CONCERNING THE MINIMUM OF PERMANENTS ON DOUBLY STOCHASTIC CIRCULANTS

Gerald Suchan
CONCERNING THE MINIMUM OF PERMANENTS
ON DOUBLY STOCHASTIC CIRCULANTS

GERALD E. SUCHAN

Let \(P_n \) be the permutation matrix such that \((P_n)_{ij} = 1\) if \(j = i + 1 \text{ (mod } n)\). Minc [2] proved that the minimum of the permanent on the collection of \(n \times n \) doubly stochastic circulants \(\alpha I_n + \beta P_n + \gamma P_n^z \) is in \((1/2^n, 1/2^{n-1})\), and if \(n \geq 5 \) then the minimum is not achieved at \((1/3)I_n + (1/3)P_n + (1/3)P_n^z\). This paper proves that if \(n \geq 3 \) then the minimum of such permanents is less than \(1/2^n - 1 \), and if \(n \in \{3, 4\} \) then this minimum is uniquely achieved at \((1/3)I_n + (1/3)P_n + (1/3)P_n^z\).

Introduction. Let \(n \) be a positive integer, let \(I_n \) denote the \(n \times n \) identity matrix, and let \(P_n \) denote the full cycle permutation matrix such that \((P_n)_{ij} = 1\) if \(j = i + 1 \text{ (mod } n)\). Minc [2] studied the permanent of circulants \(\alpha I_n + \beta P_n + \gamma P_n^z \) and proved the following three theorems:

Theorem 1. If \(n \geq 3 \) then

\[
\text{per} (\alpha I_n + \beta P_n + \gamma P_n^z) = \left(\frac{\beta + \sqrt{\beta^2 + 4\alpha\gamma}}{2} \right)^n + \left(\frac{\beta - \sqrt{\beta^2 + 4\alpha\gamma}}{2} \right)^n + \alpha^n + \gamma^n.
\]

Theorem 2. If \(\alpha, \beta, \gamma \) are nonnegative then

\[
\frac{1}{2^n} < \min_{\alpha+\beta+\gamma=1} \text{per} (\alpha I_n + \beta P_n + \gamma P_n^z) \leq \frac{1}{2^{n-1}}.
\]

Theorem 3. If \(\alpha, \beta, \gamma \) are nonnegative, \(n \geq 5 \), then

\[
\min_{\alpha+\beta+\gamma=1} \text{per} (\alpha I_n + \beta P_n + \gamma P_n^z) < \text{per} \left(\frac{1}{3} I_n + \frac{1}{3} P_n + \frac{1}{3} P_n^z \right).
\]

Main Results. Let \(S = \{ (\alpha, \gamma) | 0 \leq \alpha, 0 \leq \gamma, \alpha + \gamma \leq 1 \} \), and let \(f_n \) denote the function on \(S \) such that

\[
f_n(\alpha, \gamma) = \text{per} (\alpha I_n + (1 - \alpha - \gamma)P_n + \gamma P_n^z).
\]

Theorem 4. If \(n \geq 3 \) then \(f_n \) is not minimum on the boundary of \(S \).

Lemma to Theorem 4. The minimum of \(f_n \) on the boundary of
S is 2^{n-1}. If n is even this minimum is achieved only on
\{(1/2, 0), (0, 1/2)\}, and if $n > 1$ and n is odd this minimum is
achieved only on \{(1/2, 0), (1/2, 1/2), (0, 1/2)\}.

Proof. The lemma is clearly true in case $n \in \{1, 2\}$. Suppose
$n \geq 3$. Since

\[f_n(1/2, 0) = f_n(0, 1/2) = \frac{1}{2^{n-1}} < 1 = f_n(1, 0) = f_n(0, 0) f_n(0, 1), \]

then it is sufficient to consider only points belonging to the interior
of the boundary of S. The only real number α satisfying
$D_1 f_n(\alpha, 0) = 0$ is 1/2. Therefore, since $f_n(\alpha, \gamma) = f_n(\gamma, \alpha)$, then the
minimum of f_n on \{$(\alpha, \gamma) | \alpha \gamma = 0$\} is 2^{n-1}. Let $g(\alpha) = f_n(\alpha, 1 - \alpha)$.
If n is even, put $k = n/2$ and observe that $g(\alpha) = (\alpha^k + (1 - \alpha)^k)^2$.
If n is odd then $g(\alpha) = \alpha^n + (1 - \alpha)^n$. In either case, 1/2 is the only
real number α such that $g'(\alpha) = 0$. If n is even then $f_n(1/2, 1/2) =
1/2^{n-2} > 1/2^{n-1}$, and if n is odd then $f_n(1/2, 1/2) = 1/2^{n-1}$.

Proof of Theorem 4. By the lemma it is sufficient to show
there is a point q of S so that $f_n(q) < f_n(1/2, 0)$. Observe that
$D_1 f_n(\alpha, \gamma)$ is

\[
\begin{align*}
&\frac{n}{2} \left(\frac{1 - \alpha - \gamma + \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-1} \left(-1 + \frac{-1 + \alpha + 3 \gamma}{\sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}} \right) \\
&+ \frac{n}{2} \left(\frac{1 - \alpha - \gamma - \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-1} \left(-1 - \frac{-1 + \alpha + 3 \gamma}{\sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}} \right) \\
&+ n \alpha^{n-1}.
\end{align*}
\]

Thus $D_1 f_n(1/2, 0) = 0$ and therefore, since $D_1 f_n(\alpha, \gamma) = D_1 f_n(\gamma, \alpha)$, then
(1/2, 0) is a critical point for f_n. Now observe that $D_1, i(\alpha, \gamma)$ is

\[
\begin{align*}
&\frac{n}{2} \left[(n-1) \left(\frac{1 - \alpha - \gamma + \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-2} \left(-1 + \frac{-1 + \alpha + 3 \gamma}{\sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}} \right)^2 \right] \\
&+ \left(\frac{1 - \alpha - \gamma + \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-1} \left((1 - \alpha - \gamma)^2 + 4 \alpha \gamma - (-1 + \alpha + 3 \gamma)^2 \right) \\
&+ \frac{n}{2} \left[(n-1) \left(\frac{1 - \alpha - \gamma - \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-2} \left(-1 - \frac{-1 + \alpha + 3 \gamma}{\sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}} \right)^2 \right] \\
&+ \left(\frac{1 - \alpha - \gamma - \sqrt{(1 - \alpha - \gamma)^2 + 4 \alpha \gamma}}{2} \right)^{n-1} \left((1 - \alpha - \gamma)^2 + 4 \alpha \gamma + (-1 + \alpha + 3 \gamma)^2 \right) \\
&+ n(n-1) \alpha^{n-2}.
\end{align*}
\]

Thus $D_1, i f_n(1/2, 0) = n(n-1)/2^{n-3}$, and since $D_2, i f_n(\alpha, \gamma) = D_1, i(\gamma, \alpha)$
then $D_2, i f_n(1/2, 0) = 0$. Finally, observe that $D_1, i f_n(\alpha, \gamma)$ is
Thus \(D_{1,1} f_n(1/2, 0) = n/2^{n-3} = D_{k,1} f_n(1/2, 0) \).

Let \(H \) denote the Hessian matrix for \(f_n \) at \((1/2, 0)\). \(H \) has characteristic values

\[
\lambda_1 = \frac{n}{2^{n-2}} (n - 1 + \sqrt{(n - 1)^2 + 4})
\]

and

\[
\lambda_2 = \frac{n}{2^{n-2}} (n - 1 - \sqrt{(n - 1)^2 + 4})
\]

Since \(\lambda_2 < 0 < \lambda_1 \) then \((1/2, 0)\) is a saddle point for \(f_n \). Let \(x = (\lambda_2, 1) \) and put \(|x| = \sqrt{\lambda_2^2 + 1} \). By Taylor's theorem there is a positive number \(\delta \) so that if \(|x| < \delta \) then there is a number \(R(x) \) so that

\[
\frac{1}{0!} f_n(1/2, 0) + \frac{1}{1!} \sum_{k=1}^2 (x)_k D_k f_n(1/2, 0) + \frac{1}{2!} \sum_{i,j=1}^2 (x)_i(x)_j D_{i,j} f_n(1/2, 0) + R(x)
\]

and therefore, since \((1/2, 0)\) is a critical point for \(f_n \), and since

\[
Hx^T = \lambda_2 x^T,
\]

then

\[
f_n((1/2, 0) + x) = f_n(1/2, 0) + \lambda_2 |x|^2 + R(x).
\]

Since \(\lambda_2 < 0 \) then there is a positive number \(\omega < \delta \) such that if \(|x| < \omega \) then \(\lambda_2 |x|^2 + R(x) < 0 \), and therefore \(f_n((1/2, 0) + x) < f_n(1/2, 0) \).

Let \(q = (1/2, 0) + \omega |x|^{-1} x \), observe that \(q \in S \) and that \(f_n(q) < f_n(1/2, 0) \).

Theorem 5. If \(n \in \{3, 4\} \) then \(f_n \) is minimum, uniquely, at \((1/3, 1/3)\).

Proof. In [1] Marcus and Newman proved the van der Waerden
conjecture true in case \(n = 3 \), and hence this theorem is also true in this case. Let \((\alpha, \gamma)\) be a point of \(S \) at which \(f_4 \) is minimum. Observe that \(f_4(\alpha, \gamma) \) is

\[
2\alpha^4 - 4\alpha^3 + 6\alpha^2 - 4\alpha + 2\gamma^4 + 6\gamma^2 - 4\gamma - 20\gamma^2 \\
+ 8\alpha\gamma^3 + 16\alpha^2\gamma^2 + 8\alpha^3\gamma - 20\alpha^2\gamma + 16\alpha\gamma + 1 ,
\]

that \(D_1f_4(\alpha, \gamma) \) is

\[
8\alpha^3 - 12\alpha^2 + 12\alpha - 4 - 20\gamma^2 + 8\gamma^3 + 32\alpha\gamma^2 + 24\alpha^2\gamma - 40\alpha\gamma + 16\gamma ,
\]

and that \(D_2f_4(\alpha, \gamma) \) is

\[
8\gamma^3 - 12\gamma^2 + 12\gamma - 4 - 40\alpha\gamma + 24\alpha\gamma^2 + 32\alpha^2\gamma + 8\alpha^3 - 20\alpha^2 + 16\alpha .
\]

By Theorem 4, \((\alpha, \gamma)\) is not on the boundary of \(S \) and so \(D_1f_4(\alpha, \gamma) = 0 = D_2f_4(\alpha, \gamma) \). Thus \(D_1f_4(\alpha, \gamma) - D_2f_4(\alpha, \gamma) = 0 \) and therefore

\[
(1) \quad (\alpha - \gamma)(2(\alpha + \gamma) - 1 - 2\alpha\gamma) = 0 .
\]

Since \(D_1f_4(\alpha, \alpha) = (\alpha - 1/3)(18\alpha^2 - 12\alpha + 3) \) then the only critical point on the diagonal of \(S \) is \((1/3, 1/3)\). Suppose

\[
(2) \quad f_4(\alpha, \gamma) < f_4(1/3, 1/3)
\]

and observe from (1) that

\[
(3) \quad 2(\alpha + \gamma) - 1 - 2\alpha\gamma = 0 .
\]

Let \(\beta = 1 - \alpha - \gamma \). It follows from (3) that \(\beta^2 = \alpha^2 + \gamma^2 \) and from (2) and (3) that

\[
f_4(\alpha, \gamma) = \beta^4 + 2\beta^2(2\alpha\gamma) + (\alpha^2 + \gamma^2)^2 = 2\beta^2(1 - \beta)^2 < \frac{1}{9} .
\]

Hence \(\beta(1 - \beta) < 1/3\sqrt{2} \) and therefore

\[
(4) \quad \text{either } \beta < \frac{1 - \sqrt{1 - 2\sqrt{2}/3}}{2} \quad \text{or } \beta > \frac{1 + \sqrt{1 - 2\sqrt{2}/3}}{2} .
\]

It also follows from (3) that \(2\gamma^2 - 2(1 - \beta)\gamma + 1 - 2\beta = 0 \) and therefore, since \(\gamma \) is a real number, then

\[
(5) \quad \beta \geq \sqrt{2} - 1 .
\]

Finally, (3) implies that \(1 - 2\beta - 2\alpha\gamma = 0 \), and therefore since \(\alpha\gamma \geq 0 \), then

\[
(6) \quad 3 \leq 1/2 .
\]
Inequalities (4), (5) and (6) constitute a contradiction.

I would like to thank Professor Sinkhorn for his assistance and suggestions in the preparation of this paper.

REFERENCES

Received July 3, 1973.

Missouri Southern State College
Joplin, MO 64801
John Allen Beachy and William David Blair, On rings with bounded annihilators .. 1

Douglas S. Bridges, A constructive look at positive linear functionals on $\mathcal{L}(H)$.. 11

Muneo Chō and Makoto Takaguchi, Boundary points of joint numerical ranges .. 27

W. J. Cramer and William O. Ray, Solvability of nonlinear operator equations ... 37

Lester Eli Dubins and Gideon Schwarz, Equidiscontinuity of Borsuk-Ulam functions .. 51

Maria Fragoulopoulou, Spaces of representations and enveloping l.m.c. *-algebras ... 61

Robert F. Geitz and J. Jerry Uhl, Jr., Vector-valued functions as families of scalar-valued functions ... 75

Ross Geoghegan, The homomorphism on fundamental group induced by a homotopy idempotent having essential fixed points 85

Ross Geoghegan, Splitting homotopy idempotents which have essential fixed points .. 95

Paul Jacob Koosis, Entire functions of exponential type as multipliers for weight functions .. 105

David London, Monotonicity of permanents of certain doubly stochastic matrices .. 125

Howard J. Marcum, Two results on cofibers ... 133

Giancarlo Mauceri, Zonal multipliers on the Heisenberg group .. 143

Edward Wilfred Odell, Jr. and Y. Sternfeld, A fixed point theorem in c_0 ... 161

Bernt Karsten Oksendal, Brownian motion and sets of harmonic measure zero .. 179

Andrew Douglas Pollington, The Hausdorff dimension of a set of normal numbers ... 193

Joe Repka, Base change lifting and Galois invariance .. 205

Gerald Suchan, Concerning the minimum of permanents on doubly stochastic circulants .. 213

Jun-ichi Tanaka, On isometries of Hardy spaces on compact abelian groups ... 219

Aaron R. Todd, Quasiregular, pseudocomplete, and Baire spaces ... 233