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A quaternionic mapping is a symmetric bilinear mapping
q: GXG—B, where G, B are Abelian groups, G has exponent
2 and contains a distinguished element —1 such that q(a, a)=
gla,—1) Vae(G. Such a mapping is said to be linked
if g(a, b)=q(c,d) implies the existence of x<G such that
q(a,b)=q(a,x) and g(c,d)=qlc,x). The Witt ring W(g) of
such a mapping ¢ can be defined to be the integral group
ring Z[G] factored by the ideal generated by 1-+(—1) and
the elements (a+b)—(c+d) such that ab=cd and q¢(a, b)=
q(c,d). If g is the quaternionic mapping associated to a
field or semi-local ring A with 2¢ A", then ¢ is linked, and
W(q) is the Witt ring of free bilinear spaces over A. This
paper gives a ring-theoretic description of the class of rings
Wi(q), q linked. In particular, all such rings are shown to
be strongly representational in the terminology of Kleinstein
and Rosenberg.

1. Introduction. Throughout this section, F will denote a
field or semi-local ring with 2¢e F* such that all residue class fields
contain more than 3 elements. Let B, denote the Brauer group of
F, G, =F'|F™*, and let ¢;: G, X G, — B, denote the quaternion
algebra mapping. Then ¢, satisfies

(A) g¢p is symmetric and bilinear, i.e.,

Va, b: c€ GF; qF(a’; b) = qF(b: a’)
and
gx(a, be) = gx(a, b)ge(a, c) .

(B) VYaeGy, gx(a, a) = gs(a, —1).

In the case F' is a field (A) is [8, 2.11, p. 61] and (B) is [8, 2.6, p.
58]. The corresponding results for semi-local rings may be found
in [2, p. 22-29].

It is well known that isometry of (quadratic) forms over F is
describable in terms of ¢,. For forms of dimension one and two
we have (a) = (b)=a = b, and (a, b) = (¢, d) = ab = cd and ¢z(a, b)=
qz(c, d). The proof of this statement given for fields in [8, 2.9, p.
60] will work as well in the semi-local ring case. For higher
dimensional forms f = g — 3 a sequence of forms f = f,, fi, -+, [x=9
such that for each ¢ =1, ---, k, f; is obtained from f,_, by replac-
ing two diagonal entries a,b by ¢, d with (g, b) = (¢, d). For the
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proof of this last assertion, see [11, Satz 7] in case F is a field, and
[7, Lemma 1.14] in case F' is a semi-local ring.

In turn, this gives a description of the Witt ring W, of
quadratic forms over F' in terms of ¢,: W; is the integral group
ring Z[G;] factored by the ideal generated by 1 + (—1) and the
elements (a + b) — (¢ + d) such that ab = ¢d and g,(a, b) = q;(c, d).

More generally, consider an abstract mapping ¢:G X G — B
where G and B are Abelian groups and G has exponent 2 (i.e.,
a* =1 Vae@G). If such a mapping satisfies properties (A) and (B)
above for some distinguished element —1e G, we will say ¢q is a
quaternionic mapping. If this is the case, we can certainly define
isometry of (abstract) forms by the above formulas (see [4]), and
construct an associated (abstract) Witt ring W(g). Certainly some
of the classical quadratic form theory will earry over to this
abstract situation.

The goal of this paper is to develop a much more refined
theory. The key observation is that ¢, has an additional important
property.

(L)  qg(a, b) = qxlc, d) = 3x € G, such that g¢z(a, b) = gs(a, )

and gz(c, d) = qz(c, x). In case F' is a field, this is an exercise in
Lam’s book [8, p. 69, 12]. Here is a sketch of the proof in the
semi-local case: First note that

(1) ax(a,0) = qulc, ) = (1, — )@ (1, =b) = (1, =) (1, —d),

using [2, 1.19, p. 29]. Expanding and using Witt cancellation, this,
in turn, is equivalent to (—b,ab)@P (d, —cd) = (a, —c)P A, —1).
Thus, by transversality [3, 2.7(c)], 3x € G, such that (—b, ab) =
(—z, ax) and (d, —cd) = (x, —cxz). It follows easily from this
(for example, use (1) again), that gy(a, b) = gz(a, ) and g¢z(c, d) =
qx(c, x).

A quaternionic mapping ¢: GXG — B is said to be linked if it
satisfies (L). In this paper, we examine the form theory associated
to a linked quaternionic mapping and develop properties of the
associated Witt ring W(q). In Theorem 2.6 the following cancella-
tion property for forms is shown to hold: ‘

f=fand fFRg=fPog=9=g".

It follows from this that each form has a well-defined anisotropic
part and Witt index, and that W(q), as a set, can be described as
the equivalence classes of forms with respect to Witt equivalence,
exactly as in [11]. In Theorem 2.7, the following representation
property for forms is proved:
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D(f @ 9) = U{D(a, b)lac D(f), be D(g)} .

(Here, D(f) denotes the set of elements of G represented by the
form f.) This implies that W(q) is representational in the termi-
nology of [5]. The exact relationship between linked quaternionic
mappings and representational Witt rings is presented in Theorem
3.8 following the introduction of the signed discriminant and the
Witt invariant. In Theorem 38.11, it is proved that W(q) is reduced
(i.e., has nilradical equal to zero) if and only if ¢ satisfies

R) Vae@G, qla,a) =1=a=1.

This special case is of interest since, as pointed out in [5], the
reduced representational Witt rings are just the Witt rings of
spaces of orderings as presented, for example, in [9].

2. The form theory. Throughout, assume that ¢:G x G — B
is a linked quaternionic mapping. Recall, from the introduction,
this means G, B are Abelian groups, G has exponent 2 and a dis-
tinguished element —1, and ¢ satisfies

(A) ¢ is symmetric and bilinear,

(B) q(a, a) = q(a, —1) Yae @G, and

(L) q(a,b) =qlc,d)=3xeG such that g(a,bd)=q(a,x) and
q(e, d) = q(c, ).

It is worth pointing out, to begin with, that va, b € G, q(a, b)*=
q(a, b*) =q(a, 1) =1. In particular, the subgroup of B generated by
the image of ¢ has exponent 2. Also, note that g¢(a, —a) =
g(a, —1)q(a, a) = g(a, —1)* = 1.

By a form of dimension n =1 (over G) is meant an n-tuple

f=(a, ---,a,) with a, ---,a,€G. The discriminant and Hasse
invariant of such a form f are defined by
(2) a(f) = l a;, and s(f) = I>I 9(a;, a;) .

The sum of f and g, with f as above and g = (b,, - - -, b,,), is defined
by f&g=(, ---,a,b, ---,b,). Isometry of one and two dimen-
sional forms is defined by

(8) (@)= @®)=a=2», and

(4) (a,b) = (c,d)=ab=cd and q(a, b) = q(c, d).
For forms of dimension n = 3, isometry is defined inductively by

(5) (alp "'yan)g(bly "':bn)@aa:b’c% "',C,,,GG

such that (a,, ---, a,) =(a, ¢, -+, ¢,), by, --+,b,) = (b, ¢, -+, ¢,) and
(@, @) = (b, b). It will follow from 2.4 that this definition coincides
with the one given in the introduction.
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THEOREM 2.1. If b, ---, b, is a permutation of a, +--, a,, then
(ah Tty a'n) = (bly Tty bn)'

Proof. We may assume n =3. If b, =a, 7=2, take a = a,,
b =a, and take ¢, ---,¢c, to be the elements left after a, a, are

deleted from a,, ---, a,. Note that a, ¢, ---, ¢, is a permutation of
@y +**, Bp3 b, ¢ -+, ¢, is a permutation of b, ---,b,; and b,b is a
permutation of a,, a, so the result is true by induection. On the
other hand, if b, = a,, take a = b =a,, and ¢, = a;, 1 = 3. O

THEOREM 2.2. If f= g then dim (f) = dim (g), d(f) = d(g), and
s(f) = s(g). The converse holds for forms of dimension n < 3.

Proof. It is clear that the theorem and its converse hold for
1 and 2 dimensional forms, by (3) and (4). (Note: if f is 1-dimen-
sional, then s(f) = 1, by definition.) Now let f=(a, ---, a,), g =
(by +++, b,), m=3. First suppose f =g, and choose a,b, ¢, ---, ¢,
as in (5). Then, by induction, a,---a, = ac;---¢,, by---b, = be,- - -¢,,
and a,@ = bb, so a.a, --a, = a,ac---¢, = bbey---¢, = bb,---b,. Also,
using

(6) s(f @ h) = s(f)-s(h)-q(d(f), d(h))

(this is easily verified), we have, by induction,

S(f) = s(a’27 * ', a’n)Q(a’I’ a’2' ° 'a’u)

= 3(@, €5, * **, €,)q(, ACs" -+ Cy)

= 8(Cs, *++, Cu)q(a, 5+ - -C,)q(ay, acs- - -c,)

= 8(Cs + ++, Cu)q(aqy, - - - C,)q(ay, @)

= s(cs, +*, €,)q(bby, €5+ - -¢,)q(by, b) = - - - = 5(g) .

Now suppose n = 3, d(f)=d(g), and s(f)=s(g). Thus a,=a,a.x,
b, = b,b,x where x denotes the common discriminant. Thus using
properties (A) and (B) of ¢,
8(ay, @5, 0,0,7) = ¢(as, 0,2:%)9(ay, 0.)q(s, @,05%)

= q(a, a,a,x)q(a;, a,x) = q(a,, a,0,2)q(a;, —a,)q(—a,x, a,x)q(a,, ax)

= q(a,, —a,2)q(—2, a,2) = ¢(a,, —a.x)9(—2, —a,x)g(—2x, —1)

= Q(—"a‘2x7 _alx)Q(_xy —1) .
Here, as always, —a denotes the element (—1)(a)eG. We record
this result:

(7) s(ay, a,, a,a,) = q¢(—a.x, "azx)Q(_x: -1).

If we do the same computation for g, we see that the equality of
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the Hasse invariants implies ¢(—ax, —a.x) = ¢(—bx, —bx). Thus,
by (L), 3y € G such that ¢(—a,2, —a.x)=q(—a,z, ¥) and q(—b,x, —b,x)=
9(—bx, y). Take ¢, = —ay, a = —ay, and b = —b,y. Now it is just
a matter of checking (a,, a,a,2)=(a, ¢;), (b, bb,x)=(b, ¢,) and (a,, a) =
(b, ). Clearly, the discriminants are the same and

q9(a,, a,a,x) = q(a,, a,a,x)q(a, —a,) = q(a, —a,x)
= ¢(—a,x, —a2)q(—2, —ax) = ¢(—aw, ¥)g(—x, —ax)
= q(—ax, —zy) = ¢(—ax, —2y)q(xy, —2y) = ¢(—ay, —2y)
= q(a, ¢;) .

Similarly q(b,, b,b,x) = q(b, ¢;). Finally, using ¢(—a.z, y) = ¢(—bz, ¥),
we have

9(a,, @) = q(a, —ay) = q(a,, ¥) = ¢(—ax, ¥)g(—2, y)
= q(—bx, ¥)9(—=x, y) = q(b, ¥) = q(b;, —by) = q(b, b). [

THEOREM 2.3. Isometry is a transitive relation.

(Note. Since isometry is clearly reflexive and symmetric, this
implies it is an equivalence relation.)

Proof. Suppose f, g, h are n dimensional forms with f=g = h.
We show f = h by induction on #. By 2.2, we may assume 7 = 4.
Let the elements a, b, ce G and the n—1 dimensional forms f’, ¢’, b’
be defined by f=(@DBf, 9=0)Dg, h=()DR. Thus, by
assumption, 3¢’,d’,b”, '€ G and n — 2 dimensional forms 4, j such
that /' = () @1, ¢ = 0D, ¢ =0")Dj, V=()DJ, (a,a)=
(0,0, and (b, b") = (¢, ¢’). Thus, by induction, ()P = b")D J,
so 3b, b,€G and an n — 3 dimensional form k satisfying ¢ = (b,)Dk,
j=(b,)Dk, and (¥, b,)=(b", b,). It follows that (a, a’, b) =, V', b) =
(d, b", by)=(ec, ¢, b,), so, using transitivity in the case n=3, 3a,, ¢,, x €
G such that (a/, b)) = (a,, 2), (¢, by) = (¢, 2), and (@, a,) = (¢, ¢,). Take
l=(@)@k. Then f'=@)Pi=(@,b)Dk=(a,2)Dk= ()DL
and B = (P j=(,b)Dk=(c,x)DEk = (c;) Dl. Thus, by indue-
tion, ' = (a) P! and b’ = (¢,) P I. Since (a, a,) = (¢, ¢,), this com-
pletes the proof. O

COROLLARY 2.4. f=g< there exists a sequence of forms f=f,
foo ooy fu=0, k=0, such that for each i =1, -+, k, fi is obtained
from fi_, by replacing two entries a,a’ by b, b’ respectively, where
(a, ') = (b, b").

Proof. The implication (=) is immediate, by induction on
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n = dim (f). To prove (=), we may assume % = 3, and, by 2.8, that
k=1. Thus, by 2.1, f=(a,d, ¢, ---, ¢,) and g=(b, V', ¢,, - - -, ¢,). Now
it is clear (e, @', ¢;, - -+, ¢, )=, V', ¢;, - -+, ¢,). Thus, by 2.3, f=g. []

LEMMA 2.5. For arbitrary forms f, 9,9, 9 = 9 = fPg= fDyg’.

Proof. We may assume f is l-dimensional, say f = (a,).
(=): Define a, ¢, ---,¢, by g=1(a,¢, --+,¢,) and let b = a.

Then fPg= fHg by ().

(=) By (5) 3a,b,¢, ---,¢c, such that g =(a, ¢, ---,¢,), ¢ =
®, ¢, -+, c,) and (a,, a)=(a,, b). Comparing discriminants, this yields
a=0b, 80 g=(@,c, - -,¢)=g. Thus g=g by 2.3. O

THEOREM 2.6. Suppose f, f', 9,9 are forms satisfying f= f'.
Then g= g =fPg=f"Dyg'.

Proof. Since f = f’, it follows from 2.1 and 2.5 that fPg=
f'@g. Thus, fRI=fDI=fDg=fDg=9=g by 2.8 and

2.5, O
For f=(a, ---,a,), g=(b, -+, b, and acG let us define
af: =(aa, -+, aa,), and f®g: = (ab, -+, &b, -+, ab, -+, a,by,).

(Thus af = (@) ® f.)

THEOREM 2.7. (i) If f= f', then af = af’.
(ii) If f=f and g=g¢', then fR9= QY.

Proof. Let f=(a, - --,a,). (@) is clear if n» =1. Suppose
n = 2, and that f’ = (a, a;). Then a,a, = aja, and q(a,, a,)=q(a;, a;).
It follows that af and af’ have the same discriminant and q(aa,, aa,)=
q(a, a)q(a, a,a,)q(a,, a,)=q(a, a)q(a, aia;)q(a;, a;)=q(aa;, aa;). Thus af=
af'. The result for n = 3 follows by a simple inductive argument.

To prove (ii), note f®g=a gD ---Dag=ag D --Da,g" =
f ® g, using part (i) and 2.6. Similarly fQg9 = 'R ¢’, so FRg=
f®g. O

We say a form f of dimension n 7represents xe€G if 3z, ---,
z,€G such that f= (x,x, ---, x,). Let us denote by D(f) the set
of elements x € G represented by f in this sense.

THEOREM 2.8. If f and g are arbitrary forms, then

D(f ©g) = U{D(, y)lxeD(f), ye D(g)} .

Proof. To prove the nontrivial inclusion let f = (a,, ---, @),
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g=(ay+,, -+, @,), and suppose fPg=(b,, -+, b,). Choose a, b, ¢;, ---, ¢,
as in (5). Thus b,€ D(a, a). This completes the proof if k=1
(take z=a,, y=a). If k=2, then, by induction on %k, 3z'€
D(a,, ---,a,), yeD(g) such that aeD(x’, y). Thus, b,e D(a, a) &
D(a, 2, y) = D(y, a,, '), so by the case k=1, 3xe D(a, «’) such
that b,e€eD(y, ) = D(x, y). Since D(a, 2') & D(f), this completes
the proof. O

Note that (a, —a) = (1, —1) Va € G by (4), since q(a, —a) =1 =
q(1, —1). Any form (a, —a), a € G will be called a hyperbolic form.
A form f will be called isotropic if 3 a form g such that f =
(1, —=1)@ g. Otherwise f will be called anisotropic. The following
version of 2.8 is useful.

COROLLARY 2.9. Let f,g be forms, and suppose f&g 1is
isotropic. Then Ix € D(f) such that —x < D(g).

Proof. (Compare to [5, 2.4] and [9, 2.2].) Let a, f’, and &
be such that f=(@)@Pf and FPg=A, -1)Dh =(a, —a)D k.
Thus f"@g=(—a)Phr by 2.6. Suppose dim (f’) = 1. Then, by
2.8, IbeD(g), ceD(f'), deG such that (b, ¢) =(—a,d). Adding
(a, —b) to both sides and cancelling using 2.6, this yields (a, ¢) =
(—b, d). Thus, —be D(a,c) S D(f), i.e., x= —b satisfies the required
conditions. If, on the other hand, dim(f’)=0, then x = a works. []

3. The Witt ring. We can now define the Witt ring associated
to the linked quaternionic mapping ¢ exactly as in [11]. First note
that every form f over G decomposes as

(8) f=f8kx1 -1

with f, an anisotropic (possibly zero dimensional) form, and %k = 0.
Here, k& X g denotes g@P --- P g (k times) or the zero dimensional
form if £ = 0. Using the cancellation property 2.6, &k is uniquely
determined by f, and f, is determined, up to isometry, by f. Let
us refer to f, as the anisotropic part of f, to k as the Witt index
of f, and to (8) as the Witt decomposition of f.

Two forms f, g (not necessarily of the same dimension) are said
to be Witt equivalent, denoted f ~ g, if their anisotropic parts are
isometric. It is clear that

(9) f~ g=dim (f) = dim (g) (mod 2)
and

(10) f=g=f~g and dim (f) = dim (g) .
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Let us denote by W the set of equivalence classes of forms with
respect to Witt equivalence. It is easily verified, using 2.6 and
2.7, that @ and R induce binary operations on W, and by the same
elementary arguments as in [11], W becomes a commutative ring
with unity. We will refer to the ring W so constructed as the
Witt ring associated to q, and will denote this by writing W= W(q).

We remark in passing that we have the following description
of Wi(q).

THEOREM 3.1. W(q) s isomorphic to the integral group ring
Z|[G] factored by the ideal gemerated by 1 + (—1) and the elements
(@ + b) — (¢ + d) where (a, b) = (c, d).

Proof. On the basis of 2.4 the proof is the same as in the
classical case, cf. [8, Exe. 1, p. 49]. O

Denote by I(q) the ideal of even dimensional forms in W(q).
Clearly W(q)/I(q) = Z/2Z. Since (a, b) ~ (1, a) — (1, —b), I(q) is gener-
ated additively by the 1-fold Pfister forms (1, —a), a€G. Thus
I*(q) is generated additively by the k-fold Pfister forms (1, —a)®
1, -0)® - U —a), a, ---, 4, G

We now modify the discriminant and Hasse invariant in a
standard way (eg. see [8, p. 123]) to obtain invariants with respect
to Witt equivalence. Namely, we define the signed discriminant
and the Witt invariant by

AL du(f) = (=1)%d(f), where @ = n(n — 1)/2, n = dim (f),

and
(12) w(f) = s(NHa(—1, d(f))e(—1, —1)7,

where ¢ = (n — 1)(n — 2)/2, 7 = (n + D)(n)(n — 1)(n — 2)/24, and » =
dim (f).

THEOREM 3.2. (i) d.: W(q) — G is well-defined.

(ii) The restriction of d. to the additive group I(g) is a group
homomorphism.

(i) I@)/Ig) = G.

Proof. Suppose f=g in W(q). We may assume f=gPhkx 1, —1)
for some ke Z. By 2.2, d(f)=d(g) if k=0 (mod 4) and d(f)=—d(g)
if k=2 (mod4). Consequently, d.(f) = d.(¢g) and (i) is proved.
Suppose f,, f;€ I(g) and dim f, = m,, dim f, = m,. Then
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d.(fi D fo) = (—L)imtmaltmtme=bigd(f, B f)
= (—DmmA( =1yt —1)mmd(f)d(f) = d(f)d.(f)

and (ii) is proved. Since d.((1, —a) QR ({1, —b))=d.(1, —a, —b, ab)=1,
the kernel of d.: I(q) — G contains I*g). Since (1, —a)P (1, —b) ~
@, —ab) P A, —a)® (1, —b), every element feclI(q) has the form
=@, —a) modulo I*g). Hence d.(f)=1=d.(, —a)=1l=a=
1= fel*q). Thus the kernel is exactly [*(q). This proves (iii). []

THEOREM 3.3. (i) If f is an arbitrary form and g is a form
satisfying d.(g) = 1, dim (g) = 0(mod 2), then w(f D g) = w(f)w(g).

(i) w: W(q) — B s well-defined.

(ili) w: I*¥q) — B is a group homomorphism with I*(q)< ker (w).

Proof. (i) Note that dim (f @ g)=dim (f)+dim (g), d(fDg)=
d(f)d(g) and s(f @ g) = s(f)s(g)a(d(f), d(g)) by (6). By hypothesis,
dim (g9) = 2k, and d.(g9) = 1, so d(g) is either 1 or —1 depending on
whether % is even or odd. The conclusion of (i) now follows from
a lengthy (but elementary) computation.

(ii) Taking ¢g=(1, -1) in (i), we have w(f @I, —1)) =
w(fHwd, —1) = w(f). It follows from this and 2.2, that f ~h=
w(f) = w(h).

(iii) By 8.2, I*q) consists of those elements of W{(q) represented
by forms f satisfying dim (f) = 0(mod 2) and d.(f) = 1. Thus the
fact that w: I*(q) — B is a group homomorphism is a special case of
(i). Finally observe that

s(a(l, =b)® (1, —¢)) = s(a, —ab, —ac, abc)
= Q(a’y a)Q(_a’by —b)Q(_‘ac, abC) = Q<ay a’)q(_a; _b)Q(_'a’C; b)
= q(a, a)g(—a, —1)q(c, b) = ¢(—1, —1)q(b, ¢) .

It follows that
(13) W(a(l, _b) ® (17 —C)) = q(b; C) Va, b, ceG.
Thus,

w<(1, —a’) ® (1’ —b) ® (19 —'C)) = W((l, ——b) ® (1) '—C)
@D —a(l, —b) R 1, —¢)) = qb, c)gb,c) =1 Va,b,ceC,

so I%(q) < ker (w). ]

COROLLARY 3.4. Let a,b,c,decG. Then the following are
equivalent.

(1) q(a, b) = glc, d),
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(ii) @, =) 1, -0 =(1, -1, —d),
(i) 1, —a)® @, —b) =1, —c) ® (1, —d)(mod I*(g)).

Proof. By (7), s(—a, —b, ab) = q(a, b)g(—1, —1), so (i)=
(—a, —b, ab) = (—e¢, —d, ¢cd) by 2.2. This, in turn, clearly implies
(ii). The implication (ii) = (iii) is clear. Finally, if one applies w
to each member of (iii) and uses (13) and 3.8 (iii), one obtains (i). []

Suppose ¢;: G; X G; — B; is a linked quaternionic mapping, i=1, 2.
We will say ¢, and ¢, are equivalent, denoted ¢, ~ q,, if 3 a group
isomorphism a: G, = G, such that a(—1) = —1 and ¢(a,b) =1
¢,(a(a), a®d)) =1 Va,beG,. Note that ¢, ~ ¢, implies

a.(a, b) = q.(c, d) = g,(a(a), a(d))

(14) — qz(a(c)’ a(d)) Va, b, c, de G1 .

This follows since q¢(a, d) = q(¢, d) = Ix € G such that q(e, bx) =1,
g(c, dx) = 1 and g(ac, ) = 1, by the linkage condition.

COROLLARY 3.5. Define ¢ G X G— I¥q)/I*(q) by q'(a, b) = (1,
—a)® @A, —b) + I*(q). Then ¢ is a linked quatermionic mapping
and q ~ ¢'.

Proof. This is clear, using 3.2 and 3.4. O

COROLLARY 8.6. Let q;:G, X G,— B; be a linked quaternionic
mapping, 1 =1,2. Then q, ~ ¢, = W(q,) = W(g,).

Proof. (=): In view of the definition of W(g,;), it is enough
to verify (a, b) = (¢, d) = (a(a), a®d)) = (alc), a(d)) Va, b, ¢, deG.
This follows from (14) and the fact that a is a group isomorphism.
(=): In view of 3.5, it is enough to show ¢; ~ q;. Now it is clear
(since I(g;) can be characterized as the unique ideal of index 2 in
Wi(q,)) that the given isomorphism ¢: W(q,) — W(q.,) carries I*(q,)
onto I*(q,) Yk =1, and hence induces isomorphisms I%q,)/I%(q,) =
I*(g,)/I%q,) and G, = I(q,))/I*(q)) = I(g,)/I*(q,) = G. (using 3.2). More-
over, we claim that the following diagram

G1 X G, — Iz(%)/ls(qo

| |

G, % Gz Im— Iz(qz)/Ia(Q?)

commutes. First recall as in 3.2 (iii) that for every xzeG,, ®(1, x)
can be written in the form (1, ¥) @ f for some y €@, and fe I*(q,).
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Consequently, for a, b, € G, we have

(@, b) — (1, —a,, —b, ab) + Iq,)

l

(@s, b)) — (1, —a,, —b,, ab,) + Ig,)

where o(1, —a) = (1, —a) @D fi and @1, —b) =1, —b,) D f, with
fi, f-€I%q,). Now, by an elementary computation it follows that
¢((1, —Qy, '—bl, a1b1) + Is(q1)) = (1, —Qy, _b2, azbz) + Ia(Qz) and the dia-
gram commutes. Finally, since the isomorphisms G, = I(q,)/I1%q.)
carry —1 to 2 and 2¢ I(q,) is mapped to 2e I{g,), the isomorphism
G, = G, carries —1 to —1. This proves q; ~ q.. M

In case q¢ = q5, F a field, the following Arason-Pfister property
is known to hold vk = 2.

AP (k): If f is a form satisfying dim (f) < 2* and fe I*(g), then
f ~ 0.

For the proof see [1]. It is open whether this is true for F
a semi-local ring. However we do have the following.

COROLLARY 3.7. For q an arbitrary linked quaternionic mapp-
ing, AP (k) holds for k =2, and 3.

Proof. Let dim (f) < 2% felI*(q). Suppose first that k= 2,
f = (a,b). Applying d. this yields —ab =1, by 3.2, ie., b = —a.
Thus f = (e, —a) ~ 0. Now suppose k = 3. Adding enough hyper-
bolic forms, we can assume f = (a, @, ---, @;). Scaling f by a,a.a,
if necessary, we can assume a, = a,a,. By 3.2, d.(f) =1, i.e., a =
—a,a;. Thus f=(a, a, a,a,, a, a., —a,a,)~1, a) R 1, a,) — (1, —e)Q
1, —a;)e I*(qg), so f ~ 0 by 3.4. O

We now relate the theory just presented with the theoy of
representational Witt rings developed in [5]. For the reader’s
convenience we first record some definitions. Let G be a group of
exponent 2. A ring W = Z[G]/K is called an abstract Witt ring if
the torsion subgroup of W is 2-primary, [7, Def. 3.12]. Through-
out this section we will assume without loss of generality that G
is a subgroup of the multiplicative group W', and that —1e¢G
(simply replace G by the subgroup of W' generated by its image
and —1). For re W, dim+ is the smallest number % such that
r=>r,0.in W, g,€@G, and D(r) ={geG|r =g + p for some pe W
with dim p < dim 7}, [5, Def. 1.1 and Def. 1.2]. W will be called
representational if for », # 0, r,+0 in W with dim(r, + ) =
dim», + dim», and ¢ in D(r, + 7,), there exist g, in D(»;), 7=1,2
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such that ge D(g, + ¢.), [5, Def 2.2]. W is strongly representational
if for g, 9,€G, with g, + ¢, 0 in W and ge D(g, + g,) we have
g+ 999 = 9, + 9 [5: Def 41]

It is convenient to associate to W a theory of forms. Namely,
for a,, b; € G, one defines (a,, ---, a,) ~ (b, ---, b,) to mean a,+---+
a,=b+-:-+-+0b, in W and (a,---,a,) = (b, -+, b, to mean
(a, -+, @,) ~ (b, ---, b, and » = m. Isometry so defined clearly
satisfies 2.1, 2.3, 2.6, 2.7. Notice that our definitions of dimension
determinant, representation, isotropic and anisotropic also make
sense for this definition of isometry. Now, W is representational
if and only if 2.8 holds for forms over W. This follows quite
easily from [5, Prop. 2.29]. Since 2.9 follows from 2.8, 2.9 also
holds if W is representational. Now, suppose W is representational

and (a, ---,a,) = (0, ---,b,). There exists aeD(a, ---,a,) such
that (a,, @) = (b, b) for some be @G, by 2.8. Since a€D(a, ---, a,)
there exist ¢, -+, ¢, € G such that (a, ---, a,) = (e, ¢, ---,c,). Con-
sequently,

(au a, bz; Ty bn) = (bly b: bz, ) bn) = (b; Ay c 0, a/'»)
= (bly a,, a’, Cgy * cn)Z ’

so (b---, b,) = (b, ¢y -+, ¢,) and (5) holds. 2.4 and 3.1 hold also by
the same arguments given earlier. Clearly W is strongly represen-
tational if and only if (a, ) = (¢, d) = ab = ¢d and hence (by an easy
application of 2.4) if and only if f = ¢=d(f) = d(g). Consequently,
3.2 holds and hence AP (2) holds (by the proof of 3.7) for strongly
representational Witt rings. This proves part of the following.

THEOREM 3.8. Let W be an abstract Witt ring for G (with G
normalized so that —1eG < W'). Then

(i) W is strongly representational for G <= W is representa-
tional and satisfies AP (2) for G.

(ii) There exists a linked quatermionic mapping q:G X G — B
such that W = W(q) = W 1s representational and satisfies AP (k),
k=238, for G.

Proof. (i) We have just proved (=). To prove (=) suppose
a+b=c+d with a,b,¢,deG. Then ab — cd = a(a+b) —c(c+d) =
ala +b) — cla + b) = (@ — ¢)(a + b)e I*. By AP (2), this implies ab—
cd =0, i.e., ab = cd.

(ii) If q is linked, then W(q) is an abstract Witt ring for G
by 3.1, it is representational by 2.8, and satisfies AP (k), k¥ = 2, 3 by
3.7. This proves (=). To prove (=) define ¢:G X G— I*I* by
q(a,d) = 1 — a)(1 — b) + I*, where I is the unique ideal of index 2.
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Sinece (1 —be)=(1 —b) + 1 — ¢)(mod I?) and (1 —a)* =21 —a), q is
clearly a quaternionic mapping. Note 1 —a)1 —b) =1 — )1 — d)
mod[*)= —a—b+ab+c+d—cdelP=—a—b+ab+c¢c+d—
ed=0=10—-a)1 -0 =>0—c)A —d) by AP(3). Thus, if q(a, b)=
gle, d), then (—b + ab) + (d — ed) = ¢ — ¢ so by 2.9, AP (2) and part
(i) 3x € G such that —b +ab= —2 +ax and d — ed = 2 — ¢x. This
implies q(a, b) = q(a, x) and q(c, d) = q(c, ) so ¢ is linked. It follows
from 8.1 and the corresponding structure result for W that W =

W (q). U

It is shown in [7, §3] that some of the structure results in
[10] concerning the nilradical and the reduced Witt ring hold for
any abstract Witt ring. For easy reference, we now summarize
some of these results. For W an abstract Witt ring, denote by
W,, X, I, and Nil (W), the torsion subgroup, the set of signatures
(i.e., ring homomorphisms ¢: W— Z), the unique ideal of index 2,
and the nilradical, respectively, of W.

THEOREM 3.9. Let W be an abstract Witt ring. Then

(i) W, is 2-primary,

(ii) W,={feWla(f) =0 Voe X}, and

(iii) Nil(W)= w,n IL.
(More precisely, in (iii), since W, & I if X # @, whereas IS W, =
W, if X =@, one has Nil (W) =W, if W, =W, and Nil (W) = I, if
wW,= W)

The following result is useful in verifying AP (k) in certain
cases.

LeMMA 3.10. Suppose W is an abstract Witt ring for G with
—~1leG < W'. If I* is torsion free, then AP (k) holds.

Proof. Suppose f is a form over G, fel* dim (f) < 2% Let
o be a sgignature of W. If b, ---,b,€G, then o) = +1 so
o, -b)® A, —b,)R --- XA, —b,) = 0 or 2*. Thus ¢(I*) < 2¢Z. On
the other hand, clearly |o(f)| < dim (f) < 2*. Thus o(f) = 0 for all
signatures ¢ of W. It follows, from 3.9 (ii), that f is torsion.
Thus, by assumption, f = 0. ]

Recall [5, 2.24] that if W is an abstract Witt ring which is
representational, then so is the reduced ring W...= W/Nil (W).
Moreover (by [5, 2.30]), the abstract Witt rings which are reduced
and representational are just the Witt rings of spaces of orderings
in the terminology of [9]. It follows from 3.8 (ii) and 3.10 that all
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such rings are included in the theory presented here, i.e., are of
the form W{q) for some linked quaternionic mapping ¢q. (By 3.9
(iii), W is reduced if and only if I is torsion free, so 3.10 applies.)
Here is a characterization of the class of linked quaternionic mapp-
ings thus obtained.

THEOREM 3.11. Let q:G X G— B be a linked quaternionic
mapping. Then W(q) is reduced if and only if q satisfies

(R) ga,a) =1l=a=1,

Proof. By 3.9 (i) and (iii), W{(q) is reduced if and only if
RY 2Xf~0=f~0 V even dimensional forms f over G .

Thus we must verify (R) < (R’). Assume (R’) and ¢(a, a)=1. Thus
(a,a)=(1,1), l.e,, 2 X (1, —a) ~ 0. Thus, by (R"), (1, —a) ~ 0, i.e.,
a=1. Thus (R)= (R). Now assume (R).

Claim. D@ x f) = D(f) V forms f over G. For suppose f =
(a;, -+, a,), and that z is represented by 2 X f=(a,a)P--- D
(a,, @,). Thus, by a repeated application of 2.8., 3x, ¢ D(a,, a;) such
that ze D(x, ---, x,). But (a, a,) = (z, x,), ie., (a2, ax)=1,1),
i.e., qlazx;, ax) =1, so by (R), x;,=a, Vi=1, ---, n. This proves
2 € D(f) and hence proves the claim.

Now suppose (R’) fails. Then 3 an anisotropic form f =
(@, +++, @, With » even, n =2 and 2 X f ~ 0. But then 2 x (a,)D
2 X (ay, -+, a, ~0, so by 29 and the claim, —a,eD(a, ---, a,).
This contradicts the fact that f is anisotropic. Thus (R)=(R’). []
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