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The notion of Killing-Ricci forms of Lie triple algebras
is introduced as a generalization of both of Killing forms
of Lie algebras and the Ricci forms of the tangent Lie
triple systems of Riemannian symmetric spaces. For a class
of Lie triple algebras 8, it is shown that & is decomposed
into a direct sum of simple ideals if its Killing-Ricci form
is nondegenerate. As an application, structure of the re-
ductive pair consisting of a semi-simple Lie algebra and
its semi-simple subalgebra is investigated.

Introduction. The concept of Lie triple algebras has been
introduced, originally, by K. Yamaguti [11] as general Lie triple
systems, related with locally reductive spaces of K. Nomizu [6], and
treated by himself (e.g., [11]-[14]), A. A. Sagle (e.g., [8], [9]) and
others. In the articles [2] and [3], the author considered Lie triple
algebras as tangent algebras of homogeneous Lie loops or analytic
homogeneous systems on manifolds. For the study of such algebraic
systems on manifolds it seems to be very important to investigate
the structure of real Lie triple algebras of finite dimension, as an
extended analogy of the theory of Lie groups and Lie algebras. In
this paper we consider the Killing-Ricci form g of a Lie triple
algebra ®, a symmetric bilinear form on ® obtained by restricting
the Killing form of the standard enveloping Lie algebra of &. Then,
under an assumption by which 8 becomes an invariant bilinear form
on ®, it is shown that a Lie triple algebra ® is decomposed into a
direct sum of simple Lie triple algebra ideals, if 8 is nondegenerate
(Theorem 2). This result is applied for a reductive pair of semi-
simple Lie algebra £ and semi-simple subalgebra & of 8, treated by
A. A. Sagle [8],[9]. Then, a direct sum decomposition of £ into
simple Lie triple algebras and semi-simple Lie algebra ideals of & is
obtained (Theorem 3).

1. Preliminaries. A Lie triple algebra & over a field F is an
anti-commutative algebra over F whose multiplication is denoted by
XY for X, Ye®, with a trilinear operation & X & x & — & denoted
by D(X, Y)Z satisfying the following conditions for X, Y, Z, We®:

(i) DX, X)Z =0,

(ii) &{(XY)Z + DX, Y)Z} = 0,

(iii) 8DXY, Z)W = 0,
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(iv) DX, Y)ZW) = (DX, Y)Z)W + Z(D(X, )W),

(v) [DX,Y), Dz W)]=DDX, Y)z W)+ D(Z, DX, Y)W),
where & denotes the eyclic sum with respeet to X, Y and Z. That
is, Lie triple algebra is a synonym for a general Lie triple system
introduced by K. Yamaguti [11]. Throughout this paper, we assume
that @ is a finite dimensional Lie triple algebra over a field of
characteristic zero. The endomorphisms D(X, Y) are called inner
derivations of ® and the Lie subalgebra D(®, ®) of End(®) generated
by all inner derivations is called the inner derivation algebra of ®.
The standard enveloping Lie algebra of & is a Lie algebra %A = & +
D(®, @) whose bracket operation is given as follows; [X, Y] = XY +
DX, Y) for X,Ye®,[U, X]= —[X, U] =UX for Ue D(®, ®), Xe
® and [U, V] = UV —VU for U, Ve D®,®). Thus DG, ©) is a
Lie subalgebra of %« and (%, D(®, G)) forms a reductive pair.
Conversely, for a Lie algebra € and a subalgebra &, if (8 &) is a
reductive pair with the fixed decomposition & = ® + &, [®, ©] G,
then ® is a Lie triple algebra ([11]) under the operations XY =
[X, Y]s and D(X, Y)Z = [[X, Y], Z] for X, Y, Ze€®. The Lie triple
algebra ® is reduced to Lie algebra with [X, Y] = XY if D(S, ©) =
{0}, or it is reduced to Lie triple system with [X, Y, Z] = D(X, Y)Z
if ®® = {0}. Conversely, every Lie algebra or Lie triple system is
a Lie triple algebra as one of the reduced cases above. If &® = {0}
and D(®, ®) = {0}, ® is said to be abelian. A Lie triple subalgebra
H of & is an invariant subalgebra if D(S, &)H < 9, and an ideal if
GHcH and DG, D) H. If © is an ideal of &, then it is an
invariant subalgebra. Let § be an ideal of &. A chain $ = $“ >
PV D ... DHPY D HUY o ... of invariant subalgebras of @ is defined
inductively by £ =99 + D(B, )9 and $ = 99H® + D(9, £)9“ +
D(S, $)9 for positive integers ¢ ([4]). Each 9% is an ideal of
9% and the quotient Lie triple algebra $¥/H%+" is abelian. An ideal
9 of @ is said to be solvable if ¥ = {0} for some integer i. The
radical t(®) of & is a (unique) maximal solvable ideal of ®&. The
Lie triple algebra © is semi-simple if t(®) = {0}. The following facts
have been shown in [4]:

(1.1) If @ is solvable then its standard enveloping Lie algebra ¥ =
& + D(®, ®) is a solvable Lie algebra and D(®, ®) is a solvable
Lie subalgebra of .

1.2) If A=6 + DS, ®) is a semi-simple Lie algebra then © is
semi-simple.

A Lie triple algebra ® is simple if it has no nonzero proper ideal.
It is easy to show the following:
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(1.3) & is simple if its standard enveloping Lie algebra is a simple
Lie algebra.

2. Killing-Ricci forms. Let {E, E,, ---, E,} be a basis of an
n-dimensional Lie triple algebra ®&, and {D,, D, ---, Dy} a basis of
the inner derivation algebra D(®, ®) if D(®, ®) = {0}. For these
bases we express the operations of ® as follows:

E.E; = Si;E,, D(E, E)E, = Ri;E

2.1 .
@b D(E;, E)) = Di3D., [D., Ei] = D.E;, = Ki.E;,

where the indices run through 1=<4, 4,k <% and 1< a < N.
Denote by a the Killing form of the standard enveloping Lie algebra
A=6 + DG, S). By the Killing-Ricei form [ of the Lie triple
algebra @ we mean a symmetric bilinear form on & determined by
restricting a to & x &.
PROPOSITION 1. For X, Ye®,
BX,Y)=tr LX)L(Y) + tr(»(X, Y) + (Y, X)),
where L(X) and r(X, Y) are endomorphisms of & given by
LX)Y = XY, X, Y)Z=D(Z X)Y for X,Y, Ze®.
Proof. If we set S,; = tr L(E,)L(E;), R;; = tr(r(E,, E;)) and B,; =
B(E,, E;), it is sufficient to show the formula
(22) Bij = S—;j + Rij -+ Rji for 1 = 'i, .7 =n.

The expressions (2.1) with respect to the bases {E, ---, E,} and
{D,, ---, Dy} imply the following:

[Ei! [Eiy Ek]] = (Szl m - -R,Lﬁcz)El + S D;xm a 9
[Ei; [EJ" Da]] = —SimK:;El - DimKt:’;"Dﬁ .

Hence,
(2'3) Bij = Sv{‘m + Rk“ + D’;’LK;'_; .
On the other hand, the expressions

L(E)L(E)E, = SitaSHE: ,
vl = D(Ey, E)E; = DiKaEy

imply
(2.4) S Sf‘ms,k y R = Rk” = .D]Z;ng .
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Therefore, (2.2) is obtained from (2.3) and (2.4). O

REMARK 1. (1) If & is reduced to Lie algebra, then B is the
Killing form of the Lie algebra ®&. On the other hand, if ® is
reduced to Lie triple system, then 3(X, Y)/2 = (»(X, Y) + (Y, X))/2
is the Killing form of the Lie triple system & introduced by T.
Ravisankar [7].

(2) Suppose that & is a Malcev algebra. The Killing form ¢
of @ introduced by 0. Loos [5] is given by (X, Y) = tr(M(X)MY)),
where MX) denotes the left translation by X in the Malcev alge-
bra. K. Yamaguti [12] has shown that ® is a Lie triple algebra
(general Lie triple system) under the operations L(X)=x(X), D(X,Y)=
AMMX)Y) + [MX), MY)]. The Killing-Ricei form of this Lie triple
algebra is equal to 5. In [5], O. Loos considered the Malcev algebra
® as a Lie triple system with the inner derivations D(X, Y) =
20X)Y) + [MX), M(Y)]. The Killing-Ricei form of this Lie triple
system is equal to 66 ([5, Lemma 6]).

REMARK 2. (1) Let G be a Riemannian symmetric space. It is
well known that the tangent space ® at ecG is Lie triple system
with respect to the ternary operation [X, Y, Z] = R.(X, Y)Z, where
R denotes the curvature tensor of G. Then R!; in (2.1) are the
components of R at ¢, and the Killing-Ricei form g of the Lie triple
system & has the components B,; = 2R,;, where R,; = R, are the
components of the Ricei tensor of G.

(2) Let G be an analytic homogeneous Lie loop in [2] or, more
generally, an analytic homogeneous system in [3], and & be its
tangent Lie triple algebra at ecG. Then S5 and R}; in (2.1) are
respectively the components at ¢ of the torsion tensor and the
curvature tensor of the canonical connection of G.

Now, let v be a trilinear form on & given by
(2.5) v(X, Y, Z)=tr(DX, Y)L(Z)) for X,Y,Zec®.

It is evident that v vanishes identically if @ is reduced to Lie algebra
or reduced to Lie triple system.

PROPOSITION 2. The Killing-Ricei form B of a Lie triple algebra
® satisfies the followings, for X, Y, Ze®:

(2.6) BXY,Z)+ (Y, XZ)=~vY,X,2)+vZ, X, Y)

BX, D(Y, Z)W) — B(D(W, X)Y, Z)

(2.7 =Y, Z, WX) —v(W, X, YZ)
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(2.8) BX, D(Y, Z)W) + 3(D(Y, Z)X, W)=0.
Proof. The Killing form a of A =06 + DG, ®) satisfies
a(X, Y], Z)+ a(Y,[X,Z]) =0 for X, Y, Zc®. Since
(2.9) alX, Y], 2) = BXY,Z2)+ X, Y, Z),
the formula (2.6) is obtained. Applying (2.9) for
aX, [[Y, Z], W) + a(llX, W], Y], Z) =0
we get
B(X, D(Y, Z)W) + (DX, W)Y, Z)

(2.10) = BX, (YZO)W) + p(WX)Y, Z)
+ v ZY, W, X)) +v(WX, Y, Z) .

By using (2.6) for (X, W(YZ)) and B(Y(XW), Z), we have
BX, (YZ)W) + B(WX)Y, Z)

(2.11) =vX, W, YZ) + (Y, Z, WX)

+9YZ W, X)+vXW, Y, Z).
The formula (2.7) is obtained from (2.10) and (2.11). Setting X =W
in (2.7), we get B(X, D(Y, Z)X) = 0 which implies (2.8). 1

3. Semi-simple Lie triple algebras with v = 0. By an invariant
form b on a Lie triple algebra & we mean a symmetric bilinear
form on ® satisfying;

(3.1) (XY, Z)+b(Y,XZ)=0

(8.2) b(X,D(Y,Z)W)—bD(W,X)Y,Z)=0 for X,Y,Z We®.
PROPOSITION 3. Let b be an invariant bilinear form on ®&. If

9 is an invariant subalgebra of G, then $* = {X e ®; b(X, §) = 0} is

an invariant subalgebra of &. Moreover, if © is an ideal of & then
H* 1s an ideal.

Proof. From (3.2) the following is obtained:
(3.3) b(D(Y, Z)W, X))+ b(W,D(Y, Z)X)=0.

Therefore, if § is an invariant subalgebra of ®, then D(®, ®)H* C H*.
If X, Zc® and Ye$* then b(XY, )=0b(Y, X9) and b(D(X, Y)Z, ) =
b(D(Z, $)X, Y), which imply that $* is an ideal (resp. subalgebra)
if § is an ideal (resp. subalgebra) of the Lie triple algebra &. []

REMARK 3. If ® is reduced to Lie triple system, then from
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(3.2) and (3.3) it follows that a symmetric bilinear form & on & is
an invariant form if and only if b is an invariant form of Lie triple
system, in the sense of J. Wolf [10, (10.11)].

By a similar consideration of invariant bilinear forms on & as
one for the cases of Lie triple system [10, §10] and nonassociative
algebras [1, p. 71], we have;

PROPOSITION 4. Let b be an invariant bilinear form on O,
Suppose that b is nondegenerate. Then,

(1) The ideal B* for the center 3={X e ®; X&=0 and D(X, &)=
0} of © is equal to & = &S + D(B, G)S;

(2) If & has no monzero ideal © satisfying 99 = {0} and
D(S, £)9 = {0}, then & is decomposed into

=6+ +---+6,, b=b+b,+---+b,,

where &,(1 < 1 < r) are simple ideals of & and b, = b|®; X &,, which
18 an invariant bilinear form on &; for each 1.

Proof. (1) is obtained from (3.1) and (2.2), and (2) is shown as
follows. Let &, be a minimal nonzero ideal in &. By Proposition 3,
Q¢ is an ideal of & and so = &, N G+ is an ideal of & contained
in®,. IfX,Ye® and Z, We 9, then from (3.1) and (3.2) we have

b(X, ZW) = b(XZ, W) eb(®, 9) = {0},
b(X, D(Y, Z)W) = b(D(W, X)Y, Z)eb(9, 9) = {0} .

Since b is supposed to be nondegenerate, ZW = D(Y, Z)W = {0} for
Ye® and Z, We9; ie.,, $9 = {0} and DG, $)9 = {0}. Hence, by
hypothesis, § = &, N G+ = {0} and so & =G, + . It is clear that
the bilinear form b, = b|®, X ®, is a nondegenerate invariant form
on ®,. The proposition is then established by induction on dim &. []

Now, let B be the Killing-Ricci form of . If the trilinear form
v given by (2.5) vanishes identically on ®&, then from (2.6) and (2.7)
it follows that B is an invariant bilinear form on ®.

THEOREM 1. Let ® be a finite dimensional Lie triple algebra
over a field of characteristic zero, om which the trilinear form v
defined by (2.5) vanishes identically. Then;

(1) The Killing-Ricet form B of & is mondegenerate if and
only if the standard enveloping Lie algebra A =& + DG, ©) is a
semi-simple Lie algebra.

(2) If B 1s nondegenerate, then ® is a semi-simple Lie triple
algebra and & = @Y,
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Proof. Since the Killing form «a of the Lie algebra A =& +
D(®, ®) satisfies a(D(X, Y), Z) =tr DX, Y)L(Z) =v(X, Y, Z) for
X,Y,Zec®, the condition v = 0 implies that & and D(®, @) are
orthogonal to each other with respect to a. Hence,

3.4) aD(X, Y), D(Z, W)) = a([X, Y], D(Z, W))
‘ =B8(Y,D(Z W)X) for X,Y,Z We®.

Therefore, if 8 is nondegenerate so is the restriction of @ on D(®, @) x
D(®, @), whence a itself is nondegenerate.

Conversely, if B is degenerate, then, since g is an invariant
form on G, G+ = {Xe®; B(X, ) = 0} is a nonzero ideal of & by
Proposition 3, and B = &+ + D(®, &*) is a Lie algebra ideal of 2.
By (3.4) we get

a(B, A) = a(®*, ©) + a(DG, &), DG, ©))
- =BG, 6) + DG, 68, ©) = {0}.

This shows that the Killing form « is degenerate, that is, 2 is not
semi-simple. Thus (1) is proved.

By (1.2), ® is a semi-simple Lie algebra and so its center B =
{0}. Then (1) of Proposition 4 implies ® = G, ]

THEOREM 2. Let © be the same Lie triple algebra as in Theorem
1. Assume that the Killing-Ricei form B of ® is nondegenerate.
Then ® is decomposed into a direct sum of simple Lie triple algebra
ideals ©,(1 £ 1 < 7) as follows;

B=6,+C+ - +8;8=8+Bt " +8,,

where B3; 1s the Killing-Ricci form of &, for each i. Moreover, the
standard enveloping Lie algebra A =& + DS, ®) is a direct sum
of the standard emveloping Lie algebras AU, = &, + D(®, &,) of ©,,
each of which is a semi-simple Lie algebra ideal of A.

Proof. If © is an ideal of © satisfying 9 = {0} and D(S, $)9 =
{0}, then 9 = 99 + D(S, ) = {0} so $ is solvable. Since B is
assumed to be nondegenerate, ® is semi-simple by (2) in Theorem 1,
whence such an ideal § must be {0}. Thus the assumptions of (2)
in Proposition 4 are satisfied for the invariant bilinear form g.
Therefore, @ is a direct sum of simple ideals §;,1 < i< 7) and 8 =
Bi+  +B,Bi=pB1Ox6,. If X,eB, Y;e60, and Z,€®,, then
DX, Y)Z,€8,NnG;NG,. Hence DX, Y;) =0 and D(X,, Y,)|®; =0
for ¢ # 5. Thus we get DS, &) =D@G,S) + --- + D@G,, S,), A=
S+DB G =+ -+ + A, where A, =6, + DG, ©,) are ideals
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of Wyand B, =R |G, X B, =a|®, x &, =a,|O, xS, where a, denotes
the Killing form of the Lie algebra 9, for each . 1

4. Applications for pairs of semi-simple Lie algebras. Let &
be a semi-simple Lie subalgebra of a semi-simple Lie algebra & over
a field of characteristic zero, where £ is assumed to be of finite
dimension. A. Sagle [8, 9] has shown that the pair (8 &) is then a
reductive pair with a decomposition € = ® + &, where @ = {Xeg;
Kill,(X, & = 0} and Kill, denotes the Killing form of &, and the
bilinear form g on @ given by B(X, Y) =Kill(X, Y) for X, Ye® is
nondegenerate. For brevity of discussion assume that & contains no
nonzero ideal of & Then & may be identified with a Lie subalgebra
of the Lie algebra End(®). For X, Ye® let [X, Y]|=XY+D(X, Y),
where XY = [X, Y]s and D(X, Y) = [X, Y], are the projections of
[X, Y] into © and R, respectively. Since (¥, &) is a reductive pair,
& is a Lie triple algebra with the operations XY and D(X, Y)Z =
[DIX, Y), Z] for X,Y,Zc® ([13]). The standard enveloping Lie
algebra A = & + D(S, ®) of this Lie triple algebra © is an ideal of
€ and the inner derivation algebra D(®, ®) is an ideal of & Hence
the Killing form « of ¥ is the restriction of the Killing form of £ to
Ax Y, and so v(X, Y, Z) = a(D(X, Y), Z) eKill(®, &) = {0} for X, Y,
Ze€®. The nondegenerate bilinear form B3 is equal to the Killing-
Ricci form of the Lie triple algebra ®&. Therefore, from Theorem 2
it follows that @ is decomposed into a direct sum of simple ideals
G,1<i=<7)of 8. Each®,is ad R-invariant since 8(G,, [R], &,]) =0
for 7+ j. In fact, by using Jacobi’s identity in & and the fact
D(®,, ®;) = {0} for i+ 7, we can show ad ©, ad [R, G,;](® + D(B, &))c
®&.NG; + DG, G,)NDG, ®,) = {0} for i+ j. If G, is reduced to Lie
algebra for some ¢, then D(®,, @) = {0} and so &, is a Lie algebra
ideal of & Let &, be an ideal of & such that 8 = D(S, ®) + &. In
case £ contains nonzero ideals of € 8 and & should be factored by
the maximal ideal &, among them.

Summing up the arguments above, we obtain from Theorem 2
the following;

THEOREM 3. Let & be a semi-simple Lie subalgebra of a finite
dimensional semi-simple Lie algebra £ over a field of characteristic
zero. Then R is decomposed as follows:

8=@1+"'+®r+@1+"'+@r+'@0+80,

where 8,1 < ¢ < 7) are simple Lie triple algebras which are ad K-
invariant in & D, = D(®,, 8,) are their inner derivation algebras
some of which might be zero that are reduced to Lie algebra ideals
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of & & is the maximal ideal of L contained in R, and K, is the
complmeentary ideal of the ideal ®, + --- + D, + & in &, each of
D, being an ideal of K.

For each 1, the standard enveloping Lie algebra A, = ®, + D, is
a semi-simple ideal of the Lie algebra K.
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