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Let F be a quasi-complete dual nuclear complex locally
convex space; we prove that both spaces 57,(F) and 2%y (K)
of entire functions of nuclear type on FE introduced by
Matos and Matos-Nachbin coincide with the space 55%(F) of
the Silva holomorphic functions. As a consequence, well
known results of Boland on convelution equations in 52 (¥)
can be obtained as particular cases of results in Matos’s
Doctoral Dissertation.

Preface. In order to study various problems, authors were led
to introduce various adequate spaces of holomorphic functions on
locally convex spaces (l.c.s.). For the study of convolution equations
and following Gupta [6, 7], Matos introduced in [11, 12] the concept
of entire function of nuclear bounded type on any complex l.c.s. F
(we denote their space by 545,(F)). Latter Matos-Nachbin introduced
in [13] the concept of Silva entire function of nuclear bounded type
(we denote their space by S5#y,(E)). On the other side Boland [1, 2]
was the first to obtain results in the whole space S#(E) of the
entire functions (G-analytic and continuous) but under the assump-
tion that E is a quasi-complete dual nuclear l.c.s.

The aim of this paper is to prove (Th. 3.6 and 3.9) that when
E is a quasi-complete dual nuclear l.c.s. both spaces S#5,(F) and
Faw(E) coincide with the space S#(F) of the Silva holomorphie
functions on E. Since in this case S#°(F) is dense in S&(E) with
induced topology and S#(E) coincides with S#(F) if K is a strong
dual of a nuclear Fréchet space it follows that Boland’s results can
now be interpreted as consequences of Matos’s results, thus providing
a clarification and unification of the theory.

First we fix the notations (part 1) and recall definitions (part 2).
In part 3 we prove our result above and in part 4 we apply it to
interprete Boland’s results in term of Matos’ results.

1. Notations and terminology. We use the classical notations
of the theory of infinite dimensional holomorphic functions [14]. All
the vector spaces considered here are complex.

If F is a locally convex space (l.c.s. for short), E’ denotes its
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continuous dual and S#°(FE) the space of the holomorphic (i.e., G
analytic + continuous) functions on E with the compact open topology
7,. If E is a normed space S#4(F) denotes the space of all entire
functions of bounded type (i.e., bounded over the bounded subsets
of E) with the topology of uniform convergence on the bounded
subsets of E.

To state the results in their correct setting and for more
simplicity in the proofs we also use the concept of a bornological
convex space (b.c.s. for short). A b.c.s. E is an algebraic injective
inductive limit of a family of normed spaces (F,),.;,. We say that
BCUFE is a bounded (respectively, strict compact) subset of E if it is
contained and bounded (respectively, compact) in some E;. For more
details on the theory of b.c.s. see for instance Hogbé-Nlend [9] [10].
We denote by E* the vector space of all linear forms on E which
are bounded over the bounded subsets of FE; we say that E is
separated by its dual E* if for every x # 0 in E there exists an
2’ € B* with '(x) # 0; all the b.c.s. we shall consider are assumed
to be separated by their dual.

When E is a l.c.s. we denote also by E the usual (Von Neumann)
bornology on E. This will not give rise to any confusion.

If E is a b.c.s. we say that a complex function on it is Silva-
holomorphic if its restriction to each E; is holomorphic for the normed
topology of E,. We denote by S#%(F) the vector space of all Silva-
holomorphic functions on E endowed with the locally convex topology
of the uniform convergence on the strict compact subsets of E.

A bornological convex space is nuclear if it may be represented
by E = lim,.; E, where the spaces E, are Banach spaces such that

=
for every 1 e I there is je€ I such that E,C E; and the corresponding
injection is nueclear.

2. Recall of some definitions of spaces of entire functions of
nuclear bounded type. Let E = lim,.; E; be a bornological convex

space. We denote by <% the fanﬁ)ly of all subsets B of E such
that B is a closed convex balanced bounded subset of some K, ¢ <€ I.
If E is a locally convex space we consider the Von Neumann bornology
on E, and then <7, is considered as the family of all closed convex
balanced bounded subsets of E. For m =1,2, ... we may consider
the cartesian product E™ = E X --- X E (m times) with the natural
bornology induced by the bornology of E. In this case we may take
the vector space &(™E) of all m-linear complex mappings on E™
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which are bounded over each element of <Fm. On .&5(™E) we con-
sider the locally convex topology of the uniform convergence over
the element of Fw. For m =0 we set <5(CFE) as the complex
plane with its usual topology. We note that E* = <('E). If
m=20,1,--- and Ae &("K) we consider the function A:E-cC
given by ff(ac) = Az, ---, ) (m times) for every x in K (for m =0
this function is the constant function A(x) = A for each z in E).
The vector space of all functions A, as A varies in F(mE), is
denoted by &#(™E) and we consi(Aier on it the locally convex topology
generated by the seminorms ||A||; = sup {| A(x)|; x € B} with B vary-
ing in ;. If &("F) denotes the vector subspace of _&F("F)
formed by all symmetric functions, then the natural mapping A — A
gives an isomorphism between &5,("F) and &7 (™F) which is a home-
omorphism for the relative topology on &,("F). If m=1,2 ---
and @, ---, P, € E* then @, X ... x@, denotes the element of <&("F)

given by (¢, X - X Pu)( @y vy B) = Py(Xy) ++ » P

If o,=--- =@, =9 we denote such mapping by o™ Let
S /(™E) be the vector subspace of .&%(™"F) generated by all mappings
@ X o X P, Withp, ---, @, in E*. We set &, ("F) = &("E)N
Z("E). For m =0 we set &;,(°K) = 5,(°F) =C. Let &F;("K)
be the corresponding subspace of Z(™E) which is isomorphic to
Fr(™H), meN. We can show easily that &, ;("E) is the set of
elements P of &, (™E) which can be written in the form P=37, (,)™,
where @, e E* for j=1,---,n. If m=12 --.- and (E*)™ denotes
the topological cartesian product, we have the continuous m-linear
mapping:

Ayt (B)" ————— H("E)

(@1,.'°1¢m) P X e X Py

Thus there is a unique continuous linear mapping X, from the
projective tensor product E* @, --- @ E* (m times) into & ("FE)
such that «,, is the same as X,,o¥,,, where ¥, is the natural m-linear
mapping from (E*)™ into E* Q. --- @. £*. The mapping X,, is injec-
tive and its image is .&(™F). The nuclear topology on .&("FE) is
the loecally convex topology generated by all seminorms of the form:

[ AlLxs = inf {S1@alls -+ [Pimllss 4= 5 @5 % -+ X Ppus 9y € B}

where ||@;;|| = sup {|®:;(x)|; x € B} and Be ;. The nuclear topology
on Z,(™E) is the locally convex topology generated by all seminorms
of the type

n n T
| Pl = inf (S| 25155 P = 3. @)%, ;¢ B}
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where Be <#,. It can be shown that
(1) [ Allys < | Ally5 < mm(m])> || Ally,s

for all Ae &, ("E) and Be <#,. The nuclear topology on % (™E)
makes this space isomorphic and homeomorphic to E* @, --- @ E*
through the mapping X,.. The mapping X, can be extended continu-
ously to “the” completion E* @), --- . E* of B*®; --- ®. E* into
Z(™E) (which is complete). This extension will be noted by ¥..
We know that J, is injective if and only if E* has the approxima-
tion property. Let X, be the injective mapping from
(B~ ®,, @,, EX)/ker ¥, into #(™E). This mapping is continuous
and agrees with X, on E*@.---@.E*. If we consider on
(B ®: - -- ®. E*)/ker .. the quotient topology and if we denote the
image of ¥, by Zy(™E), we may consider on &y (™E) the locally
convex topology transferred from the quotient through X,. Thus
Fy(™H) is “the” completion of <4 ,(™E) if this space is considered
with the nuclear topology. We still denote by ||-||y,» the seminorm
on Fy(™E) obtained by continuous extension of the seminorm ||-|/y 5
on %+(™KE). It can be proved that the image Fy("E) of Fy("E)
through the natural mapping A— A of < (™E) onto F(™E) is
isomorphic to “the” completion of & ;(™E) endowed with the nuclear
topology. We still denote by ||-|ly, the continuous extension to
Fw("E) of the seminorm [|-|ly5 on F/("E). If Ay("H) is
Fn("E) N &,("K) the inequalities (1) are true for all A in <&5,,("E)
and B in <. As usual for m = 0 we set Fy(CE) = Fy(E)=C
and || Allys = |A] if Ae A,(CH).

DEFINITION 2.1. If me N and Ae &5,("E), we call A a Silva
nuclear m-linear mapping. If Pe . Z,("E), we call P an m-homogene-
ous Silva nuclear polynomial.

Now we are in position of recalling the definition of a Silva-
entire function of nuclear bounded type (see Matos-Nachbin [13]).

DEFINITION 2.2. A complex mapping f on E is said to be Silva
entire of nuclear bounded type if

(a) feo(E)

(b) 0™f(0) e Fx("E) for all me N,

(€) lim,_ . [(m!)*||6™f(0)|y.5]Y™ = 0 for all Be Z,.

We denote by S#y,(E) the vector space of all Silva entire
functions of nuclear bounded type on E. On 2£,,(E) we consider
the natural locally convex topology generated by all seminorms of
the type:
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| llxme = 3 0" [ 001 3"AO) .o

for p varying in the set of all positive real numbers and B in <Z;.
It is easy to see that this space is complete and that it is a Fréchet
space if <Z, contains a countable fundamental system.

If in the previous construction we consider E’ replacing E* (in
case F is a l.c.s.) we get the following spaces:

(1) &(™KE) which is the vector subspace of £("E) formed
by all the continuous mappings; &, ("E) = F("E) N L ("E).

(2) F("K) which is the vector subspace of . ("E) formed
by all the continuous polynomials.

(3) Z("E) which is “the” completion of <(™E) for the
nuclear topology; Fy("E) = F("E) N &,("E).

(4) Fy("E) which is “the” completion of .F("FE) for the
nuclear topology.

DeErFINITION 2.3. The elements of & ("E) and Fy("K) are called
respectively nuclear m-linear mappings and nuclear m-homogeneous
polynomials.

We may now recall the definition of an entire function of nuclear
bounded type (see Matos [11] and [12]).

DEFINITION 2.4. A complex mapping f on a le.s. E is called
entire of nuclear bounded type if:

(1) fesn(B).

(2) 0™f(0)e.ZFy(™E) for every m in N.

(3) lim,...[(m!)™*]6™£(0)|lx.5]Y™ = 0 for every B in Z,.

We denote by 5#5,(E) the complex veector subspace of S#4%y(E)
formed by all entire functions of nuclear bounded type on E. In
general some of the elements of 2#5,(F) may not be continuous but
they may be approximated by other continuous members of 5#5,(E)
in the natural topology of S#,(E). It can be proved that S#7,(&)
is complete and that it is a Fréchet space if <%, contains a countable
fundamental system. If E is a holomorphically bornological l.c.s.
e.g., a Silva or a metrizable locally convex space, then 5%y, (&) =
St lB) C o2 (B).

REMARK 2.5. When E is a normed space Fy("E) = FPy("E) is
formed by continuous polynomials and it is a Banach space (see
Gupta [6] and [7]). In this case its norm is given by ||:||v,5,0 Where
B,(0) is the closed unit ball of E centered at the origin. In order
to simplify the notations we use Gupta’s ||-||y for this norm. Also
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(B = S4,(E) is formed by holomorphic functions and it is a
Fréchet space. Let us remark that o7, (F) is contained in S%(F)
with continuous inclusion.

Now we define another space of Silva-holomorphic functions on
E which is “nuclear of bounded type” in some sense.

DEFINITION 2.6. A function f from E into C is in the so-denoted
space =Sy (E) if f restricted to E; is in 5#%,(E;) for every B in
By

In 2#Sy,(E) we consider the natural locally convex topology
given by the seminorms:

15l = 3 0" | m1)=3°(f | E5)O) L
for every f in 57Sy,(E) and Be <;. Since we have
§gp | (m1)6"(f | Ex)O)@) || < || (m1)6™(f | E2)0) ||y,5

for each m in N and B e <7, it follows that the inclusion of 5#Sy,(&)
into 54 (E) is continuous. (This inclusion is even continuous for
the topology 7,5, of Paques [15].)

It is a routine matter to prove the following result.

PROPOSITION 2.7. The space 57 Sy,(E) 1s the projective limit of
the F'réchet spaces 5%, (E ), B € &&y, through the restriction mappings

15t IS yo(B) — SF5(Ep)
f— flEs.

As consequences of the preceding result we get that S#Sy,(E)
is complete and the inclusion mapping from S#,(E) into SZSy,(K)
is continuous. Also a subset X of 5#~Sy,(E) is bounded if and only
if X/E, is bounded in 5#3,(E5) for every Be 7.

3. A comparison of these spaces of holomorphic functions.
In this section E is a nuclear b.c.s. (separated by its dual) although
some weaker hypotheses on E would be enough. It is well known
from the properties of factorization of nuclear maps between Banach
spaces (Grothendieck [8]) that EF may be written as the “bornologi-
cal” inductive limit of a family E, of Hilbert spaces (Hogbe-Nlend
[9] p. 71).

Let us equip E* with the topology of uniform convergence on
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the bounded subsets of E; E* is then a nuclear complete l.c.s. Since
E* and the spaces E, have the approximation property all the maps
1. that we shall use now are injective. We consider now <% as
the set of the homothetics of the unit balls of these Hilbert spaces
E..

S
LEMMA 3.1. E* = lims.,, (Ep)" and more precisely (E*)z = (Ey)'.

Proof. Let B, denote the unit ball of E,, B, its polar in E* and
(E*)s, the normed space associated as usual to the 0-neighborhood
B, of E<. Let » denote the restriction map:

r: B —— K
l— /E, .
Then »(E*) is dense in E’: if not there is an Y€ E/(=E, here) Y = 0

in E, and such that Y(I) = 0 for every lc E* hence [(Y) = 0 hence
Y = 0 because E* separates E. Furthermore »(E*) is in fact

S
identified with (E*); hence (E*);, is isonﬁghic to Ej. The lemma
follows from the fact that E* = limg. 5 (E*);.

LEMMA 3.2. Let H be a pre-Hilbert space and let H be the
Hilbert space completion of H. Then for every m e N we have the
algebraic and topological equality:

Hém — (F)ém .
Furthermore the 2 natural norms m on these respective space (defined

by = and xx below) are exactly equal.

Proof. If xc H®, = Jinne Tu ® -+ Ty, with T,;€ H and
by definition:

(+) |2lugn = inf (S || Tulla - | Tulla)

(over the above finit
decompositions)

If ye(H)®" ¥y = Siiniee T ® -+ Q@ Ty with T;ecH and we define
also

(%) 1Ylliren = inf {5 |[Talig - [[Tulla}.

over the above finite
decompositions)

x e H®™ — (H)®™ and clearly
(1) Hx”(ﬁ)?m = Hw”H?m .

Now we are going to prove the converse: For every & > 0 there
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exists a decomposition = D\ Tu Q -+ ® Ty, with T e H such
that

) S Talla - | Tl 5 1 5gm + ¢

Since H is dense in H, for every (¢, 7) there exists a sequence
()qen Of elements of H converging to T',; in H.

Let Ty = Zﬁnite ng ® cre ® Tgm € H@m_

Then an easy computation shows that

g — xnﬁgm——-’o if g— +o

and that (x,),.v is a Cauchy sequence in H®". Hence there exists
some element X of H®" such that z,— X in H &n  We know (from
Grothendieck [8] Chap. 1 Prop. 3 p. 38) that H®" is injectively
contained (via X,) in <5(H'™) and since z, >« in FH™), X==
in H?mC%(H'”). Hence

(2) qu”}lém A HxHHém = HXHHém .
But
| Zallngn = 3 17l el
The second member tends to Diriniwe | Tulls * - | Timlls if @ — +oo.

Hence for ¢ large enough, from (1):

(3) 12, g = 11 lgm + 2 -
Obviously ||#,!lzen = ||%,|lzén hence from (2):

llxq||H§m——> Hxllném if g— o0
Hence from (3):
1llugm < | llgm + 2 -
Since this is true for every ¢ > 0 we have in fact:
2 ]lzgn < [[#]l2gm -

Since x ¢ H®™

”x”Hém = HxHHgm
hence:
(ID ”xHH?m = ”x|l<ﬁ>2m .

From (I) and (II) we have shown that: for every x¢c H®"
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Hx“Hgm = ]|x||(ﬁ>§m .

We recall that we have the situation:

He C (A C HH™.

with induced
norm
and density injective

Hence H®™ and (H)®™ have the same completion and the “natural”
norms on H®" and (H)®" coming from (x) and (xx) respectively are
equal which proves Lemma 3.2.

PROPOSITION 8.8. Fm(E) = S7Sw(E) (=lim,.; S&(E,) from
2.7) algebraically and topologically.

Proof. Clearly S#y,(E)C 57 Sy(E). For the converse let us
first prove that lim,., Py ("E,)C Fy("E). From the definition of the

projective topological tensor product = (Grothendieck [8] p. 31) a
basis of o-neighborhoods in (&£*)®™ is made of the sets I'(V®™) where
V varies in a basis of o-neighborhoods in E* and where I denotes
the convex hull. Hence:

(B2 = lim [(B)®*"]rvom -
14

But [(E)®™"];vem = [(EX),]®™ for the same reason hence
(B*)®™ = lim [(E*),]@™

hence
(B8 = lim [(E™),]®" .
v

In the sequel we choose V = B where B is a convex balanced bounded
subset of K such that E; is a Hilbert space. (E*), is a pre-Hilbert

S
space. From Lemma 3.1 (E*), = (E;)' and from Lemma 3.2.
[(EX)V]§"” = [(EB)’]§’" algebraically and topologically .
Hence

(Ex)é"‘ = lim [(EB)']f?"” algebraically and topologically
Beap
which proves that lim,.; Z("E,) = Fw("E).
Now if fe S&45x (&) 6™f(0) € (EX),;é"‘ (via ¥, which is not explicitely
written because it is injective) and

[16™f () |v.5 = HB"’f(o)H[(EX,é]?m .
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If fe 27 Sw(E) (5"f/E5)0) € [(E5)'1®™ and
1@"F1E)©) |l = 110"/ Ex(0) lleizz18m

Since (£*)3 is pre-Hilbertian and (&) = ((g'x\)g) (with the correspond-

ing norms) the equality of the 2 norms of Lemma 3.2 is enough to
conclude the proof (algebraic and topological equality) of Prop. 3.3.

We recall Lemma 3.1 in Colombeau-Matos [3], which is proved
there.

LEMMA 8.4. If E, and E, are two normed spaces with a linear
nuclear mapping j from E, into E, and iof f is in SAE,), then
feog is in SF5,(H). Moreover, the mapping

U: s7(H,) — S5(EY)
f——1Ff°J

18 continuous.

ProrosiTioN 3.5. If E is a nuclear bornological comvexr space,
then SZ2°Sy(E) coincides with S73(E) algebraically and topologically.

Proof. We first show that S#(F) is contained in S#ZSy,(E).
Let B, be an element of Z; such that Ej, is a Hilbert space.
From the definition of a nuclear bornological vector space there is
B, e Z; such that B, C B, and the inclusion mapping j,: By — Ej, is
nuclear. Also there is B, € <#; with B,D B, and the inclusion mapping
Jot B, — Ep, nuclear. Hence mB, is relatively compact in Ejp for
every m in N. Thus if f is in S&4(E), we have f|Ej, € 54 (Es,).
By Lemma 3 f|E; = (f|E3)cj, is in 5#%,(E5). This implies that
fe Sy (E).

Obviously 5#4(K)=lims. ,, 57;(Ey) algebraically and topologically.
From the trivial inclusigﬁ S Bs) C 575(E) and Lemma 3.4 we have:
lim 57(Ey) = lm S25.(Es) .

— <—

Beg’E BeﬂE

From 3.3 and 3.5:

THEOREM 3.6. Let E be a nuclear b.c.s. separated by its dual
then:

S B) = Stani(B) = 1;131 (B

iel
if E = lim,., E, (bornologically) where the spaces E, are Hilbert
—

spaces.
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REMARK 38.7. If F is a quasi-complete dual nuclear l.c.s. (i.e.,
its strong dual E’ is a nuclear l.c.s.) it is well known and easy to
prove that the Von Neumann bornology of E is a nuclear bornology.

LEMMA 3.8. Let K be a quasi-complete dual nuclear l.c.s. Then
Py("E) = Poy("E) for every m € N with the equality of the “natural”
norms on these spaces.

Proof. Via X, we have:

Poy("E) = (B¢ = lim (E,)é"
Beay

from the proof of Prop. 3.3.
N . ’ A . /’\ A
Fy("E) = (E")2"™ = lim (E")3)?" = lim (E"))%"
) T
from Lemma 3.2.

But the same proof as in Lemma 3.1 shows that (E"; = (E,)
hence (E’);:“"‘ = lim, [(EB)’],;é”‘ and hence (Ex)f”" = (E’)?"‘. Furthermore
the equalities o;:‘— the sets of the “natural” norms on these spaces
(defined in §2) comes from Lemma 3.2.

An immediate consequence of Lemma 3.8 is:

THEOREM 3.9. Let E be a quasi-complete dual nuclear l.c.s.
Then SFn(E) = S4x(H) algebraically and topologically.

4, Application to Boland’s theorems. The first results of
existence and approximation of solutions of convolution equations in
all the space 57 (&) when E is infinite dimensional were obtained
by Boland in [1], and remain the basic results in this topic. We
prove here that via the results of §3 they appear as a consequence
of previous Matos’s results for 5#%,(E) in [11] [12].

4.1. Aopplication to Boland’s existence theorem. Let E be a
DF'N space (strong dual of a nuclear Fréchet space) then it follows
from Th. 3.6 that 57 (E) = 94(E) = Sm(E) = SFu(E).

Hence the well known Existence theorem of Boland [1] [2] for
the convolution equations in S#°(E) appears now as a consequence
of the similar result in Matos [11] [12].

4.2. Application to Boland’s approximation theorem. Let E be
a quasi-complete dual nuclear l.c.s. It is shown in Colombeau-Meise-
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Perrot [4] that o7 (E) is dense in S4(F) and (the compact subsets
of E are strict compact) these two last spaces have also the same
convolution operators hence, from Th. 8.6 and 3.9, =24,(%) and
Z°(E) have the same convolution operators. Now let fe S~ (E)
hence fe S#(F) hence from 3.6 and 8.9 fe S5#4,(E). Now if 2 is
a convolution operator on S~ (FE) and f is in S5#4,(F) such that
7f =0 the Approximation theorem in Matos [11] [12] implies that
f may be approximated by exponential polynomials in the kernel of
<. Hence we get Boland’s approximation theorem [1] [2].

REMARK 4.3. A more general approximation theorem is given
in Colombeau-Perrot [5] in the case E is only a nuclear b.c.s. sepa-
rated by its dual. General existence and approximation theorems are
also given in Colombeau-Matos [3] and Matos Nachbin [13].

REMARK 4.4. It is also immediate to check that Boland’s result
[1] on the Fourier Borel transform is also a consequence of the
corresponding Matos result in [11].
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