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The following theorem is proved. There exists a simple
genus one knot with incompressible spanning surfaces of
arbitrarily high genus.

1. Introduction. H. C. Lyon in [2] proved that there exists
a genus one knot which has incompressible spanning surfaces of
arbitrarily high genus. Lyon’s knot has companions and the com-
panions are essential to his discussion. Presented in this paper is
a knot of genus one which is shown to have no companions (is
simple) but which has incompressible spanning surfaces of arbitrarily
high genus. The discussion is in the PL category and all knots
and surfaces are tamely embedded in S®. The notation and termi-
nology generally follow that of [2], [3], [4], [1]. All surfaces are
nonsingular unless otherwise indicated. When two surfaces are
discussed it will be assumed that they are in general position so
that their intersection consists of at most disjoint simple closed
curves (sce) and spanning arcs.

2. The example. The knot K is shown in Figure 1. Figure
2 shows a singular disc D* bounded by K. Figure 8 shows D*
with the singularities removed by cutting out two dises D’, D"
from D*. In Figure 3 an annulus H has been attached to the
“hatched” side of D* along the two boundaries oD’, 9D”. The an-
nular tube H surrounds a part of D*. Thus Figure 3 shows an
orientable surface S(—1) of genus one spanned by K, therefore K
has genus at most one.

3. Some preliminaries. Ball (3-cell) @ is selected as in Figure
4. Sphere (2-sphere) C = 6Q contains two disjoint subdises M(1) and
M(4) which contain the points KN C in two special classes. @ is
subdivided into three subballs Q(1), @(2), Q(3) by two subdisecs M(2)
and M(8) as illustrated in Figure 4 so that each sphere C(i) =
0(Q(1), i =1, 2, 3, contains two dises M(¢) and M(¢ + 1) which have
the points of K U C(2).

Figure 5 illustrates KN Q®), v = 1, 2, 3. There are four simple
ares a(t, 1), a(t, 2), b(s, 1), b(%, 2) of KN Q). Figure 6 shows how
each of these ares is completed by one of four disjoint simple ares
a(i, 1), a@, 2), 8, 1), B(t, 2) in C(z) so that each b(z, 5) U B(3s, 7), 7 =
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1, 2, is a trefoil knot and each a(s, 5)U a(s, 5), § = 1,2, is a circle
which bounds a disc in Q(%) and which has linking number +1 with
each trefoil knot.

Consider the case illustrated in Figure 6 for some ¢¢{l, 2, 8}, a
pairaUa = a(i, ) U a(i, 5), b U B = b(i, 5)U 8@, 7), some j € {1, 2}. Let
disc D(i) € Q(#) be such that oD(i) =a U a, D) NC@HE) = a, and
D(#)Nb = {x} where « is a point in the interior of D() and in the
interior of b.

LEMMA 3.1. Suppose disc E S Q1) — (a Ub) is such that 0E =
EN(C@E) —(aUb)). E divides Q1) into subballs Q', Q" such that
QRHE) =Q UK and @ N Q" = E. Then it must be that a Ub is con-
tained in just one of the subballs Q', Q".
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Proof. Suppose not. Thena & @ and b S Q"”, as EN(aUd) = @.
Now E separates C(¢) into two dises C’, C” such that C'NC" = oK
andC'UE =0Q', C"UE =0Q"”. Sinceda = da &S C’' — oC' = C' — oL,
there is no loss in generality to assume that a & C’ — 0C’. Assume
END(:) is minimal so that END(:) consists of sces each of which,
v, bounds a subdise D(v) of D(i) which contains . Let v be an
“innermost” such scc so that D(v) contains no other curves of EN
D(7). v also bounds a subdisc E(v) of E. E®N{@Ub) = @, BN
D(v) = v, so E(v)U D(v) is a sphere in the interior of Q(i), which
bounds a subball of Q(i), yet has just one point z of the interior
of b. This is impossible. Hence, Lemma 3.1 is proved.

A corollary of Lemma 3.1 is

LEMMA 3.2. Ifdisc E S Q() — K is such that 0E = EN(CG) — K)
then oF bounds a disc in C) — K and just one of KN QHE) S Q
or KN Q) S Q" holds.

The discussion continues in the context of Lemma 3.1. Two
more bordered surfaces F'(¢) and B(i) are determined in Q(%).

F(i) is as illustrated in Figure 7. F(:) is a surface of genus
one which spans trefoil b U 8. F(32) N C(3) = B and F'(3) is composed
of two dise F(4, 1), F(z, 2) connected by the three twisted rectangles
shown. a N F(i) = a N F(3, 2) is point y and D(#)N F(4, 2) is segment
xy.
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Figure 8 shows Mobius band B(). oB(i) consists of a, b, an arc
in M(i) which connects the two points (a U b) N M(¢), and an arc in
M(i 4+ 1) which connects (a Ub) N M(4 + 1). The last two ares are
B(#) N C(3). B(i) consists of two disecs, B(¢, 1) and B(3, 2), each of
which meets C(7) in one arc of B(i) N C(3), connected by the five
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twisted rectangles shown-—two of these twisted rectangles share
edge xy.

Define 0 = a U(B()N M(%)) U(B(#) N M(2 + 1))U B. D), F(3), B()
are positioned so that D(i) N F(3) = «y = D) N B®), F(i) N B() con-
sists of four line segments one of which is zy and the other three
connect the double points of the projection of b into a disc cut
from C(¢) by o. Each twisted rectangle of F(i) intersects just one
twisted rectangle of B(4) in a segment.

(8.0) Let A be an annulus which is properly embedded in
Q(7) — (@ U d) so that AN C@) =04 < Ct) — (@ Ub) and A is incom-
pressible in Q(¢) — (@ U b). Further suppose that the components of
0A are two scc which bound disjoint subdises C’ and C” of sphere
C(%) and annulus A* so that C(i) = C'U C"U A*, A*N C’ is one com-
ponent of 94, and A*NC" is the other component of )A. AUC'UC”
is a sphere which bounds subball G(¢) € Q(%) and A U A* bounds a
“cube with hole” W(1) = Q(7) — G(¢). Assume that each of the fol-
lowing is minimal: 0ANg, )ANOMH)UIME + 1)), D@)NA, BE)NA,
F@)Nn A, An(boundaries of the 8 twisted rectangles of F(7) and B(7)).
Define collection ¥ = {D(#)N 4, B(i) N 4, F(3) N A}.

The properties listed below follow in a straightforward manner.

(8.1) The components of each of D(¥)N A4, B(i) N 4, F(i)N A are
sces which are noncontractible in A4, and spanning ares.

(3.2) Each component of dA intersects ¢ in exactly two points
which lie in different segments: «, 8, B(%) N M(3), B(4) N M(¢ + 1).

(3.3) Each spanning arc of X separates the surface D(3), B(%)
or F(4) which contains it.

(8.4) There is at most one spanning arc of ¥ on D(%), or on
F(7), and there are exactly two spanning arcs in 3. (See (3.2).)

(8.5) Each spanning arc in Y meets 2y in at most one point.

(8.6) A can be deformed so that the sces of X intersect each
spanning are of Y transversally in 4, and in one point. Hence no
surface D(7), B(i), F(i) can have two scc of ¥, nor can it have both
a spanning arc and a scc of X.

(8.7) There is at most one scc v in 3 which must separate
the surface D(3), B(¢), or F(i) which contains it.

(3.7a) Simple closed curve { < F(7) which separates F(i) is
either a trefoil knot or bounds a disc in F(¢). If v £ F(3), v cannot
be a trefoil knot, hence v would bound a subdisec of F'(i, 2) which
contains y.

(8.7b) If v< D(3) then v would bound a subdisc of D(¢) which
contains x.

(8.7¢) The only sce £ & B(4) which separates B(7) is parallel in
B(@) to 8B(i) and meets xy in two points. But there is at most one



SPANNING SURFACES OF ARBITRARILY HIGH GENUS 85

_ 5 0 Z

2 el
=z

Al 9 1107

_ z

/

. - |

F1e. 9 Fic. 10 Fie. 11
spanning arc of ¥ in D(4) ((3.4), (3.5), (3.6)). Hence v of 3 cannot
lie in B(3).
From (3.0)-(3.7c) follows:

F1a. 12

LemMA 3.3. Under the hypotheses of (3.0), Figures 9, 10, 11, 12,
13 give the possible positions of A in Qi) with the understanding
that two additional variations for the position of A which are
similar to the two shown in Figure 12 are not illustrated in
Figure 12.

Denote the two components of D* N Q as subdises D*(a) and
D*(b) where a(i, 1) U a(i, 2) € D*(a) N Q) = D*(4, @) and bz, HU
b(t, 2) € D*(®) N Q1) = D*(4,b), 1 =1, 2, 3.

LemMmA 3.4. Suppose annulus A is as in (3.0) but with each
instance of “a Ub” in (8.0) replaced by “K”’. Also let a = a(, 1)
and let a(i, 2) be parallel to a(i, 1) in D(¢). Let b =b(, 1) and let
b(t, 2) be parallel to b(i,1) in F(i). Then the possible positions for
A in Q1) — K are: ,

(1) as in Figure 9 with either one or both of a(i, 1) and a(i, 2)
n G();

(2) as in Figure 10 with either just one or both of b(t, 1) and
b(z, 2) in G();
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(3) as in Figure 11 with K & G(1);

(4) as in Figure 13 with K < G(i);

(5) eight possibilities similar to the two illustrated in Figure
12: four as in Figure 12 in which AN D¥*(a) = @ = AN D*(®) and
four as in Figure 12 in which either AN D*(a)# @ and AN
D*b) = @, or AND*a)= @ and AN D*®) # @.

Proof. This follows from Lemma 3.3 and the observation that
no component of 04 in M(i) (or in M(i + 1)) can intersect both
oD*(a) and 0D*(b). If this observation were not true such an inter-
section would give two spanning arcs of A, one in D*(a) which
with a would bound a dise D(4) in Q(¢), the other in D*(b) which
with B bounds a surface F'(4) in @(z). This would yield at one hand
that W(i) would be a “cube with unknotted hole” and at the other
hand that W(¢) would be a “cube with knotted hole”, a contradic-
tion. _

In preparation for Lemma 8.5 denote ball S° — @ by V. Note
C = 0V. Figure 14 illustrates V and the four components of VN K.
Singular dise D* intersects V in three pieces: disec D*(1) bordered
by segment D*() N M(1) and the single arc of K cut by that seg-
ment, dise D*(3) bordered by segment D*(a) N M(4) and the single
arc of K cut by D*(a) N M(4), and disc D*(2) bordered by the seg-
ments D*(a) N M(Q), D*() N M(4), and the two so far unmentioned
segments K(1), K(2) of KNV. In the interior of D*(1) is segment
r(Dy@), {x(1), y1)} C K, of singularities of D* and the other seg-
ment x(2)y(2) of singularities of D* lies in the interior of D*(3).
D*(2) N D*(1) = 2(L)y(1), D*(2) N D*(3) = x(2)y(2).

Let dise DV be as illustrated in Figure 15. D*@2) £ D and
dD consists of K(1), segments D*(2)N(M(1) U M(4)) and a simple are

M)

M(4)
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{ which connects the ends of these two segments in C and meets
each of 0M(1) and 0M(4) once. D meets D*(1) in two disjoint seg-
ments: u(L)v(1) in D — (D*@)UL), and z)y(D)z(1) where Z(1)e
D*1)n(D—(D*@2)UQ). Analogous disjoint segments wu(2)v(2),
2(2)y(2)2(2) ecomprise D N D*(3).

LeMMA 3.5. Suppose disc ECSV — K s such that oFE = EN
(C — K). Suppose that each of DN E, D*(1) N E, D*B) N E is mini-
mal. As E divides V into subballs Q', Q" such that V =@Q U Q",
Q' NQ’ = E, then it must be that D* NV = D*(1) U D*(2) U D*(3) s
a subset of just one of the subballs Q', Q.

Proof. Suppose not. Note that each arc: oD*(1), 0D*(8), K1),
K(2) must lie entirely in Q" or in Q".

(a) Suppose 0D*(1) £ @ and K()U K@)UoD*8) £ Q". Then
DNE # . By the minimality of DN E,0END = @ so DNE con-
sists of disjoint scc v each of which bounds subdise D(y) of D
which must contain at least one point of 0D*(1)N D = {u(1), (1), 2(1)}.
Among such v there is a D(v) which contains no other seec of DNE.
So D(v) £ Q'. v also bounds subdisc E(vy) of E where EMNK =@
and E(¥) N D(v) =~. So sphere E(v) U D(v) bounds subball V* in
the interior of V. Of the three points (1), »(1), (1), just one can-
not lie in D(vy), yet if two are in D(vy), the third is isolated for
another instance of just one point of dD*(1) in some other “inner-
most” D(v). Yet all there of u(l), v(1), 2(1) cannot lie in D(v).
Hence case (a) cannot occur. Similarly

(b) 0D*@8) < Q and K, U K, U dD*(1) & Q" cannot occur.

(e¢) Suppose K(1) £ @', K(2) £ Q'. By the minimality of DN E
there is one spanning arc of DN E = D*(2) N E, with ends in the
two components of D*(2) N C.

(i) oD*A)UoD*(B) <= @'. To separate K(2) from the six points
u(1), u(2), v(1), v(2), 2(1), 2(2), each point must lie in subdisc D(v) of
D cut by sece v EN D which contains no other sce of EN D.
There could be one, two, three—up to six such subdises D(v), but
each combination leaves a situation similar to case (a): an odd
number of the six points in the boundary of a ball in the interior
of V, a contradiction.

(ii) oD*(1) € @', 0D*(8) € Q", or 0D*(8) = Q", dD*(1) £ @ each
gives a case similar to (i) above.

(ili) aD*(1) UoD*(8) = Q". Redefine disc D so that K(2) oD
instead of K(1), then apply (i) and (ii) above.

(d) Suppose K1) U K(2) £ @ and oD*(1) UoD*2) < Q". Again,
there is just one spanning arc of F ND which separates K(1)U K(2)
from u(1), u(2), v(1), v(2), 2(1), 2(2). It can be assumed that the span-
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ning arc meets each of x(1)y(1) and xz(2)y(2) in a single point. So
END*(1) +# @ + END*8). Each of these two intersections consists
of secy. Among such v on D*(1) is an “innermost” v which bounds
subdise D(v) of D*(1) which contains no other sce of E N D*(1) yet
which contains a point of {x(1), ¥(1)}. v bounds subdisec E(v)SE. If
E(y)N D*@8) = @ then sphere D(v)U E(v) bounds a ball V* in the
interior of V and oV ™ contains just one point of K(1) or K(2),
which is impossible. So E(v)N D*(8) # @. There exists scc v(1) in
E(v)ND*(8) which bounds “innermost” subdise D(v(1)) of D*(38) which
contains a point of {x(2), ¥(2)}. ~(1) bounds a subdise E(v(1)) S E(v)
for which, for the same reason two sentences above, E(v(1))N
D*(1)# @. Thus there is an infinite sequence of disjoint sce v, v(1),
v(2), --- of E N (D*(1)U D*@8)) bounding properly nested subdiscs
E> E(v) D E(vy(1)) D E(v(2)), --- which is impossible. Cases (a), (b),
(e), (d) cover all possible negations of the conclusion of Lemma 3.5
and these cases cannot occur. So Lemma 8.5 is proved.

The discussion continues in the context of Lemma 3.5. Three
more dises M(5), M(6), M(7) are determined in V as in Figure 16.
Note their properties: D*(2)NM(7T) = x(1)y)1), D*(2) N M(5) = x2(2)y(2),
D*(1)N M(7) is a subdise of D*(1) which contains x(1)y(1)z(1), D*(3)N
M(5) is a subdisc of D*(3) which contains 2(2)y(2)z(2), D*(2) N M(6) =
D*N M(6) is a spanning arc of D*(2) which separates D*(2) into two
subdiscs, one containing 2(1)y(1), the other containing x(2)y(2). Q(4)
denotes the subball cut from V by M(4) and M(5), ball Q(5) is cut
from V by M(5) and M(6), Q(6) is cut by M(6) and M(7), Q(7) is cut
by M(7) and M(1). In Q(4) determine Mobius band B(4) and in Q(7)
determine Mobius band B(7) as illustrated in Figure 17. 0B(4) con-
sists of a center line in D*(8) from D*(3) N M(4) to x(2), the seg-
ment K(1) N Q(4) to M(4), and segment B(3) N M(4). oB(7) similarly
consists of a center line in D*(1) from D*(1)N M(1) to x(1), the seg-
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ment K(1) N Q(7), and segment B(1) N M(1). BEach of B(4) and B(7)
congists of two disecs connected by the five twisted rectangles as
shown.

4. K is simple. Let T be a torus which is incompressible in
S* — K. Denote the component of S® — T which contains K by G.
T N C consists of a collection of disjoint simple closed curves. Sup-
pose T N (M(2) U M(3)) is minimal, and 7 N C is minimal. Then, by
Lemma 3.2 and Lemma 3.5, no seec of either TN C or T N(M2)U
M(3)) can bound a dise in @ or in V. So the closures of com-
ponents of T—(C(1) U C(2) UC(3)) are incompressible annuli in Q(1)—K,
Q2) — K,Q@B) — K, V — K. Denote this collection of annuli by I.
Suppose I' = ¢. The annuli of I" can be positioned so as to satisfy
the hypotheses of Lemmas 3.3 and 3.4. Then, from the minimality
conditions three sentences above and from the incompressibility of
T in S§® — K, none of the Lemma 3.4 cases (3), (4), (6) can oceur in
Q(),1=1,2,38. Soif I'#+ @ it can be assumed that 7N (C—(M(1)U
M@4)) = @. T can be deformed so that 7'\ D* is minimal. Sup-
pose annulus Ael’, A =A%) S TNQ®), 1€, 2, 8}, is an instance of
(1) of Lemma 3.4 for which D*(z, a) S G(i). A gives rise to two
more annuli of I’ of the same type of case (1) of Lemma 3.4 in the
other two balls of Q. The three annuli join together in 7' to give
an incompressible annulus A* of 7N Q which forms part of the
boundary of ball G(1)UG2)U GB) = G* where D*(a) S G* and
D*(®) € @ — G*. Thus 4D*(2) N M(1) S 6G* and 4D*(3)N M(4) < 6G*
but segments D*(b) N (M(1) U M(4)) are not in 6G*. In Q(4) annulus
A of TN Q(4) which shares the component dA N M(4) with A* must
be part of a ball G in Q(4) which contains 4D*(8) but does not con-
tain (K1) U K@2)) N Q4). Then G N M(5) is a dise, bounded by a
component of 3A, which contains no point of K(1) U K(2). As T —
(C—(M(Q) U M(4))) = @, the component A’ of TN Q(5) continuing
from A must have a boundary component in Q(6). The ball G’ cut
by A’ from Q(5) which shares dise G N M(5) with G can contain no
points of K1) U K(2). G’ N M(6) is a subdisc of M(6) which has no
points of K, hence T would be compressible in S® — K, a contradic-
tion. So there can be no such A above and the only instances of
(1) from Lemma 3.4 which arise are those for which just one of
a(i, 1), a(i, 2) is contained in G(¢). Similarly the only instance of
(2) from Lemma 3.4 which can occur are those for which just one
of b(3, 1), b(2, 2) is contained in G(7). From this easily follows:

LemMmA 4.1. If I + @, T bounds a regular mneighborhood of K.

Next, suppose that I' = . There is no loss in generality to
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assume that TNC = @ and TN (Ui, M%) = @. Then TS Q%) — K
for some i€{l,2,3,4,5,6,7. As T is incompressible in S® — K it
may also be assumed that TN (D*NQEHE) = @. If W is the com-
ponent of S® — T other than G, then W < Q(i) — (6Q(i) U D*).
Suppose i1€{1, 2, 3,4, 7). Let P be a disc properly embedded in
Q1) with 0P = o (cf (3.2)) so that P contains as subdises D(¢), D*(z, a),
F(i, 1), B(t, 1), B(i, 2), and two pieces of D*(z,b). P intersects the
rest of D*(7,b) in three segments, oue in D(7), two in F(i,1). It
can be assumed that TN P is minimal. As T is in the interior of
Q(¢) and separates Q(i), T N P must have as components at least 4
of the 5 sce illustrated by dashed lines in Figure 18. Select the
two subdises P(1), P(2) of P as in Figure 19, PQ)c PR)cC P. As
P(1) is pivoted in Qi) on its edge in D*(%, a) through angles 4:
|9] < 5x/6, the components of D(i, )N T sweep out two annuli in T
and part of the boundary of a regular neighborhood of D*(¢, a) in
Q(%), under the assumption that T N P(1, ) is minimal, for each 4.
See Figure 20. Similarly as P(2) is pivoted in Q(¢) on its edge in
D*(4, b), as in Figure 21, through 4:|0] £ 7/2, the sweep continues
to complete the tube around D*(7, @), again, under the assumption
that TN P(2, #) is minimal, each §. At |6| = x/2, the P(2, 4)’s have
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swept the part of T in Figure 22. For 7/2 < || <« the family
{P(2, 0)} complete T to yield a surface of genus two as the only
candidate for T, a contradiction.

For ie{5,6} and TN (D*NQK) = @, T < Q<) is impossible as
there are no incompressible surfaces in Q(¢) — D*, 7 =5, 6.

Hence one can conclude:

LEMMA 4.2. T # @.
Lemma 4.1 and Lemma 4.2 then give
THEOREM 4 3. K 1is simple.

5. K is of genus omne. Suppose 1€{l,2, 3,4, 7 and recall
Mobius band B(¢) in Q(¢) as presented earlier. Suppose disec E < Q(4)
is such that 0F = 0B(¢). Consider disc P of Lemma 4.2 for which
Figure 23 features D(7), aS P, and bN P consisting of two segments
and three points, one of which is b0 D(3) = {x}. Again let {P(2, 0)}
be the family of discs of which P(2, ) is obtained by pivoting
P(2) = P(2,0) on its edge which contains the two ares of b through
angle 6, |§| = n. (See Figure 23.) Assume E N P(2,6) is minimal,
for each 6. For 0 < |0] < 57/6 each point x(f) must connect by an
arc of ENP(2,0) to a point on the pivot edge of P(2). Yet at
6 = 0, X(0) in D(7) connects by an arc of EN D(:) to a point of a.
This is impossible. Consequently, one has:

P(2.0)

Fic. 23
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LEmMMA 5.1. For t€{l,2, 3,4, T}, dB(t) cannot bound a disc in
Q).

REMARK 5.1. For 1€{l,2,38}, if disc E < Q@) is such that
EnC@)=are a/,0E=aUa’,a’Nb=© and if ENb is minimal,
then (F — 0E)N(b — ab) # @.

REMARK 5.2. For 1€{l,2, 38}, if arc B < C(:) is such that
B8 Nb=0B = odb, then B Ub cannot bound a disc in Q(z).

REpUCTION REMARK 1. Suppose E is a compressing disc for
(possibly bordered) surface F (i.e., ENF = 0E and 0F does not
bound a dise on F'). Suppose s and ¢ are two points of 0FE and
simple arc 6 £ E is such that 06 = {s, t} and 6 cuts E into two sub-
discs, E’, E"”. Suppose simple arc n < F' is such that oy = {s, ¢t} and
there exists disc E* for whichdE* =6Un, E*NE =90, E*NF =17,
then one of dises E'U E* or E"” U E* is a compressing disc for F.

REDUCTION REMARK 2. If E is a compressing disc for surface
F, scc v £ E — oF bounds disc E(v)CE, v bounds disc E* such that
E*N(E — EW) =@, E*NF = @, then (K — E(v))UE* is a compres-
sing disec for F.

THEOREM 5.1. S(—1) is incompressible. K is of genus one.

Proof. Suppose E is a compressing dise for S(—1). Assume
for each ie{l, 2, 8, 4, 5, 6} that £ N C(¢) is minimal not only via de-
formations but also with respect to the operations of the two re-
duction remarks. Also assume that 6E N(Ui-; M(k)) is minimal.

If 6EN D* + @ then ENC # @ and for t€{l1, 2, 3}, ENC(X) # @.
Because of Lemma 8.2 the components of E N C(:) are subdiscs E'
of E, E'NC(1) = oK', where oE’ is composed of simple ares in C(%),
with ends in some of the four segments of (D*(¢, @)U D*(4, b))N
(M(%) U M(s + 1)), and of center lines of D*(4, @) or D*(4,b). Just
three possibilities need be considered.

(a) 0E’'=a U a where a is a center line of D*(4, ) and o’ =
C(1). By Remark 5.1 this case cannot occur.

(b) 0E’' =bUpB" where b is a center line of D*(¢, b) and 3’ SC(v).
By Remark 5.2 this cannot occur.

(¢) 0E'ND*(i, a) = a, a centerline of D*(z, a); 0E'N D*(4, b) =
b, a centerline of D*(4, b); there exists arc @’ in M(4 + 1) from da to
0b; there exists arc 8’ in M(s) from oa to db, so E'NC(H) = a’' U B';
0E' = aUa’UbUB’. But then oE’ bounds a Mobius band similar to
B(1) in Q(z). This is contrary to Lemma 5.1.
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As none of (a), (b), (¢), can occur, 0K N D* = @. Thus 0FE < H.
It can be assumed that 0F = H (N M(6) which bounds subdisc M* of
M(6) and M* N D*(2) is a segment. There is no loss of generality
to assume that EN M* = 0F and that EU M* is a sphere in ball
QRG)UK®). But EUM™ contains just one point of K(1), a contradic-
tion. So, there can be no compressing disec for S(—1) and S(—1) is
incompressible in S® — K. K is of genus at least one, and S(—1)
then guarantees that K is of genus one.

6. More spanning surfaces for K. Recall that annulus H
bounded a regular neighborhood of D*(2) N (Q() U Q(6)). Figure 24
shows H continued through Q(4), Q(7) and @ to yield H, part of the
boundary of a regular neighborhood of disk D** = D*(2) U D*(a)U
D*®). Cap annulus H by the disc in M(1) cut by 6H, which con-
tains D*(b) N M(1), and by the disc in M(4) cut by 6H which con-
tains D*(a) N M(4). The result is a sphere Z which bounds 3-cell U,
as in Figure 24.

For ie{l, 2, 8} define C*(z) = C(3) — U, @*(?) = Q(¢) — U, so that

Fig. 24
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C*(i) is a sphere with four holes and Q*(?) is a “cube with two
holes”.

Next, restrict 7€{2, 8}. Consider small product neighborhood
C@@)xI of C(¥) in Q(i), where I=1[0,1]. Let ne{l, 2,8, ---} and
define C(2, j) = C@2) x{j/n} for j€{0,1,2,3, ---, n}, C@3, k) = CB3) X
{k — ))n + D}, ke{l,2, ---, n + 1}. Note that C@2) = C(2, 0), that
there are 7 additional copies of C(2) in the interior of @(2), each
copy parallel to C(2) in Q(2). Also, C(8, 1) = C(8)x {0} = C(8), but
C2, 1) = C@2)x{l/n} = C(2). Note also that the elements of {C(1),
C2, 75,C8k); j=1,2,---,mk=1,2 ..+, n + 1} are disjoint.

Dise D**iscut by C* = C(1))UU?-, C2, HUU1CB8, k) in 8n + 8
disjoint spanning segments which cut 4n + 4 properly nested sub-
dises D**(1)> D**(2)D---D D**(4n + 4), where D**(1) = D**. Note
also that C* N U is a collection of 8n + 8 disjoint dises L(¢), t =
1,2 ---,8n + 8, parallel in U and which slice A into 8n + 7 an-
nuli Hk), ke{1,2, ---,8n + T}. For <c{l,2, ---, 4n + 4} first note
that 0D**(») € L(#)U L(8n + 8 — #+ 1). Secondly, let U(s) be the
component of U cut by the dises L(~), L(8n + 8 — 7+ 1) with these
dises attached. So D**(/) € U(s). Define H(/)< H such that
oU() = L(#) UH() UL®Bn +8 — 7+ 1). In U— D** consider pro-
duct neighborhood HxI of H. Then for sc{l,2, ---, 4n + 4} de-
fine H'(/) = H()x{(dn + 4 — 2)[(4n + 4)}. Next attach the annuli
cut from each of dises L(s) and L8n +8 — 7+ 1) by oH'(2), to
H'(2) to form annulus H*(v). H*(2) is merely H'(#) which is “flared”
so that its boundary lies in H. The “flare” disappears at
H*(4n + 4) = Hdn + )< {0} S H. H*(4n + 4) lies in V and H =
H*(4n + 4)N(QG)UQ®)). Define C*2, 5) =C2,5) -~ U,5=1,2, ---,
n, C*@,k)=C@8, k) — U, k=12, ---,n+1. Let F*x)=C*Q)U
Ui C*@, HUUE C*S, k) UUZS H*(4).

Each of the four boundary components of each of C*(1), C*(, j),
C*3,k),5=1,2,---,m k=12 ---,n +1, is a boundary compo-
nent of just one H*(s) and so F*(n) is a single eclosed surface.
Figure 25 schematically illustrates the connection scheme for F'*(n).
The scheme is similar to the one in [2] but the surface F*(n) here
is actually connected in a different manner. The surfaces F'*(n) are
adapted from one of the algorithms in [1]. Euler characteristic:

X(F*(n)) = é XC*2, ) + gX(C *(3, k) + X(C*(1))
=n(—2) + 0 + 1)(—2) + (—2)=—4(n + 1) .

Hence F'*(n) has genus 2n + 8. If n = 0 were allowed, then F'*(0) =
C*HUC*B)U Uit H*(#) is again a surface of the same type as
F*mn),n=1,2, ---, and has genus 3. So, in general, ne{0, 1,2, ---}
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is permitted. Each F'*(n) is a closed surface in S? hence F*(n) is
orientable.

Remove H from F*(n) to obtain orientable spanning surface
S(n) = (F*(n) — H)U (D* — (D’ U D)) for K, of genus 2n + 8, n =
0,1,2 -.--. Figure 26 illustrates S(1).

LEMMA 6.1. For each #=1,2, .-, 4n + 4, H*(¢) is incompres-
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sible in S® — K.

Proof. Each noncontractible sce v in H*(~) is parallel in H*(/)
to either component of 0H*(~), hence v bounds a disc in U which
intersects each of the two ares of KN U in one point. If such a
see v were to bound a disc E in S* — K, ENH*(/) = v, a contradic-
tion similar to that in the proof of Lemma 3.1 would arise.

LEMMA 6.2. For each 1 =1,2,3 C*(4) is incompressible in
S* — K.

Proof. Suppose not. Suppose E is a compressing dise for C*(z),
some 1€{1,2, 3. Then EN C*3)=0FE does not bound a disc on
C*(i). Assume that EN(U;. (C*(§) — C*(@))) is minimal not only
with respect to deformations but also with respect to the two re-
duction remarks. Then, by Lemmas 3.2 and 3.5, & C Q,(7). But
this contradicts Lemma 3.2.

THEOREM 6.1. For ne{0,1,2, ---}, S(n) is incompressible in
S® — K.

Proof. Suppose not. Suppose E is a compressing dise for S(n),
some ne€{0,1,2, ---}. Then ENS(n)=oF does not bound a disec on
S(n). Assume for each 1 =1,2,38,4,5,6,7 that £ N C(4) is minimal,
and that £ N H is minimal.

If En H = @, then just one of the following can hold:

(a) there is some <€ {1, 2, ---, 4n -+ 4} such that dF S H*(v),

(b) either E S C*(1) or there is some 7¢e{2, 3}, some je
{1, 2, ---, n + 1} such that 6F = C*(1, 7),

(¢ 6E<S D* — (D'UD").

(a) and (b) cannot occur because of Lemma 6.1 and Lemma 6.2.
In the proof of Theorem 5.1 it was shown that (¢) cannot hold. So
EnH =+ @. Note that HN(QA)U Q) = H(dn + 4) — H < S(n) so
if EN(H'4n +4) —H)+* 0, EN(H'4n +4) — H) S 0E. Let col-
lection O* consist of annuli H(k),k=1,2,38, ---,8n + 7 with the
one identified with H'(4n + 4) removed and replaced by H (so that
there still are 8n + 7 of them) and two dises L*(1), L*(8n + 8),
where L*(1) is cut from L(1) by 6H’1) and L*(8xn -+ 8) is cut from
L(8n + 8) by 0H'(1). Denote segment ¢ = D**N L*(1), segment d =
D** 0 L*8n + 8).

From minimality conditions above, for each H(k)e O*, H(k) N\ E
consists of at most disjoint spanning ares in H(k) and E with
boundary in both components of dH(k). Each of E N L*(1) and EN
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L*@8n + 8) consists of at most spanning arcs in E with boundary
in aL*(l) and ¢, or in dL*(8n + 8) and d. Call the class of all such
arcs O and suppose O # @. Then each arc in O separates E into
two disjoint subdiscs and among these subdises are “end-dises” which
contain no other subdisc. If O = @, E must have at least two
“end-discs”. If E* is an “end-disc”, then oE* = 6 U7 where ¢ is a
spanning arc in O and 7 C 9E. There are just two possibilities
for 4:

(a) 0 < H(k), and 7 is a subset of one of C*(1), C*(2, n),
C*@3,n + 1),and E* < @*(1),or E* S Q*(2, n), or E* C Q*(3, » + 1);

(b) 6 < L*(1) and 7 < C*(1) U D*(1) U (A N Q(7)) with one arc in
each of the named pieces, and E* S @(7) or 6 £ L*(8n + 8) and
7S C*3) UD*B) U (H N Q4) and E* < Q4).
Figure 27 gives a schematic representation of S(2) with possibilities
(a) and (b) denoted by “speckled” dises. Case (a) contradicts Remark
5.1 or Remark 5.2 and case (b) contradicts Lemma 5.1. So 0 = ¢,
which contradicts EN H = @. Hence S(n) is incompressible in
S® — K.

7. A conjecture. Theorems 4.2. 5.1, 6.7 establish the existence
of a knot as in the title of this paper. If one were to replace arc
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. 2q+1
. < — |
. crossings
B
Fia. 28

b in @Q(2), which has 3 self-crossings which provide F'(2) and B(2)
with 8 twisted rectangles, by arc b’ with 2¢ + 1 crossings as illus-
trated in Figure28,q =2, 3, 4, ---, so that F’(2) still has dises F(2, 1)
and F(2, 2) but they are attached by 2¢ + 1 twisted rectangles and
a similar situation occurs for B’(2), then all the previous discussion
still holds. Trefoil b U 8 is replaced by torus knot (2, 2¢ + 1) and
B'(2) is a twisted Mobius band. So there are infinitely many con-
structions possible to obtain a simple knot of genus one with in-
compressible spanning surfaces of arbitrarily high genus. It is this
author’s conjecture that the knots are all different.
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