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FINITE SIGNED MEASURES ON FUNCTION SPACES

A. J. VAN HAAGEN

Some results for probability measures on function spaces
are extended to finite signed measures (FSM’s). In particular
FSM’s on the space of continuous functions and right-con-
tinuous functions with left-hand limits are patched together
by a procedure of Stroock and Varadhan. Given an in-
creasing sequence of stopping times the procedure is carried
out repeatedly. A sequence of transition functions and, an
extension result for the linear maps associated with these
transition functions are obtained.

Introduction. In recent years some papers have appeared
related to signed measures on function spaces (see [3] and [4]).
This paper extends certain results for probability measures on
function spaces to finite signed measures (FSM’s) on such spaces. A
more detailed discussion can be found in [8].

In part I we introduce conditional FSM’s and consider the ex-
istence of a regular conditional distribution (RCD) of an FSM on a
standard measurable space mimicking Chapter V of [5]. Further,
the Jordan decomposition of an RCD is investigated. We then con-
sider a sequence of transition functions and associate linear maps
between Banach spaces of FSM’s with these transition funections.
An extension result for the linear maps is obtained.

In part II FSM’s on 2 = C([0, «); S) and 2 = D([0, «); S) with
S a separable metric space are patched together by the procedure
used in [6] for probability measures on C([0, «); R%). In fact, if
A° is the o-field on 2 generated by the coordinate projections
{X,, t = s} and 7 an s-stopping time with respect to the o-fields
A =0{X,, s =u=<t}, then an FSM on _+#* is patched together
with a family {#¢,},.. of FSM’s where ¢, has domain _Z° if
7(w) < oo,

If S is a complete separable metric space, (2, .#Z*) and (2, _.Z*)
are standard measurable spaces. In this case any FSM on (2, .Z°)
with an RCD given ._.Z* can be thought of as obtained by patching.
If 7,7, -+ is an increasing sequence of s-stopping times .77,
A3, « -+ is the corresponding sequence of o-fields and, given families
of FSM’s {¢,.}, on .Z ' for each n with the right properties the
patching procedure can be applied repeatedly. We have in fact an
associated sequence of transition functions and the results of part I
apply.

Basic facts on FSM’s are taken from [2].
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Part I. RCD’s of FSM’s on Standard Measurable Spaces

1. Conditional FSM’s. Let (2, &, tt) be an FSM space and ¥
a sub o-field of . If p; is the restriction of ¢ to ¥, then a g;-
null set is not necessarily a p-null set. However we can prove the
following.

THEOREM 1.1. If each ps-null set of 2 is also a p-null set, and
if B is any F-measurable set, then there exists a X-measurable real
function p(B|ZX) such that for all AeX

MANB) = wBIDHip: .

Any two such functions for givem B must coincide pt-a.e. p(B|Y)
18 called the conditional FSM of B given 3.

Proof. For Be.# we define an FSM A on ¥ by MA) = ¢(4A N B)
for all AeX. As )\ is absolutely continuous with respect to gy it
follows by the Radon-Nikodym theorem that there exists a 2X-
measurable real function f on 2 such that

(AN B) = L fdps  for all A.

We can take f to be u(B|2).

THEOREM 1.2. With the assumptions on tt of Theorem 1.1 let
{B,} be a sequence of disjoint F-measurable sets. Then

#U B.|2) = 3 u(B.|2)  pae.

Proof. Let gt = p* — ¢~ be the Jordan decomposition of # and
let |#s| be the total variation of g;. If Be.#, there exist 3-
measurable real functions 7,(B|3) = 0 and h,(B|2Y) = 0 such that for
all Ael

wanB) = | @i,
pAnB =| nEIDdul .

If we put h(B|ZX) = h(B|2) — hy(B|2), then |[px(B[2)|= |W(B|2)| #-
a.e. It now follows easily that for all AeX

|, S uB. D = | Y B,IDdpes .
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REMARK 1.3. Note that for all Be.7, |pu(B|3)| < h(2|3) +
h,(2]2) except on a p-null set N (which depends on B in general).

DErFINITION 1.4, Let (2, &, ¢t) be an FSM space, 3 a sub o-field
of & and R the set of real numbers. The function @: 2 X % — R
is called an RCD of g given X if it has the properties:

(i) For each Be &, w — Q(w, B) is a X-measurable map from
2 into R.

(ii) For each we 2, Q(w, -) is an FSM on . with Q(w, 2) = 1.

(iii) For all AeX and Be &

MANB) = | @, Bim) .
In §3 we give conditions under which @ exists.

LEMMA 1.5. Let (2, F, 1) be a countably genmerated FSM space
and X a sub o-field of . If @, and @, are RCD’s of p given 3,
then Q. (m, B) = Qyw, B) for all Be % except for @ in a p-null set
of ¥ which is independent of B.

Proof. The proof is the same as for regular conditional proba-
bility distributions (RCPD’s).

2. Extension theorems for FSM’s. In this section we generalize
theorems for probability measures appearing in Chapter V of [5] to
theorems on FSM’'s.

DEFINITION 2.1. Let {<Z,}; be an increasing family of o-fields
on the space X. The family of FSM’s {¢,};> is said to be consistent
if ¢, is defined on %, and for all A€ <%, and m = n, ¢, (4) = 1. (4).
The family is said to be uniformly bounded if sup,|g,|(X) < co.

We will need the following simple lemma of which we omit the
proof.

LEmMmA 2.2. If {p.)7 ts a uniformly bounded comsistent family
of FSM’s on the o-fields {<B,}7, then there ewists a unique finitely
additive set function ft on the field U, &, with the properties:

(1) p(A) = p,(4A) for all Ac <, and n=1,2, ---.

(ii) Given & > 0, there exists a positive integer m, such that
1£1(A) — | #8,1(A) < & for all Ae B, if nZn,.

THEOREM 2.3 (analogue of Theorem 4.1 on p. 141 of [5]). Let
(X, &) be a measurable space and for each n=1,2, -+ &, is a
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sub o-field of <& such that

(i) L HBCS -+, and U, B, generates 5.

(ii) (X, &&,) is a standard measurable space for n =1,2, ---.

Then, in order that every uniformly bounded consistent sequence
of FSM’s on <&, &, --- be extendable to an FSM on <7, it is
necessary and sufficient that N A, = @ for each decreasing sequence
{A, ) of subsets of X such that A, is an atom of <&, for all m. If
this is the case, (X, <Z) is also standard, and if {¢,};° is such a
sequence of FSM’s, the extension 1is umnique. Moreover, |p|(X) =

sup,, | .| (X).

Proof. The necessity is proved in [5]. In order to prove the
sufficiency we first prove the analogue for FSM’s of Theorem 3.1 on
p. 138 of [5]. We use the notation of [5] and make the further
assumption that sup,|#.|(Z,) < .

Let g be the finitely additive bounded set function on &
analogous in the obvious way to ¢ on p. 139 of [5]. We will show
that if {4,} is a decreasing sequence in % and if |¢|(4,) =6 >0
for all » and some 6 >0, then N,A4,* @. Without loss of
generality we may assume 4, € &, for n = 1,2, ---. Forn=12, ---
and [ = 0,1, --- we can write A, = $,;}(B,,) where B, € &,,,. For
each »n and [ there exists a compact set K}, & B, in <,,, such that
| ti| (Bay — Ka,) = 0/4". Put kn,t = $u1(Ka,). By Theorem 2.6 on
p. 136 of [5], Z is compact and &,,, is continuous. Hence, K, is
compact. Moreover, K, Z A, for I =0,1, --- and

(") l¢s . |(4, — K,) <8/4 for all n and 1.

Now {7 is a uniformly bounded consistent family of FSM’s. By
Lemma 2.2 there exists for each » an I(n) > 0 such that |p¢|(4, —
Klﬂ,l(n)) — | U5 | (A — Izn,t(m) < 0/4"+. Together with (+) we obtain
I#I(An - Kn,r(n)) < 5?/4ﬂ+1‘

Put K, = Nj; K« for n =1,2, ---. As in [5] it follows that
N. A, # @. Thus g is countably additive on .&. Therefore g has
a unique extension to an FSM on <, which we also denote by £,
and |#|(Z) = sup, | #.|(Z.).

We can now prove the analogue for FSM’s of Theorem 3.2 on
p. 139 of [5]. This proof and the proof of the theorem at hand go
through in the same way as in [5]. For details see [8].

The next theorem is Kolmogorov’s extension theorem for FSM'’s.
Its proof is similar to Parthasarathy’s proof for probability measures.
With the notation of Theorem 5.1 on p. 144 of [5] we have the
following.
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THEOREM 2.4. Let (X,, Z.,), ac I, be standard separable measur-
able spaces. If {u: F = I, F finite} is a uniformly bounded con-
sistent family of FSM’s, then there exists a unique FSM g on <&*
such that t.(A) = p(n7i(4)) for all Ae Z” and all finite F < I.
Moreover, |¢|(X') = supre; » fimite | L [ (XT).

3. The existence of an RCD of an FSM.

THEOREM 3.1 (analogue of Theorem 7.1 on p. 145 of [5]). Let
(X, &) be a standard measurable space and X a sub d-field of <7.
Let pt be an FSM on <#. The condition that a ps-null set of X 1s
a p-null set is necessary and sufficient for the existence of am RCD
of tt given 3.

Proof. The necessity follows immediately from the definition.
If X is countable the sufficiency is a direct consequence of Theorems
1.1 and 1.2. Let X be uncountable. As is shown in [5] there exists
an increasing sequence of finite o-fields {<Z,}? such that U, £,
generates <& and any uniformly bounded consistent sequence of
FSM’s on {<Z,}; is extendable to an FSM on <Z

Following [5] it is easy to see that for n =1, 2, ... there exists
a function @,: X X &£, — R such that

(i) for each Ae &, x— Q.(z, A) is 3-measurable.

(ii) for each ze X, Q,(x, -) is an FSM on <7, and Q,(x, X) = 1.

(iii) for all Ae X and Be 7,

#ANB = | Qe B .

By the argument in [5] and Remark 1.3 there exists a g-null set
NeZ such that for each xe X — N, Q.(x, -), Qy(x, -), --- is a uni-

formly bounded consistent sequence of FSM’s on <%, <%, ---. Thus
for each € X — N there exists a unique FSM, Q,, on £# such that
QR.(A) = Q,(x, A) forall Ae Z, and n = 1,2, ---. Define the function

Q on X X &Z by

Q.(B) if Be# and reX — N,
Q, B) = .
P(B) if Be<# and ®€ N,
where P is any fixed probability measure on & Now |Q|(x, X) =
sup, |Q.](z, X) if xe X — N and, consequently, Remark 1.3 implies
that x — |Q|(x, X) is pys-integrable. That @ is an RCD of x¢ given
XY follows now as in [5].

COROLLARY 3.2. The map x— |Q|(x, B), from X into R, is s~
integrable for all Be <7
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Proof. Let & be a countable field generating <& Then
|@Q|(x, B) = sup >, |Q(x, B;)|, where the sup is taken over all finite
sequences {B;} of disjoint sets in # such that B,SB. The assertion
now follows.

COROLLARY 3.38. If X is countably generated, them there exists a
t-null set Ne2 such that for all AecY and Be <Z, Qx, AB) =
I(x)Q(x, B) if xe X — N.

Proof. Clearly, if AeX and Be <7, Q(x, AB) = I,(x)Q(x, B) ex-
cept for z in a p-null set in 3 depending on A and B. Now both
3 and <Z are countably generated and the proof is completed by a
standard argument.

The next theorem concerns the Jordan decomposition of an
RCD.

THEOREM 3.4. Let (X, &&) be a standard measurable space and
Y a countably generated sub o-field of 7.

Let pt be an FSM on <& with an RCD, Q, given 2. If Q(z, <) =
Q*(z, ) — Q@ (x, +) is the Jordan decomposition of Q(x, -), then there
exists probability measures P, and P, on <& with RCPD’s Q, and @,
given 3, respectively, and there exists a p-null set NeZ such that
for all Be %

Q(xy B) = Q+(x9 X)Ql(x’ B) - Q_(x; X)Qz(x: B)
if te X — N.

Proof. From Q*(x, B) = 1/2{|Q|(x, B) + Q(z, B)} and Q (x, B) =
1/2{|Q|(x, B) — Q(z, B)} it follows that the maps x— Q*(z, B) and
x — Q~(x, B) are ps-integrable for each Be <#. There exists a p-null
set N,€23 such that Q(x, AB) = I,(x)Q(x, B) for all AecX¥ and Be &
if xeX — N,. Hence, Q*(x, AB) = I[,(x)Q*(x, B) and Q (x, AB) =
IL(2)Q (x, B) if xe X — N;,. '

Let P be any probability measure on (X, <#) such that ¢ and
P are absolutely continuous with respect to each other and let @'
be an RCPD of P given 3. We set F, = {x: Q*(x, X) = 0} and F, =
{z: @ (x, X) = 0} and define, for all Be <7,

@ B = @@ x) = ° © t
Q'(z, B) if zekF,,
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Q (x, B) if X —-F
Qe B = @@ ©°F Y
Q' (x, B) if xek,.

Let probability measures P, and P, on <& be defined by P/(B) =
SQl(x, B)dP() and P,B) = §Q2(x, B)dP@). Clearly, Q, and Q, are
RCPD’s given ¥ of P, and P, respectively. Moreover, for all AeX
and Be 7,

MANB) = | 104, DA, B) — @, X)Qua, Bldp)
The proof is complete.
4, Sequences of transition functions.

DEFINITION 4.1. Let {<Z,} be an increasing sequence of og-fields
on the space X. For all n > m = 0 let the functions f,,.,: X X &, - R
have the properties:

(i) For each Be <z, x— f,.(x, B) i1s a <Z,-measurable map
from X into R.

(ii) For each zeX, f,.(z,-) is an FSM on <% and
Ful, X) = 1.

(iii) suPsex |fmal(®, X) < .

(iv) Forallze X, Ae <, and Be ZF,, fn,.(t, AB)=1,(%)fn (2, B).
Smn Will be called a transition function from (X, &Z,) to (X, &Z,).
For f,_.. we write f,.

LEMMA 4.2. Let {f,}7 be a sequence of transition functions with
respect to the o-fields {F,}y. For 0 X n =< m define the functions
Smw 01 X X B, bY frn.(x, B) = I;(x). Then the functions f,..X X
B, — R inductively defined for n > m = 0 by

Funl@, B) = | 7000, B (e, da)

are tramsition functions and if sup,|f.|(x, X)=a,, then
SUp, | fun!l (@ X) £ Qpyy -+ - @,. Moreover, for Be <&, and n > m = 0,
fm,'m(m, B) = fm,ﬂ+1(x, B) a/'n/d

Fusl, B) = | Fussl®@', B, )

Proof. This is straight forward and will be omitted. We only
observe that for n» > m = 0 and Be &,

Forty B =\ [+ [ | oty B e A |-+ [frnalo, dan)
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DEFINITION 4.8. For n =0,1, --- let M, = M(X, <Z,) be the set
of FSM’s on (X, &&,). With the usual operations and the total
variation norm M, is a Banach space. Let {f.}° be transition fune-
tions as in Lemma 4.2. For n =1, 2--- define the linear maps

LM, ,— M, by L,(t)(B) = S Sfolz, Bydp(x). L, is injective and
L, £ a,. For n>m=0 let L,,=L,L, - L. Then
L stB) = | Funle, Bipa) and || L] S Qs -+ .

THEOREM 4.4. Let (X, &) be a measurable space and { B} an in-
creasing sequence of sub o-fields of <& as in Theorem 2.3 and satisfy-
ing the extension condition. Let f, f;, -+ - be a sequence of transition
functions with respect to {<Z,}7 such that a = [[7 sup, |f.|(®, X) < <.
Then for each m = 0,1, - -- there exists a unique transition function
In from (X, &&,) to (X, &) such that g,(x, B) = fu..(x, B) for all
xeX, Be <, and n > m. If M 1is the Banach space of FSM’s on
(X, &), then for each m = 0,1, --. there exists a unique injective
linear map T,: M, — M with norm || T,]|| £ a such that T,(£)(B) =
L, .()B) for all pec M,, Be Z, and n > m. Moreover, g, is an
RCD of T,.(t) given 7, for all e M,.

Proof. Obviously, funi(®, *), Ffamel®, +), -+ is a uniformly
bounded consistent sequence of FSM’s on &, &, -+ for each
2. There exists a unique FSM g¢,(x, -) on <& such that g,(z, B) =
Sfu.ulx, B) for all Be &, and n > m. Moreover, sup,|g.|(z, X) < a,
and g, is a transition function from (X, <Z,) to (X, <#).

For all yeM,, Be <Z, and n > m = 0

(*) Lo (12)(B) = S 9u(X, BX) .

Thus {L, .(t0)}5-mns: 18 a consistent sequence of FSM’s such that
SUDsm | L () (X) = a|p|(X). There exists a unique FSM on <%
which we will denote by T,.(#) such that T,()(B) = L, .(¢)(B) for
all Be <#,, » > m. It is easily seen that T,.: M, — M is a one-to-
one linear map with ||7,]| < a@. The last assertion follows from (*)
and the above.

COROLLARY 4.5. For n=20,1, --- let p, denote the restriction
to Z, of an element p of M, then the map P, M — M defined by
P,() = T, () 18 a continuwous linear projection with null space

(re M: g, = 0). Moreover, P,(¢)(B)= S 9., Bdp@) for all peM
and Be <%, and P,P, = P, for all m = n.

Part II. FSM’s on the function spaces C([0, «); S) and D([0, «); S)
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In §§5 and 6 the patching Theorem on p. 367 of [6] is
generalized.

5. Extension of a 7-basic family of FSM’s.

NOTATIONS AND DEFINITIONS 5.1, Let S be a metric space.
C(J0, «); S) will denote the space of all continuous functions on
[0, o) with values in S. D([0, «); S) denotes the space of all S-
valued functions on [0, ) that are right-continuous and have left-
hand limits. The symbol 2 will be used both for C([0, «); S) and
D(f0, «); S). For each te[0, ) we define the coordinate projection
X:2—->8 by X,(w) = w(t) for all we2. Instead of X, we also
write X(¢). The Borel o-field of S will be denoted by <Z(S) or &
If0<aea=<t=<b< o, then _#*=0(X,, a £t <b) is the o-field on
2 generated by the maps X,, a <t=<b. If b = o we write .Z*
for o(X,, t = a). ZFHZ* is the semifield of subsets of 2 of the
form {X,erl',---, X, €I',}, where ¢, ---,¢t, are points in [a, b]

(la, ), Iy, ---, ", Borel sets in S and = any positive integer.
Clearly, #" = (&) and #° = g(&*. &=~ and _#~ will stand
for {@, 02}.

If s= 0, then an s-Markov time or s-stopping time is a map
7: 2 —[s, o] such that {t <tje 7z forall t=s. _7Z*'={Ae.#Z"
ANn{c =tle # for all t = s} is the o-field of sets in _#Z* prior to

. If weQ, the atom of _#* containing @ is given by
A = {{w'e!}: Xt o) =X, w),s =t < t(w)} if 7(@) < ~,

(@€ 2: X(t, w) = X(t, ), t = s} if 7(@) = o .

DEFINITION 5.2. A family of FSM’s {¢t,},.o Will be called a z-
basic family if it has the following properties:
(i) For each we 2, p, is an FSM on .#Z"“ and the map

{p.w(A) if we{r<tland Ae. #",
o —>
0 if wef{z >1},

from Q into R, is /43-£neasurable for all t = s and all Ae_7".
(ii) For each we 2 = {z < «} the complement of

2,={0'e2: X(z(w), ®) = X(z(w), w)}

is a p,-null set of 2.
(ili) For we 2 — 2 and Ae 7=, pu,(A) = I,(w).

For each we 2 the set function g is defined on (R, &*) as
follows:
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#;({X(to) € FO, ) X(tn) € Fn})
I{X(ti)sI‘i:i=o,-~-,1)(w)ﬂw({X(ti) € Fi; =1+ 1: B '”/})
_ if we{t, = <tyand1=0,1,---, -1,

zI(X(t,;)efi:i=0,---,n)(w)l‘zw(‘9)
if we{z =t,},

with0s=¢t,<t;,<- - <t,,w=land Iy, .-+, I, €

LemMMA 5.3. For each wef, p, is a countably additive set
Sunction on the semifield & *.

Proof. Fix w,e 2 and put 7, =r(w,). Let C={X({t)el;1i=
0, - --,n} withs=¢<¢t< -+ <, be a set in &°.

Suppose 7, €[t t+,) Where 0 <1< n — 1. We can write C = AB
with A ={X(¢)el;i=0,---,}and B={X({¢t,)el;1=1+1, ---, n}.
Now A eZ? and Be @ " where Z* is the collection of sets of the
form {X(u,)ed, ---, X(u,)e4,} with 7, <u, < - <u, n=1 and
4,, -+, 4, Borel sets of S. Clearly, 2, (C) = I,(®,)t.(B).

If z,elt,, ©), C=AB with A=Ce%;, and B=Recz ™. If
Ty,=0,0=ABWithA=0ec@&? =%, =%"and B=Qec& " =%".

In both cases (;, (C) = I (®,)t.(B). To show countable additivity
of p, on &*, let C= Ui, AB, = ABe%*, where A,B, A;B, ---
are disjoint members of & with A4,€%:, B,e ™", Aec%, and
Bezt. Clearly, pt,(Ux AiBy) = L(®o).,(B).

In the case that w, e 2 — £ countable additivity is obvious. Now
let @, 2 and note that |t£,,1(25) = 0, where 2, = 2,. If w,e6 AN 2,
toUr AxBy) = t,(B) and 33, #:uo(AkBk) = 3 Ly (@)t (By). Let J, =
{k: w,€ Ai}. Thus if J, # @, we have to show (£, (B) = Diies, Lu(Br)
and if J, = @, p.(B) = 0.

Let J,# @. We claim 2,B,N 2B, = @ if k,k'eJ, and k=Fk'.
Suppose we 2,B, N 2,B,.. There exists an ®, such that

®, on [s, 7],
W, =
® on [7, ).
Now w, ¢ A, A, and it follows that w, e 2,4,4, B,B,., a contradiction.
By a similar kind of argument it is seen that 2,B = Uie,, 2B It
follows that g, (B) = Xics, to(Br). The remainder of the proof is
along similar lines.

LEMMA 5.4. For each we 2, (, has a unique extension to an
FSM on .#°. The total variation on 2 of this FSM does not exceed

|11 ().

Proof. TFix w,€ 2 and put 7, = 7(®,). ¢, has a unique countably
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additive extension to the field .o generated by <. Denoting this
by 4, we have

:ﬂ:uo,;’ { (Q) = Sup k2:1 ‘ /l:,)o(Ek) »

where the sup is taken over all finite sequences {FE,} of disjoint sets
in . We can write E, = A,B, with 4,¢%”} and B,e& ™" for
k=1,.--,n. It follows that [z -[(2) = [s,/(2). Thus y, has a
unique extension to an FSM on _.Z".

REMARK 5.5. From now on p, will denote the extension to .#*
and {¢.},.o Will be called the family of FSM’s associated with the
r-basic family {ft,}.co. In Lemma 5.9 we will see that 2, ,-w = tt,
and it follows that |z |(Q) = |1, |(2).

LEMMA 5.6. The map @ — p,(B), from 2 into R, is . Z’-measura-
ble for all Be 7°.

Proof. It is easy to see that @ — ¢ (C) is . /*-measurable for
each Ce%*. By the monotone class theorem the proof is completed.

LemMA 5.7. Let we 2. Then for all Ae_2* and Be . #°,
to(AB) = L (w)t(B) .

Proof. Fix w,e 2 and call z(w) =17, If A={X(u)el} withs=
U=t (s=u< if r,= ) and I"e.&] then p, (AB) = L (@), (B) for
all Be_~". By induction it follows that y, (AB) = L(w,), (B) for
all Ae 2, and Be._~*. By a monotone class argument, /¢, (AB) =
L{w), (B) for all Aec_/ and Be. /7"

Now let Ae. 7 and Be._~°. Since both AN {r =<7} and
{r = 7} are in . Z it is easily seen that /¢, (AB) = I (@), (B).

LeMMA 5.8. For each we 2, p(B) = 1, (B) for all Be 277,

Proof. The assertion is obvious if we 2 — 2. Now let w,e 0.
If B={Xt)ely;i=1,---,m} with 7, =¢(®,) <t < --- <t, and
ry.-.,I,es; then 1, (B) = tt,(B) and thus the assertion is true
for all Beo(&™*). But (&) = _#Z° and the lemma is proved.

6. The patching theorem. In this section S will be a separa-
ble metric space. The o-field .2 then is countably generated.

LEMMA 6.1. Let {{t,}oc0 be a T-basic family of FSM’s and {t}.co
its associated family. For each Be _#Z7°, the map w— |t |(B), from
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Q into R, is . 7 -measurable.
Proof. See proof of Corollary 3.2.

THEOREM 6.2 (Patching theorem). Let tt be an FSM on (2, _7Z7%)
and {t,}..o @ T-basic family of FSM’s. Assume, moreover, that for
all we, p, = 0 and that the map @ — |1, | (Q)/p(2), from 2 into
the extended real line, is p-imtegrable. If {{t},.o is the family of
FSM’s associated with {{.},co, then the intgral

v £B)
#®) = | )

with Be 7Z7°, defines an FSM ' on _#°. (' has the properties:
(i) pA) = p(A4) for all Ae. 7 i.e., = ., the restriction of
U oto A,

(i) pany = G
for all Ae 27 and Be _#°.

Proof. If {B, is any sequence of disjoint sets in _#", then

S o(B) | ¢ (2)
S (2B | g () = 1Ll D g} ) ()
2| |2 @ = [l hal

By the dominated convergence theorem g is countably additive and
thus an FSM on .#°. By Lemma 5.7 ¢/(4) = u(A) for Ae _#’ and
also (ii) follows.

THEOREM 6.3. Let ¢t and t' be as in Theorem 6.2. There exists
an RCD, Q', of ' given _7Z°. Q is unique in the sense of Lemma
1.5. Furthermore, if N = {w <€ 2: ¢,(2) = 0}, then for all we 2 — N:

(i) Qo, B) = p1,(B)/1t,(2) for all Be _#Z.

(ii) Q(w, A,) =1 and |Q'|(w, AZ) = 0, where A, is the atom of
A containing .

Proof. Define a function Q": 2 X .#Z*— R by

LdB) it we N and Be 27,
Q' (w, B) = {#u(2)

PB) if we N and Be 27",
where P is a fixed but arbitrary probability measure on _Z°.

Clearly, @ is an RCD of g given _#Z*. As _#Z*° is countably
generated the second assertion follows. By Lemma 5.8, @' (w, B) =
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LB/ (2) for all Be 2" if w¢ N. The last part is an immediate
consequence of Lemma 5.7.

THEOREM 6.4. The FSM ' defined in Theorem 6.2 in terms of
{tt)oeo and p is the only FSM on _#*° such that

(1) p(A) = p(A) for all Ae. 27,

(ii) ¢ has an RCD, Q', given .27,

(ili) Q(w, B) = 1t,(B)/1t,(2) for all Be 2" except for @ in a
-null set of _7°.

Proof. Suppose f is another FSM on _#Z"* satisfying (i), (ii) and
(iii), and let @ be its RCD given . Z*. Let B={X(t)el;i=0, ---, n}
withs=¢,<t, < ---<t,and Iy, ---, [, €.~ Put A, = {t, <7 <t}
for {=0,1,.---,n—1 and A, = {c = ¢,}. Clearly, A,e_#* for | =
0,1, ---, n. Now it follows from Lemmas 5.7 and 5.8, and (i) and
(ii1) that

Mwwsziﬂgwm@

>, 7i(A, (1 B) = (B) .

0

1

Thus ¢’ and /£ agree on %* and hence on _Z"°.

7. The Jordan decomposition of p,. Let {¢,},.. be a r-basic
family of FSM’s and let g, = ¢f — ¢ be the Jordan decomposition
of .. For each weQ, Q) = p;(2) =0 and we define g, '
and 45’ on (2, ) as in 5.2 and extend to (2, .Z°). Forwe® — £
put ¢, (A) = p'(A) = [(w) and £;'(A) = 0 for all Ae_~z*. We have
the following.

LEmMMA 7.1, If p, = pt — po- is the Jordan decomposition of
., then for all weQ and Aec #*

tH(A) = p'(4) and 17 (A) = 11'(4) .

Proof. There exists for each we 2 a set D, e . 2" such that
vi(A) = 1, (AND,) and p (A) = —u,(ANDE) for all Ae_#Z°“. Let
Aez. It is not hard to see that p,(AND,) = p¢'(A) and
v(AND;) = —p'(A). It follows that p, (AN D, = pi'(A) and
t(ANDY) = —p'(A) for all Ae _#°. Hence " = pf’ and p = 1.

LEMMA 7.2. Let {{t},.0 be the family of FSM’s on (2, #Z°) as-
sociated with {M,}.co- If S is a separable metric space, then the
maps @ — pH(B) and @ — (- (B), from Q into R, are _Z -measura-
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ble for each Be #7°.

Proof. For all Be _#~° and wec 2 we can write

(5(B) = é—{m;uB) + (B,

i (B) = | 1.|(B) — KB} -
Now apply Lemmas 5.6 and 6.1.

REMARK 7.3. It is now obvious that under the conditions of
Theorem 6.2 we can write for all Ae_#°® and Be _#Z":

LB (B, [ p(B)
|, Gt = |, L Danw - | B Dantw).

8. The reverse of patching. From now on S will be a com-
plete separable metric space. Let 0<a<b< ~ and let C; =
C(le, b]; S) be the space of continuous functions on [a, b] with values
in S. It is well known that C; with the uniform metric is a com-
plete separable metric space and that the Borel g-field on Cj coincides
with the o-field generated by the coordinate projections, e.g., see
[9]. Let Dy = D(a, b]; S) be the space of functions on [a, b] that
are right-continuous and have left-hand limits, with values in S. If
S = R, it is shown in [1] that D} with the Skorohod topology is a
separable completely metrizable space. Its Borel o-field coincides
with the o-field generated by the coordinate projections. If S is
any complete separable metric space the same can be shown, see
for instance [8]. That (2, #) is standard is then an easy applica-
tion of Theorem 2.3.

If - is an s-Markov time as in 5.1, it is shown in [6] that
(2, #°) is standard in the case that 2 = C(J0, «]; R?%) (see also [7]).
Along similar lines it can be shown that (2, _#) is standard if
2 = C([0, «); S) or 2 =D ([0, =); S) with S any complete separable
metric space. In fact _#° is generated by the collection of sets of
the form {X(¢{, AN7)el, ---, X(t, AN 7)e[l,} with ¢, --- ¢, points in
[s, =), [, +---,,es and n=1l. Also Q)= {w: X, )=
X A z(w), w) for all ¢ = 0} is a set in _#Z"° (compare p. 395 of [6]).
If ¥.:0Q2— £ is defined by Z.(w)(t) = w(t A z(w)) for all we and
t =0, then ¥7(_7°N 7)) = _#°. For details see [8].

We have the following extension of Theorem 1.3.4 on p. 34 of

[7].
THEOREM 8.1. Let  be an FSM on (2, _#7). The condition
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that a ft_,-null set of 2 is a p-null set, is necessary and sufficient
for the existence of am RCD of p given _#Z°. If the condition is
satisfied there exists an RCD, Q, of p given _#° such that

Q(w, AB) = I,(0)Q(», B)
for all we R, Ae_ 7 and Be #°.

Proof. The first assertion follows from Theorem 3.1. Assume
the condition is satisfied and let @ be an RCD of p given _#Z.
By Corollary 3.3, there exists a p-null set Ne_#* such that for all
Aec_#* and Be #7*, Q(w, AB) = I,(w)Q'(w, B) if w¢ N. Define Q
on 2 X #Z*° by

Q'(w, By for Be .#*° and we N,
Q(w, B) = s
[T (w)) for Be. * and we N .

Clearly, @ has the required properties.

THEOREM 8.2. Let ' be an FSM on (2, #7°) and let p be its
restriction to _Z°. Assume that o p-null set of 2 is also a p'-
null set. Then there exists a t-basic family of FSM’s {ft,}veo with
the properties (i) p,(2) =1 for all we 2, (ii) the map w — | ¢, [(2)
is p-integrable and (iii) p¢' coincides with the FSM obtained by
patching tt and {t,}..o together as in Theorem 6.2.

Proof. Let @ be an RCD of ¢’ given _#° such that Q'(w, AB) =
I{w)Q'(w, B) for all we 2, Ae_#° and Be _»7*. Define the family
of FSM’s {¢t,},.. as follows: For each we @, ¢, (4) = Q'(w, A) for
all Ae 27, {M}ueco is a z-basic family. Let {¢},., be the family
of associated FSM’s on (2, 2. It is easily seen that p,(B)=
Q' (w, B) for all weQ and Be.#°. It follows that {z¢.)}... has
properties (ii) and (iii).

9. Patching countably many times. Letr, <7, <7, < --- be
a sequence of s-Markov times, from £ into [s, ], with respect to
the family of o-fields { #°t=3s}. For each n=0,1,2 -.-- let
{ttrolwcn be a z,-basic family of FSM’s and {¢,.}... its associated
family of FSM’s on (2, .#*). Assume, moreover, that

-7 00! (2)
a = [] sup el & oo
ook |10 (D)]
For n=0,1,2, --- define the transition functions f,.,, from
R, #3) to (2, A4 ), by fau®, B) = 6, (B)/th.(2). Let M,=
M(2, _#:) be the Banach space of all FSM’s on (2, #:). If #z* =
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o(Us #:), let M* be the Banach space of FSM’s on (2, _.#Z*). With
fm,n defined as in 4.2 and L, as in 4.3 we can apply Theorem 4.4.
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