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Let H?(m), 0<p=oco, be the Hardy spaces on a
quotient K of the Bohr group. In this paper we completely
determine the isometries of H?(m), p + 2, onto itself. Our
result is a2 generalization of a recent work of Muhly who
determined the isometries of H?(m) onto itself under the
assumption that the dual group of K is countable, and it
may be regarded as a partial answer to a question posed
by Mubhly.

1. Introduction. Many results have been obtained concerning
isometries of Hardy spaces in the theory of uniform algebras. The
most fundamental result in this direction is due to de Leeuw, Rudin,
and Wermer [2], which states that an automorphism of the classical
Hardy space H*(T) is induced via composition with the unit circle
T of a fractional linear transformation of the unit dise onto itself.
Their work was carried on independent of Nagasawa [13], who also
described the isometries of H=(T) onto itself. On the other hand,
Arens [1] completely determined the automorphisms of the uniform
algebra of analytic functions on a compact abelian group K whose
dual group I" is archimedean ordered (cf. [11]). This result was
extended by Muhly [11] to the uniform algebra of analytic functions
induced by a flow which has no periodic orbits. Moreover Muhly [12]
has recently given, among other things, the following interesting
generalization of this result of Arens to the case of isometries of
Hardy spaces H?(m), » # 2, on K: Under the assumption that I' is
countable, every isometry of H?(m), p # 2, is induced via composi-
tion with an affine map of K such that the adjoint of the additive
factor of this map preserves the order of I'. The purpose of this
paper is to remove the assumption on I'. This result provide a
partial positive answer to the following question posed by Muhly in
[12; §5]:

Is it possible to describe the isomelries of ergodic Hardy spaces
onto itself without the separability assumptions on phase spaces?

The difficulty is that, in the absence of separability assumptions
automorphisms of measure algebras may not have point realizations.
On the other hand, although our proof rests on some techniques
which were first investigated by Muhly [11], [12], and is given in
the context of almost periodic setting, one will find some improve-
ments of the proof given in [12; §3].
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220 JUN-ICHI TANAKA

In the next section we present some preliminary material which
we shall need, and state our main result. In §3, we show that
under the assumption that K is metrizable, the automorphisms of
H~(m) onto itself are induced via composition with certain Borel
isomorphisms. This will be used in §4 for the proof of our theorem
stated in §2. In §5, we close with some remarks.

The author would like to express his sincere gratitude to
Professors Yuji Ito and Junzo Wada for their useful advices.

2. Notations and the main theorem. Let K be a compact
abelian group, not a circle, dual to a subgroup I of the discrete
real line B;. For 0 < p < «, L*(m) is the Lebesgue space based on
the normalized Haar measure m on K, and C(K) is the space of all
complex-valued continuous functions'on K. Let A be the uniform
algebra of all analytic functions in C(K), i.e., the family of all
functions f in C(K) whose Fourier coefficient

af) = | T f@im)

vanishes for all negative N\ in I", where X;(x) denotes the continuous
character on K defined by setting X;(x) = x(\) for any x in K. The
Hardy space, H?(m), 0 < p < oo, is the closure of %« in L*(m), while
H>(m) is defined to be the weak-* closure of % in L~(m). Let {T.};c»
be the transformation group on K such that, for any z in K,

T(x) =2+ e,

where ¢, is the element of K defined by e,(\) = ¢ for all A in I
When it is convenient, we will often write T,(x) for x + ¢. Recall
that the map ¢ — ¢, embeds the real line B continuously onto a dense
subgroup K, of K. A straightforward Fourier series argument
shows that the flow (K, {T}..z) is strictly ergodie, i.e., the normalized
Haar measure m is the unique probability measure which is invariant
under the action of {T,},.r. We refer the reader to Helson’s mono-
graph [7] for an up-to-date account of the theory of analyticity on
compact abelian groups.

In order to state our main result, we require a little more
terminology. For ¢ =1,2, let K,, I';, A, and m, be as above, and
let B, be the Borel field on K;,. A set E in B, is called conull if
m(E°) =0. We say a map ¢ from K, onto K, is an affine map if
o may be factored as ¢ = 0,00, where o, is a continuous group iso-
morphism from K, onto K, and ¢, is the translation by an element
of K,. Let I'f be the subsemigroup of nonnegative elements in I',.
Then we say also that the affine ¢ is order preserving if the adjoint
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of of g, carries I'y onto I'f. We denote by (B, m,; the measure
algebra of Borel field %, associated with m,, i.e., (B, m, is the
Boolean sigma-algebra of B, mod m,-null sets. For E, in B,, a map
7 is called a Borel isomorphism from E, to E, if r is one to one,
onto, and both 7 and z~* are Borel maps. It is well-known in ergodic
theory that, under the assumption that both K, and K, are compact
metric, any sigma-isomorphism ¢ from (B, m,) onto (B, m, has a
point realization, i.e., there exist conull sets K| and K] in B, and
B,, respectively, such that ¢ may be considered as a Borel isomor-
phism from K] onto K; (see [17]). Let T be a map from K, to K.,.
For any function f on K,, we define (Tf)(x) = f(Tx) for z in K,.

We may now give the statement of our main theorem which is
an analogue of [12; Theorem IV]. It will be proved in §4.

THEOREM 2.1. For i =1,2, let I'; be an arbitrary demse sub-
group of the real line R, but endowed with the discrete topology,
and let K,, m;, and H?(m,), 0 < p = o, be as before. If ¥ is an
isometry mapping H?(m,) onto H?(m,), v +* 2, then there exists a
constant ¢ of modulus one and an order preserving affine map o
from K, onto K, such that

(2.1) Vf=c(fo0™)

Jor all f in H?(m,). Conwversely, such a constant ¢ and an affine
map o determine an isometry via this equation.

By virtue of Lowdenslager’s theorem [7; Ch. 2. §2], this theorem
may be regarded as an extention to Besicovitch almost periodie
functions of a theorem of Arens about isomorphisms of algebras of
ordinary analytic almost periodic functions.

In our discussions in the forthcoming sections, we frequently
use the following lemma, which is a weak version of the statement
in [12; §3. Step. 2].

LemMaA 2.2. For v=1,2, let I';, K,, m, and (B, m, be as
before. Suppose that T is an algebra isomorphism from H>™(m,)
onto H*(m,). Then there is a sigma-isomorphism ¢ from (B, m,)
onto (B, m,) such that

(2.2) | #am, = sam,

for any f in H*(m,) and any E in (B, m,. In particular,
m, (o0~ (H)) = my(E) for any E in (B, m,). Moreover, if I'; and I,
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are countable, then o has a point realization.

Proof. For i=1,2, let M, be the maximal ideal space of
H=(m,), and let H=(m, = {f; f in H>(m,)} where the hat ~ indicates
the Gelfand transform. Recall that A=(m,) is a logmodular algebra
on the Shilov boundary oI, of IR, also recall that oI, may be
identified with the maximal ideal space of L~(m,). If we set ¥(f) =
@) for each f in H=(m,), then there is a homeomorphism &
mapping M, onto M, such that F(F) = f -4 and (M) = oM, (see
[13] and [11; §4] for details). Let 4i; denotes the Radonization of
m;. Then we have that #%#,U) > 0 for all nonempty open sets U
of 0IR; ([4; Ch. I, Corollary 9.2]). Since any nonzero E in (B,, m,)
corresponds to a nonempty open and closed subset E of a0, it can
be seen that ¢ determines a sigma-isomorphism ¢ from (B,, m,) onto
(B,, m,) such that

| rim. =

for any f in H=(m,) (cf. [4; Ch. I, §9]). On the other hand, it is
easy to see that m, and m,oo are mutually absolutely continuous
representing measures of the uniform algebra %,. This implies that
m, and m,oo belong to a same Gleason part. So, since {m,} is a one
point part by [4; Ch. VII, §4], we have m, = m,o0. Together with
the above equation, we obtain the equation (2.2). When ', and [,
are countable, both K, and K, are compact metric spaces. Hence,
by the remark above, ¢ may be identified with a Borel isomorphism
from a conull set K] in B, onto a conull set K; in B,. This concludes
the proof.

fdm,oa
—LE)

3. Isomorphisms of Hardy spaces on metric groups. In this
section we study the properties of Borel isomorphisms which
determine isomorphisms of Hardy spaces. Throughout this section
we assume that, for ¢ = 1,2, I'; is a countable dense subgroup of R.

The following proposition is a consequence of [12; Theorem IJ.
However, we provide here an elementary proof.

ProprosITION 3.1. For i =1, 2, let I'; be a countable dense sub-
group of R and let K,, m; B, {T}icr, and H>(m;) be as in §2.
If ¥ is an isomorphism from H*(m, onto H>(m,), then we may
find a constant B8 >0, a conull set K] in B,, and a Borel isomor-
phism ¢ mapping K| onto K, such that

(8.1) Uf = foo™, for each f in H*(m,) ;
(3.2) m,(E) = m,(c(E N K)), for each E in B,; and
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3.3) (67 TPo)f(x) = Thif(®), mi-ae. w

for each t in R and each f in H*(m,). Conversely, such a o
determines an isomorphism from H>(m,) onto H*(m,) via the equa-
tiom (3.1).

In order to prove Proposition 3.1, we need some lemmas. By
Lemma 2.2, there exists a conull set K] in %B,, 1 =1, 2, and a Borel
isomorphism ¢ mapping K, onto K; which satisfies the equations
(3.1) and (3.2). So it suffices to show that this Borel isomorphism
o satisfies the equation (3.3).

We recall that 9, is the uniform algebra of all continuous analy-
tic functions on K, for ¢ = 1, 2, and note that, since I'; is countable,
A, is separable. For 2 in K, and s > 0, we denote by m(z, s) the
regular Borel measure on K, defined by the equation:

S odm(x, 8) = 1
By T

i Vi

G S
S—w s )82 +

for any ¢ in C(K,). Since the domain K] of ¢ is conull, it follows
from Fubini’s theorem that there is a null set N such that, for each
x in K\N, m(x, s) is supported on K;. Hence, for x in K,\N, we
can define the measure m(z, s)co~* on K, by the equation:

m(z, 8)o 0~ (E) = m(x, s)(c7(E N K7))

for each F in 9B,. Let H(R) denote the Hardy space of boundary
values of bounded analytic functions in the upper half-plane.

LEMMA 3.2. There exists an invariant conull set S, in B, which
has the following properties: For any fixed x in S,,

(i) m(x, s) is concentrated on the domain K| of o,

(ii) the family {goo(x + t); ¢ is in W} of functions of t 1is
weak-* dense in H”(R), and

(iii) there is a sequence {s,} with s, — o such that

(3.4) SK 6o0dm, = lim S soodm(, s,)

n—0

for each ¢ in A,

Proof. Let{g,;n =12, ---} be a countable dense subset of 9,.
Then, together with above remark, we may choose an invariant
null set N, such that, for each 2 in K\N,, m(z, s) is concentrated
on K, and the function of £, ¢,(x + t), belongs to H*(R) for n =
1,2, --.. It is easy to see that, since I', is dense in R, H*(R) is
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generated by {¢’*; A is in I'f} where I'j denotes the subsemigroup
of nonnegative elements in I'; (Ch. [7; Ch. 3, §1]). Let g be the
probability measure on R defined by the equation du(t) = dt/x(1 + ¢).
Since H>(m,) is contained in H%*(m,) and X{®oo~' belongs to H*(m,)
for each )\ in I}, there is a subsequence {¢,} of {¢,} such that

” Xél) ° 0—1 - ¢n’ HLz(mz) O (n’ —> oo) .

On the other hand, it follows from Lemma 2.2 and Fubini’s theorem
that

122007 = b llizmy = | 14207 W) — 6@) Fdma@)

i

| 120@ = o0 fdm @)

Il

SK U:lxi‘%w + 1) — guro0(@ + 1) ]2d/z(t):ldm1(x) )
We set
F,(x) = Sio | AP + 8) — gooo( + t)Pdp(t) .

Then, since F, — 0 in L'(m,), we may find a subsequence {F} of
{F,} with F;(x) — 0, m,-a.e. . Since I'} is countable and X{"(x + t) =
XV (x)e*, this implies that there is an invariant null set N, such
that, for any z in K,\N,, the family {e'*; A\ is in I'{} is contained
in the closure of {goc(x + £); ¢ is in A} in L (¢). We recall that
H>(R) = H¥(¢) N L~(R) where H?*) denotes the closure H*(R) in
L ). Hence the conull set S, = K,\(N,UN,) satisfies the properties
(i) and (ii).

Let {t,} be a arbitrary sequence of positive numbers with
t,— . It is well-known that if g belongs to C(X,), then (3.4)
holds uniformly for this sequence {¢,} ([4; Ch. VII, §4]). Let j be
any positive integer. Then we may find ¢ in C(K,) and s} in {¢,}
such that

| g0 — g”lel) < (279,

and

<27

‘S gdm, —S gdm(z, sj)
K K

for any « in K,. It follows from Fubini’s theorem that

| ¢r00 — gllztimy = SK DKL |go0 — g|dm(x, s})]dml(x) .

1
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Therefore, if we set B} = {x; S]gﬁloa— gldm(z, 8;) = 2“5}, then m,(E}) <
2-7, and so

< 2792 + 279)

S doodm, — S ooodm(x, ;)
K, Ky

for each 2z in K"E};. Since >37,m,(Ej}) < «, we see that
m;(lim inf, . K\E}) = 1 by Borel-Cantelli lemma. So we may choose
a null set N(g,00) and an increasing subsequence {si} of {¢,} such that
¢,00 satisfies (3.4) for each x in K\N(¢,00). Since the right side limit
of (3.4) is invariant, N(¢,-0) may be assumed to be invariant. By
induction, it can be easily seen that if %k is any positive integer,
then there exists a subsequence {s¥*'} of {s¥} and an invariant null
set N(¢,.,o0) for which ¢,.,00 satisfies (3.4). Let s,=s7, and let S,=
S: N (K\Ug-: N(¢,°0)). Then, since {¢,} is uniformly dense in A, S,
and {s,} have the desired properties.

It is useful to note that the equation (8.4) can be extended to
an ergodic flow. This is an application of Wiener’s Tauberian
theorem (see [12; Lemma 2.6]).

Next, let S, be as in Lemma 8.2, and take an = in S,. If we
set

W) = |_seodmis, 1

for each ¢ in ¥,, then n(¢) is a complex homomorphism of A, which
lies in a nontrivial Gleason part. Since the maximal ideal space of
A, is completely determined ([4; Ch. VII, Theorem 4.1]), we may
find an # in K, and a positive number A(x) such that

(3.5) W) = | gdm(@, A@)

for each ¢ in ,. Since 9, is a Dirichlet algebra, we have

| samiz, 107 = | _sam@, Aw)

for all f in C(K,). This shows that m(x, 1)-07* = m(%, A(x)). More-
over, since m(Z, A(x)) and m(%, 1) are mutually absolutely continu-
ous, it follows easily from Lemma 3.2 that

{ ¥L*(m(x, 1)) = L=(m(%, 1)), and

(3.6) “
TH=(m(x, 1)) = H*(m(Z, 1)),

where T(y) = 4rog™* for each 4 in L*(m(x, 1)). In order to show
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the equation (3.3), we have to determine the Borel isomorphism ¢
on each orbit. This will be accomplished by applying the result of
de Leeuw, Rudin, and Wermer [2].

LEMMA 3.3. Let S,, z, Z, and A(x) be as above. Then we have:
3.7 Poo(x + &) = (@ + A(x)t) dt-a.e.
for each ~ in H>(m(Z, 1)).

Proof. For any function f on K, and y is K,, we define
(&) =fly+1t), tinRk.

Since each function in H>(m(y, 1)) is the almost every limit of a
sequence in 9, it is easy to see that @, is an isomorphism from
H>(m(y, 1)) onto H*(R). We consider the following diagram:

H(m(#, 1) ——— H=(m(x, 1))
N
@xl l(@z)

H~>(R) oAt H~(R)

Then, according to a theorem of de Leeuw, Rudin, and Wermer [2],
there is a fractional linear transformation «,(t) of the upper half-
plane onto itself such that

(@.77'07)/(t) = fla.(?))
for each f in H*(R). Let ¢ be a function in %,. Then we have

poo(x + t) = (0,703 (D29)(%)
= (P19)(a,(t))
= (& + a,(t) dt-a.e.

We claim that there exist real numbers » and ¢ with » > 0 such
that a,(t) = pt + q. Suppose not. Then we may choose some real
numbers a, b, and ¢ such that a;'(u) = (au + b)(u + ¢)™ and ac —
b>0. Let {s,} be sequence as in Lemma 3.2. Then, for each ¢ in
A,, we see from (3.2) and Lemma 3.2 that

S édm, = S ¢oaodm,
Ky Ky

im (7
3.8) = lim ;S_qu o + t)

dt

Su
83 + t*
.1 S‘” . )
= lim — o, (t)—=—dt .
m " 6+ a0

n—oo T
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On the other hand, a quick calculation show that

1
= S_ 9@ + alt) + iy

1

-1 S"" 5 + ) su(ac — b)(sh + a7
7T —00

(u + (sic + ab)(s: + a®)™)* + (s.(ac — b)(s: + a¥)~ ‘)2

Since ¢(% + u) is continuous as a function of wu, this implies that
(3.8) equals to ¢(& — ¢). Hence we see that m, is the point mass at
% — ¢ since ¥, is a Dirichlet algebra. Thus we have a contradiction.
We may now assert that p = A(x) and ¢ = 0. By setting v = »t + ¢,
it follows from (3.5) that

o N 1
r+ v ——dv:S (% + a,(t)————di
|96+ oo = |7 46 + a5
A(x)
Ax)? + ¢
for each ¢ in ¥,. Therefore, since 9, is a Dirichlet algebra, we
obtain

={"s@+0

P - A®
P+ (t—q? Alx)? +

for any ¢ in B. From this equation, it is easy to see that p = A(x)
and ¢ = 0. Thus the equation (3.7) holds for each ¢ in 2,. How-
ever, since any + in H=(m(%, 1)) is the almost every limit of a
sequence in U, it follows easily from (3.6) that « satisfies also the
equation (3.7). So the proof is complete.

We remark here that A(x) is invariant as a function of x. In
fact, for 2 in S, and » in R, we have

foolx 4+ u+t) = flZ + Alx)u + A)) dt-a.e. .

This shows that (x + )" = 2 + A(x)u and Alx + u) = A(x).
Proof of Proposition 3.1. Let S, be an invariant conull set as
in Lemma 3.2. For any « in S,, let Z and A(x) be as in Lemma 3.3.

Then, for each positive A in I, since the function of ¢, X (x + ©),
belongs to H*(m(x, 1)), we see that

o7 AP(E + 8) = AP (@ + A(x)~'s) ds-a.e. ,

where ¢~'A{" is defined by the equation o-X{"(y) = X{’(67(y)). Hence
we have, for any ¢ in R,

Do ADYE + 8) = 07 XPE + 5 + ©)

3.9) {
= AP (@ + Alx) (s + 1) ds-a.e. .
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Let B(x) = A(x)™'. Then R(x) is invariant as a function of 2 by
above remark. It follows from (3.9) that, for any « in S, and any
t in R,

(0 TP0)X (@ + 8) = o(TP (0™ AM)) (@ + 8)
= TP (e 7A@ + A(x)s)
= X + A@)(Ax)s + 1))
= APz + s + Bx)t)
= T@nXP(x + 8)  ds-a.e. .

Recall that X{(x + s) = ¢"*X{"(x). So we obtain

(G~ TP @) = T @)

3.10 )
( ) = ¥ @YD (x) m-a.e. X,

for each ¢ in R and each ) in /', We have to show pB(x) is a
constant B as a function of z. Since the system (K, m,, {Ti"};cz) is
ergodie, it suffices to show that B(x) is measurable as a function of
2. For this, we note that (¢7'T0)X{"(x) is measurable with respect
to (¢, ). Hence it follows from (3.10) that ¢**'* is measurable as
a function of (¢, 2). From this fact, we see easily that B(x) is
measurable. Recall that the space of all analytic polynomials on
K, is weak-* dense in H*(m,). So since o¢'Tc¢ is a measure
preserving transformation on (K, m,), (3.10) implies that the equa-
tion (3.3) holds for each f in H>=(m,). This completes the proof of
Proposition 3.1.

Since H*(m,) + H*(m,) is weak-* dense in L>=(m,), the equation
(3.3) assert that o¢7'Tc is equal to T as a sigma-isomorphism
from the measure algebra (U, m,) onto itself. However, since K, is
metric, we may strengthen it as follows:

3.3) o'TPo(x) = T (x) m;-a.e. T .

4. The proof of main result. In this section we present a
proof of Theorem 2.1. For ¢ =1,2, let I'; be an arbitrary dense
subgroup of R but endowed with the discrete topology (cf. §5,
Remark (c)). For any countable subgroup I°; of I';, we set H=(m,, I',)
is the space of all functions f in H>(m, whose frequencies lie in
r, i.e.,

H*(m,, I') = {f € H*(m); f ~ 3, a(f)Li")

where >; a;(£)X{? denotes the Fourier series of f.
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LeMMA 4.1. Under the assumption of Theorem 2.1, let T be an
isomorphism from H=(m,) onto H>(m,). If S* is a countable subset
of I',, then there exist countable subgroups I, and T, of I'y and I,
respectively, which have the following properties:

(4.1) o8,
(4.2) both Foand T , are dense in R; and
(4.3) U(H=(m,, [)) = H(m,, I}) .

Proof. We may easily find a countable subgroup D® of I', such
that SYc D and D is dense in R. Recall that if f belongs to
L}(m,), then the nonzero Fourier coefficients of f are at most
countable. So we may find a countable subgroup D® of I, such
that D{® is dense in R and ¥X{" belongs to H=(m, D{®) for each A\
in D®. On the other hand, it follows from Lemma 2.2 that ¥ is
continuous with respect to weak-* topology. Hence we have
Y(H>(m,, D)) c H*(m,, D). Similarly, it can be seen that there is
a countable subgroup D" of I", such that D ¢ Dy and H=(m,, D{) D
U-1(H=(m,, D?)). Repeat the procedure to find a countable subgroup
D of I',, We continue in this way infinitely, if necessary. Then
we obtain increasing sequences {D{} and {DY} of countable sub-
groups of I, and I', which satisfy

V(H>(m,, D)) c H*(m,, D),
and
U(H>(m,, D)) D H*(m,, D?) ,

for any positive integer n. Let I, = Uz, DY and let I, = Uz, D2.
Then we see easily that I', and I, have the desired properties, and
the proof is complete.

The following lemma makes essential use of the results in [15]
and is proved in [12; §3, Step 1]. However, we give here the sketch
of the proof for the shake of completeness.

LeMMA 4.2. Under the assumption of Theorem 2.1, let U be an
1s0metry mapping H?(m,) onto H(m,), » #* 2. Then the restriction
of ¥ to H*(m,) 1s a constant multiple of an algebra isomorphism
from H>(m,) onto H>*(m,).

Sketch of proof. We set g = ¥(1), and let dv = |g|*dm,. Then,
since g is a nonzero function in H?(m,), we have L) = L~(m,).
Define A(f) = g~ (f) for each f in H*(m,). Then, as Rudin shows
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in [15; Theorem 2], A is an algebra homomorphism which is isometric
in the supremum norm, mapping H*(m,) into L=(m,). The properties
of weak-* Dirichlet algebras imply that A carries H*(m,) into H*(m,).
Similarly since ' has the same properties as ¥, we find a ¢’ in
H?(m,) and an algebra homomorphism A’ mapping H*(m,) into H*(m,)
such that ¥-(f) = ¢'A'(f) for all f in H*(m,). On the other hand,
it follows from the definition of A’ that ¥-'(gg9) = A'(®)T*(g) for
each ¢ in H*(m,) and the above g in H?(m,) since A’ is a homomor-
phism and ¥~ is continuous. Hence, since ¥-'(g) = 1, if we set
f=¥"¢g), then f belongs to H*(m,) and A(f) =g ¥ (f)=¢. So A
maps H>(m,) onto H*(m,). By Lemma 2.2, there is a sigma-isomor-
phism ¢ from (B, m,) onto (B,, m,) satisfying the equation (2.2) with
¥ replaced by A. This implies that A may be extended to an
isometry mapping H?(m,) onto H’(m,). Since ¥A~' is an isometry
mapping H"(m, onto itself, it is shown that ¢ is a unimodular
constant. So the restriction of ¥ to H~(m,) has the desired form.

Proof of Theorem 2.1. We attend only to the direct half since
the converse is straightforward. By Lemma 4.2, it suffices to prove
under the hypotheses that »p = « and the isometry ¥ is an algebra
isomorphism from H>(m,) onto H*(m,). So it follows from Lemma
2.2 that ¥ holds the equation (2.2) for some sigma-isomorphism o
from (B, m,) onto (B, m,). For any \ in I, we set S¥ = {i\} in
Lemma 4.1. Then it can be seen that there exist countable sub-
groups I, and I, of I, and I,, respectively, which satisfy the
properties (4.1), (4.2), and (4.3). For i =1,2, let K, be the dual
group of I, and let #, and {T{"},., be the objects associated with
K, as in §2. Recall that K, is isomorphically homeomorphic to the
quotient group K,/I'; where I't denotes the annihilator of I°, (cf.
[14; 2.1.2]). We denote by o, the canonical map from K, onto
K,/I't. Since H=(i#, may be identified with H>(m,, I,), it follows
from (4.3) that ¥ defines an isomorphism ¥ from H=(i#,) onto H=(ii,).
Since I, is a countable dense subgroup of R, we see from Proposition
3.1 that there is a positive constant B such that, for each v in I

and ¢ in R,
(4.4) TTOT AP )@ = THAP o) E)  fica.e. & .

We notice that p, T\ = Té“pi and that if N is #,-null set, then
p;l(ﬁ ) is also m,null set. So it follows from (4.4) that

(4.5) UTETA N (e) = THREAD) (x) m;-a.e. T .

We note here that 8 is independent to I”,. Indeed, since THEAP (x) =
¢ AP (x), it can be seen that g8 is uniquely determined from each v
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in I', with v % 0. For any fixed \' in I',, we may assume that '
belongs to I', by setting S® = {», '} in Lemma 4.1. So g is in-
dependent to I,. Therefore the equation (4.5) holds for each v in
I',. Thus, we have

TPU(Y) = e WL y)  meae. y

for each A in I, and ¢ in R. This implies that ¥X® is an eigen
function for {T{},.r with eigenvalue gxn. It follows, therefore, the
map » — 8\ is a group isomorphism mapping /', into I',. Similarly,
we see that »— B\ is also a group isomorphism mapping I, into
I', since (4.5) holds with X" replaced by ¥—X{¥. Hence )\ — S\ maps
', onto I',, Recall that each eigenvalue of {T”},.r is simple,
meaning that if f and g are eigenfunction with same eigenvalue,
then ¢ is a constant multiple of f (ef. {5]). So we may find a
constant C;; with |C,;| = 1 such that

WX,(IU(Z/) — C“Xﬁ(y) "-a.e. Y .

Since ¥ is an algebra homomorphism, it is easy to see that C,,, =
C,-C, for each v and for each v’ in I,. This shows that v — C, is
a character of I',. There is, therefore, a y, in K, satisfying

TIP(y) = X8y + vo) my-a.e. Y .

Let o, be the translation by —y,, and let o, be the inverse of the
adjoint of the above map X\ — gr. Then, since XZ(y) = X (07'(y))
for y in K,, we have that

L) = XP(0 (Y + o) meace. y,

for each » in I",. This shows that the sigma-isomorphism ¢ may be
identified with the affine map o, -0, Hence we see that (2.1) holds
for each f in H=(m,) with ¢ = 1. This completes the proof.

5. Remarks. (a) Let X be a compact Hausdorff space upon
which {S,};., acts as a locally compact transformation group, and let
A be the uniform algebra of analytic functions induced by {S.};.z.
We assume that X is not metric and there are no periodic orbits
in X. If € is a countable subset of A, then there exists a closed
separable subalgebra 9 of A such that €% and ¥ is invariant, i.e.,
for any f in A, S,.f(x) = f(S,(x)) belongs to 9{. This implies that %
may be regarded a uniform algebra on a compact metric space.
From this fact, by the similar way as in §4, we can extend Prop-
osition to 3.1 the ergodic Hardy spaces induced by {S.}.cz.

(b) The author does not know, under the assumption of Theorem
2.1, whether one can characterize the isometries from H?(m,) into
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H?*(m,), » # 2. Forelli [3] answered this question for the eclassical
Hardy spaces.

(¢) By [14; 2.5.2], we see that the Bohr group contains an
infinite compact metric group. This fact implies that there exists
an uncountable subgroup I" of R, with I" # R,, where R, denotes
the discrete real line.
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