Vol. 96, No. 1, 1981

Recent Issues
Vol. 308: 1
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
On Killing-Ricci forms of Lie triple algebras

Michihiko Kikkawa

Vol. 96 (1981), No. 1, 153–161
Abstract

The notion of Killing-Ricci forms of Lie triple algebras is introduced as a generalization of both of Killing forms of Lie algebras and the Ricci forms of the tangent Lie triple systems of Riemannian symmetric spaces. For a class of Lie triple algebras G, it is shown that G is decomposed into a direct sum of simple ideals if its Killing-Ricci form is nondegenerate. As an application, structure of the reductive pair consisting of a semi-simple Lie algebra and its semi-simple subalgebra is investigated.

Mathematical Subject Classification 2000
Primary: 17B20
Secondary: 53C35
Milestones
Received: 30 May 1980
Published: 1 September 1981
Authors
Michihiko Kikkawa