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SUFFICIENCY, KMS CONDITION AND RELATIVE
ENTROPY IN VON NEUMANN ALGEBRAS

Fumio HiAl, MASANORI OHYA AND MAKOTO TSUKADA

The sufficiency in von Neumann algebras is discussed
with some applications to classification of normal states.
It is shown that the concept of sufficiency characterizes the
KMS-states and the invariant states with respect to a
modular automorphism group. The relations between the
sufficiency and the relative entropy are established.

Introduction. Since the investigation of sufficient statisties in
abstract measure theoretic terms was initiated by Halmos and Savage
[10], the concept of sufficiency has been developed by many mathe-
matical statisticians in terms of various relations given by compar-
ison of experiments, risk functions within the framework of stati-
stical decision problems and so on. A characterization of sufficiency
was given in [12] through the measure of Kullback-Leibler informa-
tion.

The concept of sufficiency was first generalized by Umegaki [22,
23] to the noncommutative case of semi-finite von Neumann algebras
with some extension of the Kullback-Leibler information (usually
called the relative entropy). Later the related discussions especially
concerning the relative entropy for quantum systems have been
made by several authors, e.g., Araki [2, 3], Gudder and Marchand
[7], and Lindblad [13].

As defined precisely and explained in §§1 and 4 of this paper,
the concept of sufficiency is more or less considered through the
informativity of a certain subalgebra with respect to a given alge-
bra for a dynamical system of interest. Namely, in the case that
such a subalgebra is sufficient, the relative entropy on the subalgebra
is equal to that on the given algebra. This fact may or may not
be a reason why the concept of sufficiency has not been entered
into analysis of physical systems, in which the change of entropy
is thought of more relevant.

The Kubo-Martin-Schwinger (KMS) condition was introduced by
these three authors [11, 14] as a boundary condition of the thermal
Green function. Haag, Hugenholtz and Winnink [8] showed that in
the operator algebraic framework this condition is a fundamental
one describing thermal equilibrium of quantum systems. The KMS
condition through the Tomita-Takesaki theory now becomes a core
of studying von Neumann algebras.

Under the above historical basis, our main motivation of this
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work is as follows: How useful for quantum systems is the concept
of sufficiency? How much of the related topiecs of sufficiency, mostly
done for the commutative case, can be generalized to the noncom-
mutative case?

Having these questions in our mind, we discuss the sufficiency
with some applications to classification of normal states on the basis
of recent development of von Neumann algebras.

In §1 of this paper, we establish definitions and notations used
throughout and also give some simple facts.

In §2, it is shown that the concept of sufficiency characterizes
the invariant states and the KMS-states with respect to a modular
automorphism group.

In §3, we prove some formulas on the relative entropy using
Araki’s definition of relative entropy.

In §4, combining several theorems obtained in the previous
sections, we establish some results which indicate the relations be-
tween the sufficiency and the relative entropy.

As a whole, we like to claim that the concept of sufficiency
might be very useful for analysing von Neumann algebras and hence
some quantum systems.

1. Definition and preliminaries. Throughout this paper, let
N be a von Neumann algebra with unity I acting on a Hilbert
space 57, and ® be the set of all normal states of 9. A dynamical
system of physically interest is deseribed by a triple (%, G, a),
where a,, t € R, is a strongly continuous one-parameter automorphism
group of N. A state pe @ is said to satisfy the Kubo-Martin-Sch-
winger (KMS) boundary condition at a certain constant 8 > 0 with
respeet to «, if for every pair A, BeI there exists a bounded
function F', z(z) continuous on and holomorphic in the strip0<Imz<pg
with boundary values:

F. 5@ = pa,(A)B) and F, ¢ + iB8) = ¢(Ba,(4)) .

If @ satisfies the KMS condition with respect to «;, then @ is proved
to be a,-invariant, i.e., poa, = @. Considering a;, we may take
B =1 in the sequel discussions. Takesaki showed in [17] using
Tomita’s theory that to every faithful state ¢ €@ there exists a
unique one-parameter automorphism group (i.e., the so-called modu-
lar automorphism group) of with respect to which @ satisfies the
KMS condition at g = 1.

In this paper, a subalgebra I always means a von Neumann
subalgebra of N with I. For a subalgebra M and a state e ®, let
E,(-|M) denote the conditional expectation with respect to M and
@ (if it exists), which is characterized as a norm one normal projec-
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tion from N onto M satisfying p(A) = @(E,(A|M)) for all Ae I (cf.
[19, 21]). It was shown by Takesaki [18] that for a faithful state
e ® the conditional expectation E,(-|M) exists if and only if M is
invariant under the modular automorphism group of.

According to [5], for any two faithful states @, 4 € ® there ex-
ists a strongly continuous function ¢+ u, of R into the unitary
group of 9N which is a g@-cocycle, i.e.,

us+t = usa?(ut) ’ Sy t e R ’
and which satisfies
o(4) = u,of(A)uf, teR, Aeh.

This @-cocycle u, is denoted by wu, = (Dvy: Do), and is called the
Connes Radon-Nikodym derivative of - with respect to ¢. Some
discussions are found in [4, 9] concerning Connes Radon-Nikodym
derivatives and conditional expectations.

Let S be a subset of ®. A subalgebra I is said to be sufficient
for S if E,(-|M) exists for each @€ S and for every AecIl there
exists an A,€ M such that

A0=E¢(A|Em) a.e. [@], pel,

where A = B a.e. [p] means ¢(JA — B|) = 0. This definition of suf-
ficient subalgebras is somewhat weaker than that in [22]. Also we
call M to be minimal sufficient for S if M is sufficient for S and
any subalgebra being sufficient for S includes IX.

For @, 4 €®, it is said that + is absolutely continuous with re-
spect to @ (we write + < @) if for each AeMN, p(A*A) = 0 implies
J(A*A) = 0; that is, » K @ if and only if s() < s(p) where s(p) is
the support projection of . We give here the elementary facts of
sufficiency which are readily seen from the definition.

(1°) Let @, 4 €® with +<®. Then a subalgebra It is sufficient
for {p, v} if and only if E,(-|IM) exists and (A4) = (E,(A|M)) for
all Ae¥l.

(2°) If a subalgebra I is sufficient for {@, v}, then @ =+ on
9N if and only if @ =« on .

When S(c®) contains a faithful state @, then:

(8°) A subalgebra I is sufficient for S if and only if M is
sufficient for every pair {p, 4} with € S.

(4°) If M is sufficient for S, then any subalgebra I, including
IR is sufficient for S whenever E,(-|M,) exists.

2. Sufficiency and characterization of states. The following
lemma is a restatement of [4, Lemma 1.6] in our terminology. We
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give the proof for completeness.

LeEMMA 2.1. For each subalgebra M and two faithful states
@, v €O, the following conditions are equivalent:

(i) WM is sufficient for {p, ¥};

(i) E,(-|M) exists and (Dy: Dp), € M for every te R.

Proof. Let =@ M and =« [ M. Assume that M is suf-
ficient for {@, 4v}. Then the conditional expectation E,(-|M) exists
and (4) = J(E,(A|M)) for AeN. By [5, Lemma 1.4.4], we have

(Dy: D), = (D(roE): D(poE)), = (Dy: Dp), e M

for every te R, where E(:) = E,(-|IM). Conversely assume that
E,(-|M) exists and (Dy: Do), e M for all tec R. Since of =of | M,
it follows that u, = (D+: Do), is a $-cocycle. By [5, Theorem 1.2.4],
there exists a unique faithful normal semi-finite weight  on M
such that (Dy:D®), = u,. Define a faithful normal semi-finite
weight 4" on N by '(4A) = F(E(A|M)) for AeN. Then it follows
that

(Dy": Dp), = (D¥: DP)y = (Dy: Dp),, teR.

Hence we have ' = 4, s0 that y(A) = y(E,(A|M)) for every AecN.
This shows that I is sufficient for {p, 4}. O

In this section, let @ be a fixed faithful normal state of 9 and
of{ its modular automorphism group. Let Z, be the subalgebra con-
sisting of all A€M such that ¢(AB) = @(BA) for every Be . The
subalgebra Z, is called the centralizer of @ and is exactly the fixed
point algebra of of (ef. [17, Lemma 15.8)]), i.e.,

Z,={AeN:0f(A) = A, tcR}.

Let 8 be the center of %, i.e., 3=NNWN. Clearly 83cZ,. Let
I(@) be the set of all gf-invariant states in &, and K(®) be the set
of all states in © satisfying the KMS condition with respect to of
at 3 =1. Then we have:

THEOREM 2.2. (1) For each €®, 4 € I(p) if and only if Z,

1s sufficient for {®, +}.
(2) The centralizer Z, is minimal sufficient for I(p).

Proof. (1) Letq e® and take 4, = (+ + ®)/2. Then we easily
see that € I(p) is equivalent to 4, € I(®), and the sufficiency of Z,
for {@, ¥} is equivalent to that for {, 4~}. Therefore we can assume
that « is faithful. Since Z, is elementwise invariant under o?,
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there exists the conditional expectation E,(-|Z,) from % onto Z,.
Hence, in view of Lemma 2.1, it suffices to show that « € I(p) if
and only if (Dy: D), € Z, for every te R. If + € I(p), then by [5,
Lemma 1.2.3] there exists a positive self-adjoint operator % affiliated
with Z, such that (Dy: Do), = h'* e Z, for all tc R. Conversely sup-
pose that (D+: D), € Z, for every tc R. Since

(2.1) 0{(4) = (Dvy: D9),0¢(A) Dy Dp)F ,
we have
P(0!(A)) = p(of(A)) = p(A), AeN.

Hence it follows that @ is ¢7-invariant, and thus « is o{-invariant
(ef. [17, Theorem 15.2]).

(2) It follows from (1) that Z, is sufficient for every pair
{p, ¥} with re (). Hence Z, is sufficient for I(p). To show the
minimality of Z,, let I be any subalgebra which is sufficient for
I(p). We now prove that Z,cIR. Take any positive invertible
operator k€ Z, with @(h) =1, and define a faithful state v-€® by
y(A) = p(hA) for AeN. Then we have + € I(@) and (D+r: Dp), = h*.
Since (D+: Dp), e M for every t€ R by Lemma 2.1, it follows that
heM. Thus Z,C M. |

THEOREM 2.3. (1) For each €@, e K(p) if and only if 3

18 sufficient for {@, r}.
(2) The center 3 is minimal sufficient for K(p).

Proof. As in the proof of Theorem 2.2, we can assume that 4
is faithful. If o€ K(®), then by [15, Theorem 5.4] there exists a
positive self-adjoint operator h affiliated with 3 such that (4) =
p(hA) for AeN, so that (Dy: Dp), = h'*e 3 for every teR. Con-
versely if (D+: Dp),e 3 for every te R, then by (2.1) we have
o/ = of and hence € K(¢). Thus (1) is proved. The proof of (2)
is analogous to that of Theorem 2.2. |

3. Relative entropy. When 0 is finite dimensional, for each
@ and  in ® the relative entropy S(@|+) is defined by

S(@|y) = tr(oy log oy — oy log 0,) ,

where p, and p, are density matrices for ¢ and 4. Araki [2, 3]
extended the relative entropy to the case for normal positive linear
functionals of general von Neumann algebras, and studied its seve-
ral properties such as joint convexity, lower semiconitinuity and
monotonicity. ‘
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In this section, we assume as in [3] that ¥ has a cyclic and
separating vector. Let V be a natural positive cone (ef. [1]) for NN
and let @ and + be states in &. By [1, Theorem 6], there exist
unique vector representatives @ and ¥ of @ and 4 in V such that
P(A) = P, A®) and (A) = ¥, A¥) for all Ae®. The operator
Ss,» with the domain

D(Syy) =W + (I — sV¥))s#
is defined by
So (AT + Q) = S*@)A*®, AeR, s*W)Q =0,

where s*(@)(eN) denotes the N-support of the vector ¥. Then S,
is a closable conjugate-linear operator (cf. [3]) and the relative
modular operator /,, is defined by

doy = (SQ,W)*TSE .
The relative entropy S(@|+) is now given by

—<¥, (log 46,0)¥) if v <Ko,
+ oo otherwise .

S(e|y) =

Then S(@|4) =0, and S(@|4) =0 if and only if @ = 4. For each
subalgebra M, let Sy(®|+r) denote the relative entropy of the restric-
tions of @ and 4 to M. By the monotonicity of relative entropy
generally proved in [20], it holds that

(3.1) Su(®|4) = S(e|q)
for every subalgebra It (also see [2, 3, 13, 23]).

THEOREM 3.1. For each @, €@,
e — vl = {2S(@ |y} .

Proof. By [16, p.81], we can take two normal positive linear
functionals @, and @, such that @ — o = @, — @, [|@ — 4| = ||| +
|®.!| and s(@,) Ls(@,). Let e = s(@,). Then it follows that

e =l = (@ — 4)e) — (@ — )T — o)
= 2(p(e) — (e)) -

Let I be the subalgebra generated by ¢ and I — e. By using the
monotonicity, we have

S(@ly) = Sall¥)

= ¥le) _ ¥ —e)
ﬁ(e)log@(e) + (I — e)log oI o)
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It was shown in [6] that

2la - 8l s {2(glog £ + @~ plog L= A"

«
for 0 <a, 8= 1. Taking a = @(e) and B8 = y(¢), we deduce the
desired inequality. ]

THEOREM 3.2. Let @, €® be faithful and M be a subalgebra
such that M C Z,. Define ' €® by '(A) = y(E,(A|IM)) for Ael.
If Su(@|4) < 4o, then

S’ |9) = S(@ly) — Sa(@]¥) .

Proof. First note that ' is well defined from M c Z,. Since
@ [ M is a faithful normal trace, there exists a positive self-adjoint
operator h affiliated with I such that «(A4) = @(hA) for all Ae M.

Take the spectral decomposition h = Sm ade(n) and &, = S”xde(x).
0 0
Since h,c I, we have for every Aeci

P'(4) = P(B(A[D)) = lim @k, E,(A|D0))
= lim p(Ey(h,A|M)) = lim p(h,A4) = p(h4) .

Hence it follows (cf. [5, Lemma 1.2.3]) that (D«": Do), = h* for all
te R. By the relations

(Dy'": D)y = (Dyp": Dp)(Dp: Dap)y = K¥(Dp: Dp), ,
(Dy': Dop)y = (dyr w)2d5™
(Dp; Dip), = (dee)* 5™,

where Ay = Av,y, We deduce that (gp )" = h*(dss)* for all teR.
Moreover since h*e M C Z, and

0{(A) = (do,0)*A(dpr)™, AedN,

it follows that 2 and (44,,)" commute. Now let ® and ¥ be vector
representatives of @ [ I and + [ M in a natural positive cone V for
M. Since @ [ M is a trace, it follows that 425 = h. By log 45 4= —
J(log 43,3)J where J is the modular conjugation operator associated
with V (ef. [3, Remark 3.4]), we have

Su(@|4)=—<F, (log 45,4)¥

(3.2) — (T, (log BT = (W, (log BT ,

which is finite from the assumption. Therefore we obtain

SO’ |4)=— <", (log dy.,p)¥?
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= —(¥, (log 45,5)¥) — (¥, (log B)¥)
= S(@|y) — Sal®|y) . O

THEOREM 3.8. Let c® be faithful and M be a subalgebra
such that McZ,. Let 4 €® and define 4 € ® by 4'(A) = (E,(A|IM))
for AeR. Suppose either (a) « is faithful or (b) < \p for some
A> 0. If Sp(p|ap) < + oo, then

v — 4l = {2(8(@[4) — SulP 4N} .

Proof. For the case (a), the desired inequality is immediate
from Theorems 3.1 and 3.2. Now suppose that < @ for some
A>0. For each 6> 0, let . =1 + &) (4 + ep)e® and define
. €S by Hl(A) = (B (A|M)). By the convexity of relative entropy
(cef. [3, Theorem 3.8]), we have

Sa(@ |y = A + &) 'Sulplyp) < 4o

Hence it fbllows from the case (a) that

(3.3) [|s — apell = {208(@|4e) — Sal@ PN} .
Since 4. < M@ for each ¢ > 0, by [3, Theorem 3.7] we have

s]i>n—1(-0 S((P]’\l"s) = S(@["P‘) ’
5li>n~]{.-0 Sm(@l"ﬁ's) = Sﬂn(¢l'¢‘) .

Since 4t = (1 + &)7(¢" + ep), we obtain the desired inequality by
letting e — +0 in (3.3). ]

Before closing this section, we have to note that Professor Araki
gave us very important comments to some results of our first ver-
sion of this paper, which make us enable to write them in the above
form.

4. Sufficiency and relative entropy. In this section, let a
faithful state e ® be fixed as in §2.

THEOREM 4.1. For each subalgebra I C Z, and each €@, the
following statements hold:

(1) Suppose the condition (a) or (b) in Theorem 3.3. If M is
sufficient for {@, ), then Sy(@|y) = S(@l|y), and conversely if
Sa(@|) = S(@|4) < + o0, then M is suffictent for {P, }.

(2) If M s sufficient for {@,}, then Su(@|(y + P)/2) =
S(@|(y+9)/2), and conversely if Su(P|(y+P)/2)=S(P|(y+p)/2)<+ oo,
then M is sufficient for {@, ).
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Proof. (1) We use the notations in the proof of Theorem 3.2.
Let I be sufficient for {p, 4}, and suppose the condition (a). There
exists a positive self-adjoint operator h affiliated with I such that
J(A) = p(hA) for all Ac. Then we have

W(A) = p(E(A| M) = p(RA), Aeh,

as in the proof of Theorem 3.2. Hence it follows that (D+: Do), =
k¥, and we have

(dow)* = (Dp: Do) 4 = h™"4 .

Since A" and (4,,4)* commute, it follows that A" and 4% commute.
We thus have

S(@|y) = —<¥, (—log h + log 4,)¥)
= (7, (log B)¥) ,

by 4,¥ = ¥. From (3.2) and (4.1), we obtain Sy(®|4) = S(®|+). The
case (b) is proved from the case (a) by taking limits as in the proof
of Theorem 3.3.

Assume conversely that Sg(@|+) = S(@|4) < +co. Then it fol-
lows from Theorem 3.3 that ' = «, which implies that I is suffici-
ent for {p, +}. ‘

(2) is immediate from (1), since I is sufficient for {p, 4} if
and only if M is sufficient for {@, (v + 9)/2}. 0

(4.1)

The above fact (1) extends the result [23, Theorem 5] which
was proved under some strong assumptions. Combining Theorem
4.1 with Theorems 2.2 and 2.3, we have the following:

COROLLARY 4.2. (1) Suppose the condition (a) or (b) in
Theorem 3.3. If 4 €l(®), then Sy,(|v) = S(@|4), and conversely
if Sz(@lp) = S(@|4h) < + oo, then € I(p).

(2) If yellp), then Sy (p|(y + @)/2) = S(@|(¥ + 9)[2), and
conversely if Sz (|(¥ + ®)[2) = S(@| (¥ + P)/2) < + oo, then 4 € I(P).

COROLLARY 4.3. (1) Suppose the condition (a) or (b) in Theorem
3.3. If e K(p), then Sy(@|) = S(@|), and conversely if Sy(@|) =
S(@|4p) < + oo, then + € K(p).

(2) If veK(@), then S@|(y + 9)/2) = S(Pl(¥ + P)/2), and
conversely if Sy(@|(y + P)/2) = S(@|(¥ + P)/2) < + oo, then 4 € K(P).

The monotonicity (8.1) says that the restriction of measurement
to a subalgebra I usually makes it more difficult to diseriminate be-
tween two states. From Theorem 4.1, the physical meaning of suf-
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ficiency might be explained as follows: If a subalgebra IN is sufficient
for {p, 4}, then we obtain from the measurement of I as much
information as from that of N to discriminate between @ and . In
particular, to distinguish + € I(p) (resp. 4 € K(p)) from @, the meas-
urement of Z, (resp. 3) gives as much information as .
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