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Recent work of Schultz translates the question of which
exotic spheres S admit semifree circle actions with %k-dimen-
sional fixed point set entirely to problems in homotopy
theory provided the spheres bound spin manifolds. In this
article we study circle actions on homotopy spheres neot
bounding spin manifolds and prove, in particular, that the
spin boundary hypothesis can be dropped if (n—Fk) is not
divisible by 128. It is also proved that any ordinary sphere
can be realized as the fixed point set of such a circle action
on a homotopy sphere which is not a spin boundary; some
of these actions are not necessarily semi-free. This extends
earlier results obtained by Bredon and Schultz. The Adams
conjecture, its consequences regarding splittings of certain
classifying spaces and standard results of simply-connected
surgery are used to construct the actions. The computations
involved relate to showing that certain surgery obstructions
vanish.

1. Introduction. Results due to Schultz give a purely homo-
topy theoretic characterization of those homotopy (n -+ 2k)-spheres
admitting smooth semi-free circle actions with n-dimensional fixed
point sets provided one limits attention to exotic spheres bounding
spin manifolds. The method of proof is similar to that desecribed
in [14] for actions of prime order cyclic groups; a detailed account
will appear in [21]. Since the premise of this article relates directly
to [21], we outline some of the results contained there.

Given nonnegative integers m < n, let CP; denote the quotient
complex CP*/CP™. CPp is also the Thom space of m copies of the
canonical line bundle over CP*™ {10, 11]. For some integer A
depending only on % — m, the complexes >“CPr and CPri4 are
stably equivalent [4]. Using this periodicity one can define a spect-
rum (finite) CP? for all integers m < ». In the same manner, it is
also possible to form a limit spectrum CP; for all finite integers
m. If m and n are positive integers, there are elementary coexact
sequences of the form

St CPs, — CPz —— 8™

and by periodicity and limit arguments there are similar sequences
when m and % are arbitrary integers or n = co.
Let Fa(CY be the topological monoid of S* equivariant self-maps
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of the unit sphere S*' contained in C? (action via scalar multipli-
cation), and let Fgu be the corresponding stabilization. There are
natural inclusions of the unitary group U, in Fs(C% and of U =
lim U, in Fig, and therefore one has quotient spaces and a stabiliza-
tion map of the form ¢: Fu(C%/U, — Fu/U. From [9], we know
that the homotopy groups of Fz are isomorphic to those of the free
infinite loop space 2°3<(JCP;). Now we can state the following:

THEOREM 1.1 [21]. Let Sr*** be a homotopy (n + 2k)-sphere
bounding a spin manifold, and let P(v) S IIS ., be its Pontryagin-
Thom invariant. Then there is a smooth semi-free S' action on
Sr+2% with n-dimensional fixed point set if and only if:

(1) There is a class e IIN(SCP=,) = II§ ,,(3*'CP=,) such that
0. 3% BeP(v) S I3 .

(2) There is a class acll (Fa(C*)/U,) such that o, equals the
image of B under the composition

IS(5CP=) 25 MS(SCPy) = I(Fy) — I (Fy/U) ,

in which K is formally the map collapsing the subspectrum XCP=;
to a point.

If b Spin,., is the group of homotopy m-spheres bounding spin
manifolds, 6,/bSpin,,, = Z, if m = 1, 2 mod 8, m > 8 and zero other-
wise [5]. Therefore the question of which homotopy spheres, not
necessarily in b Spin,.,, admit semi-free circle actions as in the
theorem reduces to whether any such actions at all exist on exotic
spheres not bounding spin manifolds of the appropriate dimensions.
We list below the known results and the results obtained in this
article.

(1) If k is odd no such examples exist by results of Schultz
[15].

(2) If n and &k are both even, Bredon has examples [6].

(8) If n is odd and k=0 (8), k> 2 being even, Schultz has
constructed examples [16]. In general, the problem of finding
examples with » odd and % even reduces to the following problem
about veetor bundles:

Problem. Suppose we are given an odd integer n and an integer
k such that n + 2k =8s + 1> 8. Is there a real vector bundle ¢
over S*t'x CP*!, which is stably trivial over S**' and CP** such
that the Pontryagin classes of *( — { satisfy

(AL (T — ©), [S™2 x CP*1y €2Z + 1;<Lu, (% — ©),
[S* x CP*]) = 0?
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We discuss this reduction in §2 and show how a positive solution
leads to circle actions. In §3, the problem is answered positively
for k& + 0(64).

(4) If n is odd and % = 2, then no examples exist according to
Levine [12]. In this case the methods of this paper can be adapted
to yield actions which are nearly semi-free. These actions, discussed
in §2, have three types of orbits; namely fixed points, free orbits
and orbits of type Z,,.

2. Fixed point sets of co-dimension 2 mod 4. We study
smooth effective circle group actions on homotopy spheres with
standard spheres as fixed point sets. The homotopy spheres do not
bound spin manifolds and the fixed point sets have co-dimension 2
mod 4. It is known that such actions cannot be semi-free [15]. The
actions we construct have three types of orbits: fixed points, free
orbits and orbits of type Z,, for given =.

THEOREM 2.1. Let k> 0. There is a smooth effective action
of the circle group om a homotopy (8% + 1)-sphere mnot bounding a
spin manifold with fixed point set a standard sphere of co-dimen-
sion 4q + 2, q > 1.

We prove this result by constructing a homotopy sphere X%+!
and an action on it with the desired properties. In order to do
this, it is necessary to show that certain normal maps into the
space M = S%-4+2x ,S*-1 are normally co-bordant to homotopy
equivalences. Here, M is the orbit space of the S* action (trivial
Dy*"0) X (2qC) on S+ St 2¢C is the standard free action of
S* on S*; ¢ is given by 2z, = 2"z, for z in S* and #, in C.
Since M is a simply connected 8k-dimensional manifold, the obstrue-
tion to finding a normal cobordism of a normal map to a homotopy
equivalence is an index difference. The normal maps we consider
are obtained via fiber homotopically trivial bundles over M. Hence,
it is sufficient, by Hirzebruch’s index theorem, to calculate the
rational Pontryagin classes of fiber homotopically trivial bundles
over M. All such bundles arise from elements of [M, F/0], [7]. For
our purposes it is enough to consider elements of [M, F/0] obtained
from a simpler set as pullbacks in the following manner:

[S 8k—4q<CP2q—l)n2”’ F/O] — [(CP2q-—l)u‘ivi&1 @ y2”, F/O]
—_— [Dﬂk-—4q+2 >< S1S4q—1/SSk—4q+1 X SISiq-—l’ F/O]
(By excision) = [S¥—tetrx (S D+l St F0]
l(Collapse)

[M, FJ0] .
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Here 7 is the Hopf bundle S*-* — CP*-! so that 7* is the bundle
' Stx St

l

cPr-

where S*x (18! is the orbit space of the action *"Cx 2¢C on S*x S*-*,
D? denotes the lower hemisphere of S*. This means that we are,
in fact, interested in studying bundles over the space S¥*-4(CPx-1)7™",

Bott periodicity and Thom isomorphisms give all the information
we need for calculating the rational Pontryagin classes in this case.
We denote the Bott periodicity isomorphism by B, the K-theory
Thom isomorphism K*(CP*-') — K((CP*-%)") by Th. We also let
r=n—1in K*(CP*). Then p generates K*(CP") multiplicatively
[4]. Let 4% denote an Adams’ operation in real K-theory. With
these notations, we can state the following:

LEMMA 2.2, Let ¢ = [g** Th(p**")]. Then { =0 @ C, where ¢
belongs to KO[S®*-*(CP*")] and %™ is the pullback of the generator
of KO(S®*) under the collapsing map

Ssk—4q(CP2q_1)q2ﬂ

l

Ssk—e.q(Cqu_x /szq_z)pZn — Sak-u( S;q—z)y‘m .
= Stk
Let " = g2 Th (p*®%), ' = re ", where re: K— KO is reali-
fication
a=qygpl’ =0, v=9%0 —0.

3’a and 38°y have fiberhomotopically trivial associated sphere bundles
by Adams conjecture [13]. We denote the pullbacks of a,y to M
by the same symbols. The computations necessary to prove (2.1)
are contained in the following

LEMMA 2.8. There is an integer pair (x,y) such that y i3 odd
and {Ly(ty @ 3za + 8°y7), [MD) = {Lyu(ty), [M]). Here L, denotes
the Hirzebruch L class and T, ts the tangent bundle of M. [M] is
the fundamental class of M.

Proofs of Lemmas 2.2 and 2.3 are postponed.

Proof of Theorem 2.1. The elements 3°a and 3°y lift cannonically
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to [M, F/0] for large e. Therefore, for any pair of integers (z, ¥)
v D 3°yy gives a normal map f,,: X* — M so that

T+ [ = f*(?’exa D 3yv) [7] .

Here v, is the stable normal bundle of M. Since the bundle 3°xa D
3*yv is induced from

[Ste-tat2 x (St Dttt S*-1 /0], we may choose f so that
fuy Testricted to f. (D¥***xuS*') is a diffeomorphism. Excise
the open manifold over which f is a diffeomorphism. We get a
relative map of pairs

Pt (X, 9X) — (DW-i01%, S¥-t) XS0

such that f//6X’ is a diffeomorphism.

The relative surgery obstruction of f’ is the same as the
surgery obstruction of f since all the spaces involved are simply
connected [20]. So f’ is normally cobordant to a homotopy equi-
valence which is a diffeomorphism on the boundary if and only if
the surgery obstruction of f is 0. That is,

1/8[Index X-Index M} =0.

But Index X = (Ly(zy), [ XD

= (L (f*(zx D 3z @ 3°y7)), [X]D

= (Lu(zy D 3w D 3°y7), [XD

= (La(zy @ 3w D 3'y7), [M])

= Index M, for some choice of (x, y), ¥ odd
such that

St (X, 0X) —— (D2, SHtarl) i 0§

is normally cobordant to a homotopy equivalence, which is a diffeo-
morphism on the boundary. Consider the pullback diagram

(Y, aY) f (Dslc—4q+2’ Ssk~4q+1)xs4q~1

| l
(X, aX) f’ 5 (Dﬂk—4q+2, S&k—4q+1)><S1S4q_1 .

The orbit map /7 is a principal bundle projection, since the action
(trivial @ +*"C)x2¢C is free. So there is a free action on (Y, dY)
such that f” is an S' equivariant homotopy equivalence. Further,
f"/9Y is a diffeomorphism. Let ¥t = YUsrpS* 4+ x D*. Then

ft+! has a smooth effective circle action given by the circle actions
on the two component pieces. Clearly, the fixed point set is 4q + 2.
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By a Mayer-Vietoris argument >%'! is a homology sphere. It is
simply connected by van Kampen’s theorem. Hence 3% is a
homotopy (8% -+ 1)-dimensional sphere.

It remains to show that this sphere does not bound a spin
manifold. This is done by identifying the Pontryagin-Thom invariant
of >%5.

Consider the map on Thom spaces obtained via the following
diagram of bundle maps:

Stx Qa1 LN Sea-1

lr =

St @S4t —» CPu-
7

Here I7 is the orbit map for the action +**Cx2¢C, H is the Hopf
map and p, is the projection. Let X, = S%-*(CP*') and II*:
[Xi.0o F/0] — [S-t2+2(S4- Y S%), F/0,] the map induced by this
Thom space map. Here X, is the localization of X at p [18, 19].

We wish to calculate I7*(8°xa P 8°yv). It is enough to calculate
the image of 3°(x{’ + yo) under the map analogous to the above
with BSO,, replacing F/O,,.

[SeE—a+2(S4e-1VS%), BSO)] = Hsk+1(BSO<2)>Xﬂsk—4q+z(BSO(2))]
(by Bott periodicity) = [ g4+1 BSO Q Z 5] X [T g,_sg+2 (BSO)]
&K Zw] -
So the group has exponent two. Therefore, the factor 3° acts as
identity and may be suppressed. The bundle { has a complex
structure; in fact ¢’ = re(” where {"=p8*%"* Th (¢£-°). Since H*=0

on K(CP*-Y), it follows by naturality of Thom isomorphism and
the Bott periodicity that

(2.4) II*¢"” = 0 and hence II*¢’ = 0.

By Lemma 2.2, ¢ is the pullback of the generator of I7,(BSO)
under the collapsing map

’ Ssk~4q(CP2q—1)7)2ﬂ 1Ssk_w(CPW‘l/Cqu_z)"m — Ssk .

By definition of IT*, it follows that I7*¢ is the composite of this
generator with the map

Sﬂk—4q(S4q—1)trivial SSk—4q(CP2q—1)r,2”

induced by the suspended Hopf map H on the Thom spaces. Look-
ing at this map on the top cells, it is seen that I7* has the form
M,y and therefore
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(2.5) IT*(3°xa @ 3°yvy) = M,y since y is odd.

Elementary attaching considerations [17,20] tell us that
II*(3°xa @ 3°yy) is the Pontryagin-Thom invariant of >}%%}. By
the results in §1 and (2.4) and (2.5) this completes our proof.

Now, we return to the proofs of computational Lemmas 2.2-2.3.

Proof of Lemma 2.2. Look at the following diagram

0«— K(CP2q—2) (_/Lj__ K(CPM—l) (_-7*_ K(Cqu..1/CP24_2) —0

1Thom JThom Ig( S4q-z)
| Thom
0 —— K(CP*?) N K(CPr-y e K(S8*)

where 4 is the inclusion and j is the collapse. j* is a split mono-
morphism identifying the generator of K(S*-2?) with g (5°)*
identifies the generator K(S*) with Th (#*~*)n*. Suspend this
diagram (8% — 4q) times and look at the map of the corresponding
KO groups into the above diagram under the complexification map.
Lemma 2.2 is now obvious.

Proof of Lemma 2.3.

a = prel”’ —rel’, vy =40 —a,
oxC=1{. Also { = pg**Th((u")
C” — Bu:-zq Th (‘uzq_s) .

We can calculate ch( ) and ch( ) as follows;

¢h Th () = ch (#*) U [Td ()] U

ch Th (##~%) = ch (=) U [Td ()] U™ .
We have ch () =ch(® — 1) =¢ — 1, where ¢ is the generator of
H*(CP*™), [4]. Hence ch (#*7) = ¢*~'. Further Td (™) = Q[e;(n*™)]

where Q(x) = /1 —e™*. So [Td(®*™)]*=1— ¢ */xz and z = ¢,(¥*") =
X(*™) = 2ne. (Here X denotes the Euler class.) Therefore

Td [ =1 — ed + 202% + -
(2.6) 3
ch Th (g#1) = ¢

@.7)  chTh (4% = ¢9[1 + A¢c + B¢ . [1 — o+ %fn’c{l

where A = 2q9 — 3/2, B=2q — 3/6 + (29 — 3)(2q — 4)/8
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29 —3 2q —3| 4 2 2 2
(2.8) ch Th (p#9-%) = ¢ [I-I—Ac—}—(En——nA-%B)c].

We don’t need A’ for further calculations.

2 o 2q—3[ 1 q—2]
2.9 “n*—nA+ B=2 a4~ 9 =
2.9) 3n nA + n® + 2 'n+3+ 5
_ (8¢ — 8)(3¢ — 61 + 4) + 8n’
12 )

We can obtain the Pontryagin classes of @ and v from (2.7)-
2.9).

p:’(a) = (__1)3'025((1 ® 0) by definition
= (—1p-2cht — 1"

Since our calculations are over a suspension, namely, S®*-*(CP*-)7",
products of cohomology classes vanish. It follows from (2.7)-(2.9)
that the possible nonzero classes are p,(a), pu_.(@) and p,(Y) only.
These are easily written down using the fact that

e ( )=38%, () [1]
and
e ()= (=125 — 1! ch¥( )

(2q——3-—6n—4)+8'n2].
6

Pul@) = (—1)(ak — 1)1 (3% — 1)[

(2.10) g*-H(e)- Uszn
Pus(@) = (4 — B! (3% — 1)-2-8*4(c)- U™
pu() = (— 1)@k — 1)1 (3% — 1)g-s(c)- U™ .

Here B*-* denotes the (8% — 4¢)-fold suspension in cohomology. We
may drop 8*~* and U”" from (2.10) with no loss of clarity.

(Ly(ty @ 3za @ 3y7), [M]) = (Lultx), [M])
+ (Ly(Ta)Lo—s(8° X a D 3yy, [M])
+ (L8 D 3y, [M]) .

So in order to prove the lemma, we must be able to choose w, y
(with y odd) such that (Ly(zy)Ly_ (32 @ 3yy), [M])=—(L.(3za D
3‘yv), [M]>. Again, since @, are defined on a suspension, we
bave L, = 1,p, Where 1, = 22! — 1)/2m — 1)! j,, num (B,/4m)
[8, 16] jim = order J(S*"~') = odd/odd - (3™ — 1) and num (B,/4m) is
odd (B, is the wmth Bernoulli number [3]). Since Ly(zy) = p.(M)/3,
we want
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(PO - 3+ s (o), [M]) = (—Lu@us(ea) + pulurn), (M) .

This relation can be written as
Yya = xb

where
@1D  a= —(Lpu(n), [MD = (2% 2. o, [M]) from (1.10) .
odd

We write b = b — b"; b" = (Lyp.(a), [M])

w1,0dd  [(2g — 3)(3¢ — 6m + 4) + 80" , 2t
=2 | 3 Jr e, 1

— gusi,0dd 1 °dd 00 {(3q — 6m + 4) + 8] (e, (M) -
odd 2
Therefore
b = 2% . odd - (", [M]) if q is nonzero mod 4 and = is

odd
even or ¢ is zero mod 4 and » is odd.

2.12)
b = <£%”_)12k_1p2k_1(a), [M] > To calculate b’ we need p,(M).

M = Set-saray -1 L, cpu-t he the bundle (trivial @r™) .

Ty = II*tCP*~! @ the tangent along the fibers, is stably equal to
IMT*z°P" 7 @ II*p**. Hence, p,(ty) =2qIT*¢* + 4nIT*c® = (2q = 4n?)IT*c".
Substituting this value of »,(M) in ¥’, we see that

(2.13) b = 2t. ‘Z‘(’ien (e, [M1)
and
(2.14) b=2p — p" = 9. 000 Odd - {ent, [M]>

if g is nonzero mod 4 and n is even or if ¢ is zero mod 4 and »
is odd. It is clear from (2.11)-(2.14) that there are integers (z, ),
y odd such that ya = xb. This proves the lemma.

3. Semi-free actions. We discuss semi-free circle actions on
homotopy spheres not bounding spin manifolds with standard spheres
as fixed point sets. The fixed point set has co-dimension 4q [15].



332 VAPPALA J. JOSEPH

G. Bredon has shown that for every k there is a 8% + 2 homotopy
sphere not bounding a spin manifold which admits a smooth semi-
free action of the circle group [6], and in [16] Schultz proved the
following complementary result in dimension 8% + 1:

THEOREM 3.1 [16]. Let k>0 and q <2k + 1. Assume that g
18 not equal to 1 and mot equal to zero mod4. Then there is a
semi-free action of the circle on some homotopy (8% + 1) — sphere not
bounding a spin manifold whose fixed point set is an ordinary
sphere of co-dimension 4q.

Levine has shown that co-dimension 4 is not realizable [12]; we
wish to show that the restriction on ¢ may be relaxed in general
and may be removed in low dimensional cases.

THEOREM 3.2. Let k>0 and ¢<2k+1. An ordinary (8k—4q+1)-
sphere can be realized as the fixed point set of a smooth semi-free
circle action on a homotopy (8k + 1)-sphere mot bounding a spin
manifold provided q is not equal to 0 mod 32.

Our arguments closely follow those in [16] and the first part of

this paper. First we establish an analogue of Lemma 2.3. Let

s=q—1
M = S8k—ta+2 < C P2+t
o = ,'I’,th,’.eBtk—Zs—l(#u—3)

= %0 — 0, where ¢ @ C generates K[S”‘"“*“’(C_g%‘;_ﬂ =K(S*%) .

We can calculate the Pontryagin classes of &« and v just as in
Lemma 2.3. We see that

(33  pu@ = (=12, (@0 — 1)1 (8" — 1) chrrgh-sr(ys)
and

ch (%) = (¢° — 1)*~° = ¢*~* + A'¢** + B'c**' + terms
of even degree in ¢. Here

, 23—8 1(28—3
a=2 +4< 2)

, 25—3 (2s—3\r1 17 1(2s—3\  1(25—3
B =5 +< 2 >|:4!+(3!)2:|+8< 3 )+16< 4 >

Therefore, the only nonzero Pontryagin classes are p,(a), Pu_.()
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and p,,_.(a). These are given by

Do) = (—2)(4k — 1)! (8% — 1)B'c**
(3.5) Pui(@) = (2)(&k — 3)1 (3% — 1)Alch-
Dap_o(@) = (—2)(4k — B)! (8*~* — 1)e¥~2 .

Note that the right sides have to be suspended enough times to
place them in the proper cohomology groups.
As in Lemma 2.2, ¢ Q C = g*-*-'(¢*+') and hence

(3.6) Do(7) = (—1)(4k — 1)1 (3* — L)e**
and p,(v) = 0 if ¢ = 2k. Also note that

L(OP*+) = Zp(CP*") = 2(s + 1)

8.7 1 1
L,(CP**) = (7P P = &+ D(A0s — 3)

a, v can be considered to be bundles over M;3°a, 3°y are therefore
elements of [M, F'/0] for large values of e. We have the following
proposition

PROPOSITION 3.8. There are integer pairs (x,y) such that y s
odd and {(Ly(t, @ 3za P 3yy), [M]) =0, provided q is even and
nonzero mod 32.

Proof of Theorem 3.2. Let (x,y) be an integer pair given by
Proposition 3.8. 3‘za @ 3°yy gives a normal map f,,: X* — M such
that

Tx + (V) = @ D 3yy) .

It is possible to choose f such that f/f;)(D¥-*-2x CP**) is a diffeo-
morphism. Excising the manifold on which f is a diffeomorphism,
we get a relative map f,,: (X, 0X) — (D%*-2, S%-*+-%)x CP**' such
that f’/0X is a diffeomorphism. The relative surgery obstruction
of f’ is the same as the surgery obstruction of f since all spaces
involved are simply connected [20]. So f' is normally co-bordant
to a homotopy equivalence if and only if surgery obstruction of
f=1/8 [Index X-Index M] = 0 = Index M, since Index M = 0. But

Index X = {Lyty, [X]D) = Lpf*cy D 3xa P 3yy, [X]
= (Ly7y O 3za P 3yy, [M]) .

This last expression is zero by Proposition 3.8 and our choice of z
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if ¢ is even. So f’ is normally co-bordant to a homotopy equivalence
which is a diffeomorphism on the boundary. Consider the pullback
diagram

(Y, aY) f”; (DSk——4s-—2, SSk—-4a-—3)XS4s+3

J' , lle

(X, aX) f > (DS/G—-48—-2, SBk—-4a—-3)XCP28+1 .

Here H is the Hopf fiber map. The pullback (Y, dY) — (X, 0X) is
a principal S* bundle map and hence there is a circle action on
(Y,0Y) such that f” is equivariant. Further, f'" is a homotopy
equivalence which is a diffeomorphism on 3Y. Therefore %' =
YU; ;7 S%**—3x D*t* has a smooth effective circle action given by
the actions on the component pieces. This action is semi-free and
the fixed point set is S®%—*!, By van Kampen’s theorem 3>/ is
simply connected. A Mayer-Vietoris argument shows that it is a
homology sphere. A discussion similar to the one in the proof of
Theorem 2.1 shows that this sphere does not bound a spin mamfold
When ¢ is odd, the theorem is contained in [16].

REMARK 3.4. It appears from the calculations in this paper
that different choices of «, v might relax the conditions in Theorem
3.1 further. But the calculation of the surgery obstructions become
unmanageably involved. Probably a transition to use of some
machinery from analytical number theory is called for. The reader
may be referred to [8].

4. Realizability of any ordinary sphere as a fixed point set.
In this final section we assemble our results into a single main
theorem. We need to state (8% + 2) dimensional versions of Theorems
2.1, 3.2.

THEOREM 4.1. Let k> 0. There is a smooth effective circle
action on the homotopy (8k + 2)-sphere not bounding a spin manifold
with fixed point set a standard sphere of codimension 4q + 2, ¢ > 1.

THEOREM 4.2. Let k>0, ¢ <2k + 1 and q not equal to 1. Any
ordinary sphere St can be realized as the fixed point set of a
smooth semi-free action of the circle group on a homotopy (8k + 2)-
sphere not bounding a spin manifold.

These results were known to Bredon [6]. The following, then,
summarises our results.
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MAIN THEOREM 4.8. Any ordinary sphere S™(n > 0) can be
realized as the fixed point set of an imfinite number of smooth
effective actions of the circle group on a I+ or 3%+ not bounding
spin manifolds, for every k>0, 8k >mn — 1. These actions are
distinguished by their local representation at fixed points.

Proof. The verification splits into different cases according to
the value of 7 modulo 4.

Case (1). n= —1 or 0 mod4

This follows from Theorems 2.1 and 4.1. These actions are not
semi.free.

Case (2). m=1 or 2 mod 4

Theorem 4.2 gives semi-free smooth effective actions on X%+
with S*-? as fixed point sets. Theorem 3.2 gives smooth semi-free
actions on X%+ with S*t' as fixed point sets provided 2k — 2 is
nonzero mod 32. We are not able to remove this provision keeping
the actions semi-free. However, there is no difficulty in obtaining
the spheres in Case (2) as fixed point sets of nonsemi-free smooth
effective actions on X%+, 3%+ pot bounding spin manifolds. Com-
putations identical to those in §2 show that it is enough to consider
actions with local representation [trivial @P+*"C P (29 — 1)C].
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