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In this paper the absolute convergence of the Fourier
geries is studied for the class of the function f with the
modulus of continuity and the modulus of variation satify-
ing the conditions (3, f) =O0(®) and v(n,f) = O(n))
respectively, where the modulus of continuity «»(4) and the
modulus of variation v(n) are given. In terms of these
properties the sufficient conditions of the absolute con-
vergence are established. We prove that these conditions
are unimprovable in certain sense.

1. Let f be a 27 periodic continuous function and let
. 2w

a,(f) = lg ft)cosmedt, m=0,1, -
T Jo
1 2 .

bo(f) = —S f@sinntdt, n=12, -
T Jo

be the sequence of its Fourier coefficients.

The paper is devoted to the conditions of convergence of the
series

(1) 3 (au) | + 16D
or of the series
(2) 3 el
where
_ a, _ a, — b, _ a, +1b,
a=%, a)=0TTe, o, =1,

if the complex form of the Fourier series is used.
The class of functions for which the series (1) (or (2)) converges
is denoted by A.

The problem in question has a long history (see monographs [1],
Chapter IX, [14], Chapter VI, [8]).

Let us introduce the classes which well be used in what follows.

If fe(C(0, 27) then the function

(0, f) =z_§g3>§ﬂ|f(x) -S|

loe—yl=6

37
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is called the modulus of continuity of the funection f.

The modulus of continuity of an arbitrary function fe C(0, 2x)
has the following properties:

(1) w(0) =0,

(2) w(0) is nondecreasing on g,

(8) () is continuous on [0, 7],

(4) (0, + 6,) = w(0,) + @0, for 006, <06,<9,+0, = 7.

An arbitrary function w(6) which is defined on [0, #z] and has
the properties (1)-(4) is called the modulus of continuity.

If the modulus of continuity @(d) is given then H“ denoted the
class of functions fe C(0, 2r) for which w(d, f) = O(@(5)) when 6 — 0
is denoted.

S. N. Bernstein has proved ([1], p. 608), that if fe H® and

then fe A.
Bernstein’s theorem is best possible in the sense that if the
series

then there exists the function f,€ A in the class H*.

This was proved by Bernstein for the class H¢ under the
condition that there exists & > 0 such that 6°'w(6) is decreasing.
S. B. Stechkin proved the same for arbitrary classes ([1], p. 625).

If the function f has bounded variation i.e., belongs to the
class V, then lesser smoothness of its modulus of continuity may be
required. That follows from the theorem of A. Zygmund [15]: If
feVnH* and

&1
(3) 5L o)<
= n
then fe A.
In particular, the absolute convergence occurs when
(4) @(9) = O(<ln %)_3 o N>2.
Zygmund has pointed out that the latter statement is wrong
for 7 < 1, because the function

1
nlnn

sin nx

oo
n=2
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is absolutely continuous and has the modulus of continuity of order
O((In1/6)~"). He has posed the question whether the absolute con-
vergence is true for 1 < 7 < 2.

R. Salem [9] has proved that if for any ¢ > 0 the modulus of
continuity w(d) satisfies the condition

oGl ==

then there exists the function f,€ V' N H* which does not belong to
A. This implies that absolute convergence does not hold for the
class H*, w(®) = O((ln1/6)""), n < 2.

J.-P. Kahane ([8], p, 24) has sharpened Salem’s theorem in the
following way: if the modulus of continuity satisfies the condition
Iim n?w(2~") = oo
then there exists the function f,€ V' N H* which does not belong to

A.

But neither Kahan’s theorem gives the answere in the
logarithmic scale for » =2 and this question has remained open
until recently.

Only in 1972 I. Wik [12] proved that there exists the function
of bounded variation satisfying the condition (4) for » = 2 for which
the absolute convergence does not hold.

As regards the general modulus of continuity the final answer
to the question was obtained by S. V. Bochkarev [3]. He has proved
that the condition (3) is necessary for the absolute convergence of all
Fourier series of the class V N H“.

In what follows we shall use the notation of the modulus of
variation of a function introduced by us in 1973 [4].

DEFINITION. Let f be a bounded 27-periodic function. The
modulus of variation u(n, f) of the function f is defined for non-
negative integers n as follows:

(0, ) =0

and for n =1

o, f) = $up 3 [fltwr) — St

where I, is an arbitrary system of » disjoint intervals (f., t..+y),
k=0,1,---,n—1ie, 0St, <t <t, < - <ty,<ty,<2r.

The modulus of variation of any function is nondecreasing and
upwards convex. Functions of an integral argument with such
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properties will be said to be modulus of variation. If the modulus
of variation v(n) is given, then by V[v] we denote the class of 2z-
periodic functions for which v(n, f) = O(v(n)) when n — oo.

Note that the Jordan class V = V[1] and the class of 2z-periodic
bounded funections M(0, 27) = V[n]; if 0<a<B=1, then V[l]C
VIn*]c VInflc M(0, 27). In general, if v,(n) < v,(n), n=0,1, -
then Vv, ]cC Vv,

In [4] we have extended Zygmund’s theorem to the wider
classes V[n*]N H® and in [5] under some restrictions on ® the
necessity of the obtained condition has been proved.

2. In the present paper we extend the Zygmund and Bochkarev
theorems to the classes V[v] N H*.

The following theorem is valid.
THEOREM 1. Let fe H* N V[v], v(n) = on)?, v1) = w1) =1,
— u(m) > 1
®(n) = max { po” a)< )} .

n
If
el 1 + Z(k) 1/2 -
(6) S35 <
then fe A.

We shall deduce this theorem from the following theorem of
0. Szasz ([1], p. 609). If f satisfies the condition

1 w2<l,f>< oo,

n

3

n=1

where @5, f) = max,.,<, {S| f@ + k) — f(@)] da;}m, then fe A.
0
Although Theorem 1 is a corollary of the Szasz theorem it
seems that our theorem is expressed in terms which are more ap-
plicable in the field under consideration than those of the Szasz
theorem.

In order to prove Theorem 1 we need the following lemma.

LEMMA 1. Let v(n) be a modulus of variation and v(n) = o(n),
V(1) > 0. Then there exists a natural number n, such that v(n)/n

1 Several results of this paper were published in [6] without proofs.
2 This condition is natural since for continuous f v(n, f) = o(n) (see [4]).
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is decreasing for n = n,.

Proof. Since v(n) is upwards convex, for any n =1

v(n) —v(n —1) zv(n + 1) —v(n),

therefore
o) = 33 [0) — vk — 1)] Z nlom) — ve — 1)]
i.e.,
V) > ) — vim — 1)
n
or

v(n) . vir —1)
n ~ n-—1

So we have proved, that v(n)/n does not increase. Now it is
necessary to prove that v(n)/» is decreasing beginning with a certain
n,. Assume the contrary. Then there exists a sequence {n,};., such
that

U(”k)ZU(nk+1) E=12 ...
N, ng - 1 ’ s “y
or
2 oy, + 1) —o(n), k=12, -
k
i.e.,
ng
nl S [o(m) — v(m — 1)] = v(n, + 1) — v(ny) .
km:l

But as v(n) — v(nw — 1) does not increase it follows from the last
equality that for n =1,2, ---, n, + 1 we have

vin) — vn — 1) = v(l)
therefore
v(n) = nu(l), 1<=n=Zn,+1.

Since {n,} is an infinite sequence the last equality is valid for
all n, i.e., v(n) # o(n). This contradicts the conditions of the lemma.

Proof of Theorem 1. Let



42 Z. A. CHANTURIA

- (9, f)
4= R W)

’

o, — sup 20 f)

2zl u(n) ’

and ¢, = max {c,, ¢,}.
Then (3, f) < c,@(d), 6€[0, ] and v(n, f) < ep(n), n = 0.
We have

oi(L, 1) = max | fiw + ) = fa)fde = || @ + b)) — fa) e

0<h=1/n JO

where 0 < h, < 1/n.
Let I, = [27/h,], then since f is periodic

(1) oL, 1) = LS A + kb)) — f@ + 6 = Dh)Fda
n l, Jo k=1

Consider the sum

8@ = Sf@ + k) — @ + (= DR)F, 0<ao<or.

Assume that x,€[0, 7] is the point of maximum of the function

&u-
Consider the sets
Sa = ke N; | fta, + kh,) — f(w, + (k — Dh,)| = 0} ,
Su = {be Vi o 2 < flan + khy) — flo+ 6 — D) = 220}

m=0.

Let us show that for m < my(n) = [log, (n)] the sets S, are
empty.

In fact, for any ke{l, ---, [,} according to the definition of @(n)
and the monotonicity of v(n)/n we have

| @, + kh,) — (@ + (b — Dh,)| < @by, f) < a)(%, f) = ao(L)

< o XPM) -, v@™)

Pn) ~ T 2m

Sofor 0 m<myn)—1, S, = Q.
Denote by o, the number of elements of S,. It is obvious that

O+ D Ou=1,.
m=m
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Because of

3 @ + fha) = fla + (b = Dh| = (0w, £) S aplow)

and the definition of the sets S,, we obtain

U(2m+1)
C(Om) Z Op - o
or
(8) o) > V@)

O om-+1

But according to Lemma 1 v(n)/n is decreasing beginning with
a certain N, so it follows from (8) that for m = [log, N] + 1

(9) op < 2™,

If »n is also large that 2™™ = N, then using (9) we have

&)= 30 5 |fle + kha) = o+ (b — D)
1 o LYo
4o = Do v(2")

m=mg " Q2m

Let M be defined according to the condition

M~1 M
Z 2m+1 < lné 2 2m+1 .

m=1m m=my

Then for m,n) = log, N, using (10), we obtain

Enltt) = c%{ g Eﬁ?ml) + (l” -5 2m+1>uz(2M+l)}

m=mq m=my 22(M+1)

<5 24D (- Erpm)

2 1
m=mo pogmiy 2HHY m=mg

k=2mo+1 k? k=2m0 Kk

emotlpl, U2(IG)

k=2mo+1 k2

fiA
A

c

From the last estimation and from (7) by the definition of m,(n)
we have

1 1 2motlyr, Uz(k) @ (n)+1, 02(]0)
2 — < . N7 < — 7
(11) wZ(fn ’ f) =1, ‘ k:zzvm'm g k=§<‘%> ko

Now let us show that

® Here and in what follows by ¢ we denote absolute positive constants which are,
in general, distinct in different formulas.
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(12) h mgfl” v*(k) < Ci ‘P(%}—n v*(k) .

"o k2T m o kSem kP
Recally, as v(n)/n |

P viE) g, (V@) + WV oy < 2P + )Y
nk=¢('nz):+n+1 BT ”( P(n) + n >(" "= c( P(n) + n )
cl ¢(n)+n v?(k) ,

n rsem  k?

A

which since h, < 1/n implies
@ (n)+ly vz(k) ¢(n)+n ?)2(10) ¢(n)+1, ?)2(16))
h = =} AUz v\m)
"k%‘m k? n<k=§'n) k? + k=¢t§)l+n+1 k2
< iwnwn (k)

T omokSem P

It follows from (11) and (12) that

)L

According to the convergence of the series (6) from the previous
estimate we obtain that the series

5 Lol )

n

is also convergent and by the theorem of O. Szasz fe A. This com-
pletes the proof.

COROLLARY 1 (S. N. Bernstein, [1] p. 608). If fe H® and
(13) ﬁ;iw(}_> < o
then fe A.

Proof. Using the monotonicity of »(n)/n and the definition of
®»(n) we have

o(n)+n ,Uz(k) 1/2 ’l)z(@(%)) ’02(@(7&) + 1) . 1/2
(2% =( F) | (@m) + 1) ")

v(@(n)) — (1) - ven) +1) on) +1 — (1
= TV = T e W)

<02

n

i.e.,
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) = amels)

Hence by (13) and Theorem 1 fe A.

COROLLARY 2. Let fe H°NV[n®], 0 =< a <1/2 and
S 1—2a/2(1—a}
(14) zl[w(i—)] <o,
n=1 N

n

then fe A.

Proof. It is easy to calculate that in this case

P(n) = [w‘”l'“( %)] -

Then
e 4+n ,02(10) 1/2 < e(n)+n 1 1/2 < 1
<k=%’b) k2 > = (k:q)(m Jo2-2e =¢ (@(%))1_2“/2

1—2a/2(1—a)
sdol3))
n

From this estimate, (14) and Theorem 1 it follows that fe A.
In particular, for a« = 0 Corollary 2 implies Zygmund’s theorem.

COROLLARY 2'. Iffe H° N V[n*], where 0 < a < 1/2 and w(6) =
(In 1/5)-@@-=/1-2a~e ¢ > () then fe A.

COROLLARY 3. If fe H* N V[In®(n + 1)], where 0 < B8 < o and
1 1 1
15 2o 2 infr 2
(15) 2 <'n> . w(l/n) <
then fe A.

Proof. It is easy to calculate that for sufficiently large =

a)“(%) In# w(;/n) < o) £ Za)—‘(%) In? a)(; Dk

Then
o (n)+n 1)2(]0) 1/2 _ ¢(mtn 128 (k + 1) 1/2 < In? ¢(fn)
<k=z,pl<‘n) k? > (k:%n) k2 ) = cl/q)(n)

1 1
< e (L) mer L
= 6@ (’n) e
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This estimate, (15) and Theorem 1 imply that fe A.

COROLLARY 3. If fe H°NV[In® (n + 1)], where 0 < 8 < = and

w(d) = (ln %>_2<1n In l)"‘””” . e>0

0
then feA.
COROLLARY 4. Let fe H* N V[n"?1n~* (n + 1)], where 3/2< B < oo
and
1 1
16 —InV | — +1 oo
(16) Zn n <co(1/n)+ ><
then fe A.
Proof; It may be calculated that for sufficiently large n
1 1
~ oY =) In—2* 4
pn) ~ @ (n) T em)
Then

o(n)+n vZ(k) 1/2 — o(n)+n 1 1/2 < c
<k=§:‘m i > <k=m> I In® (k + 1)> = Tnf 2 o(n)

< ¢ In¥* (m + 1).

This by (16) and Theorem 1 imply fe A.

COROLLARY 4. If felipanV[Vn In-*(n + 1)], where a >0
and Be(3/2, «), then fe A.

REMARK. Theorem 1 implies that for any specific @ for which
the series (3) converges Zygmund’s theorem may be improved. E.g.,
if fe H*, where w(6) = (In1/6)~® then the function f may have the
modulus of variation of order n*~, ¢ > 0 but the Fourier series of f is
still absolutely convergent; or if f€ H® where @w(§) ~ In—*1/6(In In 1/6)*
in a neighborhood of 6 = 0, then the function f may have the
modulus of variation of order In'~*n, ¢ > 0 to provide fe A.

3. Now we shall show that the condition (6) is necessary for

¢ We write vi(n) ~ vx(n) if there exist positive constants A and B such that
Avy(n) = va(n) = Bui(n)

for all n.
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absolute convergence of Fourier series of class H°NV[v] in a
sufficiently wide class of moduluses of variation and for arbitrary
moduluses of continuity. But first we formulate same subsidiary
statements which will be needed below.

LEMMA 2 (Gauss identity [11], p. 81). If k is a natural number
and n is an integer, then

=V +1.

%
§: P
T=0

LeMMA 3 (Cauchy [7], p. 290). If the sequence {a,} is almost
decreasing®, then the series >, a, 1s convergent or divergent, together
with the series >, p"a,» where p > 1 is a natural number.

LEmMMA 4 (N. K. Bari, S. B. Stechkin [2]). The following
statements are equivalent for a positive sequence {a,}:
(a) 3e > 0 such that n‘a, is almost decreasing =

f‘. iak =0(a,) for m—> oo
k=n+1 k

(b) 3e > 0 such that n'—*a, s almost increasing® <

ka‘, a;, = O(na,) Jor m—— o,

LEMMA 5 (I. Wik [13]). Let a positive sequence {a,} be bounded
and > a,= . Then for any ac(0,1) and B > 1 there exists a
sequence of natural numbers {q,} such that

aq» == o0
y=1

and

a
oaIvt1—% é et é qu+l_qv , Yy = 1’ 2 cee

t
aqu+1

LEMMA 6 ([10], p. 111). For any modulus of continuity w(0)

@(0,) < 260(52)
0, 0

for 0 <4, <0,

5i.e., the.re exists a constant ¢ > 1 such that for all » and m > n @, = 1/¢)an.
% a sequence {a,} is almost increasing, if there exists a constant ¢ > 1 such that for
any n and m > 1 ap = Clp.
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LEMMA 7 ([5]). Let {a,} be almost decreasing and >, (1/n)a, = c.
If

. 1
bn=m ny T, . 4| ? =1,2,"
in {a non T 1)} n
then
51, = .
"
LEmMMA 8. Let lim,, .. f.(x) = fi(x) for any x€][0, 2x]. Then for
any n=1

o(n, £) < sup v(n, £.) .

Proof. By the definition of v(n, f) for any ¢ > 0 there exist 2n
points 0 <z < 2 < 2 < --- < xf)_, < 2w such that

v, f) < 31 ful@li) — @] + e

As
JSu(@) — fo()

for any x€[0, 27] there exists m, such that for m > m,
| falat) = fi@i)| < 5= for k=0,1,--:, 20— 1.

Then

B

-1
0

fi@if) = Fo@)| £ 31 i) — fulai)]

E

51 ulal) — 0] + S fa(ei) — fulold)]

< S+ L ont o, fa)=¢+ vn, f)
2n 2n

and so
v(n, fo) = 26 + v(n, fa)

for m > m,. This completes the proof.
Now we shall prove

THEOREM 2. If there exists €€ (0, 1/2) such that n*v(n) is
almost decreasing, nv(n) is almost increasing and w(0) satisfies
the condition
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o 1 ¢ (n)+n 1)2(1‘;) 1/2
1 — = o0
an ngl %(k:%n) k? >

then there exists a function in the class H* N\ V[v] for which the
series (2) 1s divergent.

Before we prove this theorem let us explain how the function
fo is constructed. The complex function of the real variable f, is
the infinite sum of the functions with real part of type

a,

VAV

(the imaginary part is analogous). The three parameters k,, the
altitude (a,) and the slope (m,) are selected in such a may that (1)
foe H®, (2) f,e V[v] and (3) f,€ A.

REMARK. Note that according to Lemma 4 the first condition
imposed on v(n) is equivalent to the following one

su0 =0

and the second condition is equivalent to

Proving this theorem we use the concept of Wik to apply the
Gauss identity.

For proving Theorem 2 we need some constructions.

Let m and & be natural numbers and m > 2(2k + 1). Define the
function F, ; as follows

T 1

M icon/2k+1)<2 for T 2 + =
t1 ° 2k+1< <2k+1 m
F1 1 R
M iemekins® for T —— <y 3
Fo®)=\"35 11 o okl w21

0 in other points of [0, 1],
‘outside of [0, 1] continue periodically with the period of 1.
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50
Let
Fus@) = | Fun®)it .
As fo1(1) = fur(0) = 0, f., is continuous and periodic with the
period of 1.

We shall estimate the modulus of variation and the modulus of
continuity of this funection.

LeMMA 9. The modulus of continuity of the function f,, 8

subjected to the estimate
L 2m 1
.= or m>m
/1 2k +1 7 >
w&;, fm,k) = 2
or 1=n=m.
2k + 1 f -

Proof. Since max,.,<, | F, ()| = m/2k + 1 the estimate for n > m
follows from the finite increment formula.

If 2z€lz/2k + 1,z +1/2k+1), z=0,1, ---, 2k
T/2k+1+1/m
| R + ] Fuatat

x
c/2k
1

r/2k+1
= F dt = ———,
Fotdt| < | 1 Fautldt = 22—

7/2k+1

z
0 0

| fm(®@)| = H Fm,k(t)dtl —
(18)

Sr/2k+1

i.e., max | f,.(®)| =< 1/2k + 1.
From this estimate for n» < m it follows that
/1 1
w(— =2 i = .
Kn,fm,k>_ max | fo| T

This completes the proof.

The modulus of wariation of the function fn. 18

LemMmA 10.
subjected to the estimate
2
—n for 1=n=2k+1
V(0 fup) = {26+ 1
2 for n>2k+1.

Proof. For m =1, ---, 2k + 1 using (18) we obtain
2

?)(’n, fm,k) = SUPZ lfm,k(xzi—H) - fm,k(xﬁ)[ é 2’)’& max lfm,kl é 2]{} + 1

Now let n > 2k + 1, then
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1 (z/2k4+1) +1/m
VN, fu) = Varfou, = So | Fou(t) | dE = Z 2 S(r/2k+1) | F,,,(8) | dt

Tt ()
=2. —— .= . (2 +1 2
2k+1 m +
Now we shall estimate the Fourier coefficients of the function
fm,k'
LEMMA 11.

The Fourier coefficients of the function f,., are
subgjected to the relations

m

O — >m
=Tk 11 for mz3
1 . 1 1 { m
19 (S P —_ 0 hild
19) leufms] 7ml/2k+lsm7m<2lc+1 m> for 0<m<3
1 1 i m
> 2 1 0<n<™ .
7rn1/2k+1’sm7m 2%t 1 m> for 0<n<Z

Proof. Since f, . (0) = fi..(1) =0,

o) = || Fusttrermat| = = F (et

1 m 2k 102 ok T/ 2k+1)+1/m (z+1)/(2k+1) it
—_ -, Z e2m. /(2 +1)l:§ ezmntdt__g ezm'n dt l
2rm 2k+117=0 z/(2k+1) (r+1)/(2k+1)—1/m
k
— 1 . m e2zi/(2k+l)(r2+rn) . Iezﬂn/m -1+ g2FIn1/ 2kt ~1/m)
dn’n® 2k + liz=o

. ezzin/(2k+1)| .

Using the Gauss identity we obtain

m 1/2]5 1 leinm 1|1 — eXintzk+n—1/m

1 . l - ﬂ| . | — 1 _ 1 ‘
o Va1l w1 m(zk 1 m> '
For n = m/2 this implies the estimation (19) trivially. The

upper bounds for n < m/2 may be obtained from (20) if use the
relation

,sm— éﬂ
m m

and the lower bound for n < m/2 follows from the relation

ism——ym > 2.7

haddd for 0<n<™®,
m T m 2
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This completes the proof.
Besides, for proving Theorem 2 we need to construct a special
sequence of natural numbers.

Since n*~2p(n) is almost decreasing for a certain ¢ > 0 n*'v*(n)
is also almost decreasing. Then according to Lemma 4

n

Hence

PR i) _ op(n)
o kS )

This with the divergence of the series (17) implies

@1) | 2 1 11’}?;((’:2)) o .

As n=*+(n) is almost decreasing all the more v(n)/V % is almost
decreasing and since @(n) is increasing when # — o« the sequence
v(en))[V'¢(n) is almost decreasing. Now using Lemma 7 and the
divergence of the series (21) we have

22) S Ly, = o,
n=1 N,
where
_ s [v(e(n)) 1
o = R jh/go(n)’ In(n + 1)} '

As far as n—v(n) is almost increasing and n‘*"?v(n) is almost
decreasing there exist a constant ¢, <1 such that for any & and
n>k

(23) v(n) >¢ ’U(’n)
ne Yk
and
(24) v(n) < l v(k)
,nl/Z—s = ¢, Jt/2—¢ ‘
Now set

(21

1

Twice appling Lemma 3 to the series (22) at first with p =2
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and then with »p = ¢, we get

o

(25) S v = o .

n=1
Since

1

ot er = Cf———— < ¢,
et = O T 1)

the terms of the series (25) are uniformly bounded so we may apply
Lemma 5. Set a = 4/5 and 8 = 6/5. For these numbers there exists
a sequence of natural numbers {q,} such that

(26) Z cgnrx/zcgn = oo
n=1
and
(27) (i)q”‘“—"” < _Oreln ( 6 )qnﬂ-qﬂ .
5 Cg"+1'7zcg”+1 5

(27) implies
I +1—9n cqn In+1—9n
N T T

and as

the sequence {7..{#} is decreasing.
Define the sequence

v(m)

vV'm

By the definition of v, we have

P(n) = max {m; = 7

v(P(2") < ., o
—_—mtL > Y,edn ,
Ve@dm —

which with the definition of (%) imply
PF(n) Z (2" .

Using 7,2 [0 and v(n)/V' n |0 (this is true because n~"***v(n) is
almost decreasing) we get (n)] o for n — co.

According to the definition of @(n) and using the relation v(n)/n |
we have
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(29) w(z_l_) > U@ + 1) 5 L o(@@4) 5 1 vy(n)
: P +1 2 @) — 2

Furthermore
yp(n) iy + 1 o 1 v(y(n)
80) Vp(m) =g > Voym) + 1 ) Vi)
The last relation with (28) implies
v(p(n)) . v(qp('n + 1)) Yaeln 4\t
@l 1/'1/1‘(%) ‘ ‘/’sb“(’"/ +1) = Vacotn+1 = ( Co>
or
Vig(n + 1) 1=t (ye(n + 1)) Tn+1=0n
S 24(3) b > (3%)
ie., A
wn + 1) 2V S 100( )
(32) n 2[100 (c> ] > 100(61) .

(23) and (32) imply

(33) ”(‘Z((:;(Z))l» > 1('*”(1;(;:) Dy > (100(021) ”)’ > ¢, - 100" - 03 >2.

From (28) and (30) it follows that
(34) vp(n) | v +1) o Telr ( 6 co)q,,ﬂ_qn

2‘/’\/]‘(7’/) ) l/a,b‘(’l’b + 1) - '72cg'n+1

or

[ Sl (el <o)

From (35) using (23) we get
pn £ 1) o (ZY(Eyen
=(2) (5

0

() 5
and thus
4, _2dn 2 g+ D)
(36) v Fm D 28 )

9cdn 2\V¢/ 6 1/e(@p+1—94%)
é 2037;,-{-1 . _C_l> ECO .

Similarly (32) and (24) give
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viyp(n+ 1), v@n) _ [v(«#(% + 1) . _v(yp(n) ]( (n) )“2“
y(n + 1) Pr(n) Py(n + 1)V ()P Pe(n + 1)

LGt s inls) =)

(37)

We may as well assume that
2:0" > 6qp(n) .
Really, let N, = {n; 2¢" < 64r(n)}. Then
> e 2O o E > 2(60(0)

ne Ny ‘l/ql'/‘(’n) = neN 0 '1/6,11,\(/”/)
<76 1. V2" o V(@™ 1
= 1/6 neZNl Co™ * Cy 1/20—3'"' = CZCO (2037;)1/2—5 (zcg'n)s
So 3 @i <
ne 1

all the more (see (30))

D, CinYpetn < oo,
'n.eNl
This with (26) imply that the set N, may be neglected.
Hence we have constructed the sequences {g,} and {y(n)} which
satisfy the following conditions:
(1) The series (26) is divergent
(2) The sequence {y(n)} satisfies the relations (32), (33), (34),
(35).
(38) The inequality

203”>6f[}/‘(’)’&), ’l’b-"—‘l, 2’ e
holds.

Set m, = 24", k,=q(n) and a, = v(k,). Since m, > 6k, >
2(2k, + 1) the function

(38) £@) = 300 @) = 3 0.55(@)

may be considered. We shall show that this function is just that
one which satisfies the conditions of Theorem 2.

At first we shall prove that f, is continuous. Recally, according
to the choice of a, and to the inequality (18) we have

1 v(k,) 1 c [
nd n g k’fn ° é 2 - == é = .
laufulle = vl =g = 2= = = U = Vo
From this estimation by (82) it follows that the series (38) is
convergent uniformly on [0, 1], thus f,e€C(0, 1) and as f, is periodic
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£, is also periodic.
According to Lemma 8 and Lemma 10 for 2k, , + 1 <v <2k, +1
we have

o, £) = B a0, £) + 3 ats, £)

= {Za + Z~—a} < 0{2 v(y(4)) + 1)2 ”<“12(9)))}

Now if we use the estimations (83) in the first sum and the
estimations (87) in the second one we shall get

v, fo) = C{’U(kn )+ v/v(k")} < cv(v)

’ﬂ:

i.e., foe Vvl
Now we shall show that f, e H”.
Let m,_, <v < m,. Then using Lemma 9 we get

w(%, fo) = :g a,w(%, fj) + i “iw<i—, fj)

With a view to estimate the first sum we shall use the relation
(36), to estimate the second one the relation (37) and then to estimate
the both sums the relation (29), we obtain

w(—i—%)g {f”—rw—f

ey o)

But as ®w(6) is nondecreasing and for (6)/0 Lemma 6 is valid
(39) implies
1 1
2L < =
o) = cof )
i.e., foe H".

It remains to prove that fe A.
Let m,_,/2 <y £ m,/2, then using Lemma 11 we get
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el = || ewer@is| 2 || evans@ie| - S, Hlfj(x)em””dx’

0 1 . 2 1 1 1
40 . . S ( emrwavdx‘ z . (
(40) i=zn:+1aj ofj( ) 71,'2 Y I/Zk +1 216 +1 m, )
_ l”_l a;m; — l l i —_—
A vV2%;, +1 v iss 1/2k +1°

By the choice of a;, m;, k; and by the inequality (34)

1 a;m; < _C_ Ay 1My 1 S a;m; Vk'n~1
o =V2%k; 17 v V., = VE a.m,,
(41) - ¢ a, N [:?)("/f(J)) v(y(n — 1))1‘ 239

V? l/kn L, =LV Vi — 1)1 24
_C_ Qg My S n—1— ﬁ In—1—959—(In—1_c95) < _C_ Ay My
> ——*«an—l ag{ 2 J( 5 C> 32— leg o = o _kn_l .

Using (31) we obtain
113 a; < 1 1 a < v¢0).vy(n)
T ovifen V2, +17 V27x v 1/10 iZ V() V p(m)

1 1 a ad . 5 \% %
<1 1 @ S w5 ,
“Vv2r v Vk, jg-‘i-l < )

M

A

4e,
but as
@ ) S
we have
) %'%;%mzzfﬁ’;l év%n'%'ﬁ,—’;;;é%)j

T1wz2x v vV
From (40), (41) and (43) it follows that

2 1 a . 1 1
> = —_—t | SIN _—
S Ve ke m(z/rc,ﬁ~ 1 m>
(44)
—cC- l an-—lmn-«l . 1 1 a'n,

v V., 19V2x » Vk,
It is easy to show that according to (31) and (42)

/2 o
' 1 a"n lmn—l < Z a’n-—lmn—l . 1

=S¢ — < oo
(m”Z‘l/Z)—H v Vi, st Vi, M,

(NS

Now we shall estimate the sum
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2  a, I | ( 1
O VAT T eema v P g 1
(46) ; e
B 191/.2.71' ]/lc v= (ME/%H_}T )
Let
[ - -
2 2k, + 1 . 6
47 + m
L= ) 6
2 \2FL, 6.1’
and for I =1, [, + 1, ---, 1,
- 1 _
I+ =
4 + 6
Hte = 1 1 +1
2, +1 m,
(48) { - 57
1+ 2
"o o__ i 6
pe=1""1 "1
|2k, +1  m, |
Then for g, <v =/, l=1, ---, 1,
’sin n:r)( 1 _ 1 ) = 1
2k, +1 m, 2
therefore from (46) using the inequalities
1 1 1
49 ~=m(1 < . we(l, o
“9) x"n +w——1>_x—1 el )
we get
2  a ok ( 1 1
= [ 2 S [
e s T vl ke U m>
1 a el ( 1
—_— In(1+ >
N2z Vk, »=(mnzl/2>+1 vy —1
2 a 1 < 1 )
50 = . 1
(60) =TV, + 1 21210218“ >

v

We have

1

)

m,

1 G S 1
191/ 2 'l/k In (u=(m,:!__11/2)+1 (1 — 1>)
1 a nl+1 1 a m
— z In £ — ol n_ | n_
V2, + 1 l=zlo I 192z Vk, m,,
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5 2
1+ = —
p4+1 6 _1,._3
T S
+ 5 + =
this with (49) implies
2
lnﬁy#gln 1+ 1 = 1 = 8 gglnl'*—2
! —3—l+1 —3—l+£ l+1 3 l+1
2 4 2 4
Using this estimation we obtain
1 lue + 1 > & 1 1 — El ll + 2
,210“ 7 En( z+1> 3 1
m 1 1 5
n — =) )-=24+1
Eln 2 (2k,, + 1 mn> 6 +
3 m 1 1 1
n—1 — —_— 2
( 2 +)(2kn+1 'm,n> 6+
1 1 1 1\
1+ —(re —
gg In-™ 1+ In 3 mn<2k,,+1 m,,>
3| M, 14111 ( 1 __1~>-1 2
3m,_\2k,+1 m, m,_,
= 2 In Mo ¢
3 My,
Applying the last relation by (50) we get
1 a 2 m a
2 _ - — ln *— 2
SV t1l 3 m,. Vo t1
(51) __
- L An_1n Mon_ — an In 'm,,,/_2__1/6>__ca,,_
w2zvk, m,, V2,+1 m,,\3z* 38z vk,
But as T
2 6
———>0
3r* 38w >
(44), (51), (45) and (26) give
© o My /2 oo m
= 1 5
LZ’:I Icu(f;))l §=:l v=(m 7LZ|1)/2+ Icv(fo)l g_l/zk + 1 nm”—l c

> 2 v({r(n)) (cir — ¢in—1) = ¢ Z 03”72c"n — oo

Vyp(n)

i.e., fy € A.
This completes the proof of Theorem 2.
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Theorems 1 and 2 imply

THEOREM 3. For all Fourier series of class H° N V[n®], 0<
a < 1/2, to be absolutely convergent it is mnecessary and sufficient

that
1—-2a/2(1—a)
) R
n

Proof. The sufficieny is contained in Corollary 2. We shall
prove the necessity of the condition (52). Assume the contrary.
We shall verify that for a € (0, 1/2) the modulus of variation v(n) = n®
satisfies the conditions of Theorem 2.

In fact, if

(52) py

SEE

0<e<min{a,%—a}

then n—*v(n) is increasing and n‘~**v(n) is decreasing.
Furthermore

s = o o 2 2 o) = (o).

and so
@ (n)+n ,vz(k) 1/2 _ ©(n)+n 1 )1/2 - 1
(k%}m k? ) - <k=%'n) J22e = cg,(n)l/z—a
(53)

1 (1—2a)/2(1—a)
= cfaf L)}
n

Since we have assumed that

il{w(l)}l_mml_m — e
n=1 1 n

from (53) it follow that the series (17) is also divergent and there-
fore all the conditions of Theorem 2 are satisfied. Then according
to this theorem there exists a function in the class H” N V[n*] such
that its Fourier series is not absolutely convergent. Hence we
have got the contradiction.

This completes the proof.

Remark. In the case a = 1/2, i.e., if we have the eclass H* N
Vin®], a = 1/2, it is easy to verify that Theorem 1 is the same as
the theorem of S. N. Bernstein.
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