem 8.22.4] it
follows that lim 12|\ e[ (L)) = (= 1)™ ], (2]CL]0)) as € — 0, a — oo
in such a way that (2a, + m)|N|e — o, uniformly for {, in a compact
set. Therefore (5.1) is a Riemann sum approximation to:

(5.2) 27 (=™ SMMm(p?/‘l, o 034 1T T (0u [ S Doud oy -

Since the functions M, are almost everywhere continuous and fast
decreasing both in the m and p variables, (5.1) tends to (5.2) as
¢ — 0. Therefore lim,., I, = (2x)~*I as claimed.

This proves the theorem.
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