COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD

Kiyoshi Watanabe
COVERINGS OF A PROJECTIVE ALGEBRAIC MANIFOLD

KIYOSHI WATANABE

Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$, where O^* is the sheaf of germs of nowhere-vanishing holomorphic functions and Z is the additive group of integers.

Let D be a domain in \mathbb{C}^n and Γ be a discrete subgroup of $\text{Aut}(D)$. It is well-known that if the quotient manifold D/Γ is compact, then D is a domain of holomorphy. Recently, Carlson-Harvey [1] showed that if D is a domain in a Stein manifold and $D \to M$ is a covering of a compact Moisheson manifold M, then D is a Stein manifold. On the other hand, we showed in [4] that if a pseudoconvex domain D in a projective algebraic manifold satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

In this paper, we study the case where a covering of a manifold is not contained in a larger manifold. We shall prove the following:

Theorem. Let M be a projective algebraic manifold. Suppose $\pi: D \to M$ is a covering of M. If D satisfies $H^1(D, O^*) = 0$, then D is a Stein manifold with $H^2(D, Z) = 0$.

We remark that the condition $H^1(D, O^*) = 0$ cannot be replaced by $H^1(D, O) = 0$, where O is the sheaf of germs of holomorphic functions. To see this it is enough to consider the case $D = M = \mathbb{P}_2(\mathbb{C})$ and π is the identity mapping.

Proof of theorem. Let $\{V_i\}$ be an open covering of M such that each V_i is a local coordinate neighborhood and is biholomorphic to a connected component $\pi^{-1}(V_i)$. Since M is a projective algebraic manifold, there is a positive line bundle F over M. Choosing a suitable refinement $\{U_i\}$ of $\{V_i\}$, we can represent F by a system of transition functions $\{f_{j,k}\}$ and find a Harmitian metric $\{a_j\}$ along the fibers of F which satisfies the following conditions:

(i) Each a_j is a C^∞, real-valued and positive function on U_j,

(ii) If $U_j \cap U_k \neq \emptyset$, then we have $a_k = |f_{j,k}|^2 a_j$,

(iii) For every point P in M, the Hessian of $-\log a_j$ relative to a local coordinate system (z_1, \ldots, z_n) at P.

243
\[L(-\log a_j; P) = \left(-\frac{\partial^2 \log a_j}{\partial z_\alpha \partial \bar{z}_\beta}(P) \right) \]
\[(\alpha, \beta = 1, \ldots, n) \]

is positive definite. By the compactness of \(M \), \(M \) has a finite open covering \(\{ U_\alpha : j = 1, \ldots, m \} \).

Since \(U_j \) is biholomorphic to each of the connected components of \(\pi^{-1}(U_j) \), we have the functions \(\{a_j \circ \pi\} \) which satisfies the following conditions:

(i) Each \(a_j \circ \pi \) is a \(C^\infty \), real-valued and positive function on \(\pi^{-1}(U_j) \),

(ii) If \(\pi^{-1}(U_j) \cap \pi^{-1}(U_k) \neq \phi \), then we have \(a_j \circ \pi = |f_{jk} \circ \pi|^2 a_k \circ \pi \),

(iii) \(W(-\log a_j \circ \pi; P) \) is positive at every point \(P \) in \(D \), where

\[W(\phi; P) = \min \left\{ \sum_{\alpha, \beta} \frac{\partial^2 \phi}{\partial w_\alpha \partial \bar{w}_\beta}(P) \lambda_\alpha \bar{\lambda}_\beta : \sum_\alpha |\lambda_\alpha|^2 = 1, \quad \alpha, \beta = 1, \ldots, n \right\} \]

and \((w_1, \ldots, w_n) \) is a local coordinate at \(P \).

Since \(U = \{ \pi^{-1}(U_j) \} \) is an open covering of \(D \), \(\{f_{jk} \circ \pi\} \) defines an element of \(H^1(U, O^*) \). By the assumption of \(H^1(D, O^*) = 0 \), there is a cochain \(\{f_j\} \) of \(C^0(U, O^*) \) such that \(f_{jk} \circ \pi = f_k/f_j \). We can define a \(C^\infty \) function \(\phi \) on \(D \) in the following way:

\[\phi(P) = -\log (a_j \circ \pi(P) |f_j(P)|^2) \]

for \(P \) in \(\pi^{-1}(U_j) \). Since \(M \) is paracompact, \(M \) has a finite open covering \(\{ W_j : j = 1, \ldots, m \} \) with \(W_j \subset U_j \). By the property (iii) there is a positive constant \(C_j \) such that \(W(\phi; P) > C_j \) for \(P \) in \(\pi^{-1}(W_j)(j = 1, \ldots, m) \). Hence we have

\[W(\phi; P) > C : = \min \{C_j : j = 1, \ldots, m\} \]

for \(P \) in \(D \). We remark that \(D \) is not finitely sheeted, because \(D \) has the strongly plurisubharmonic function \(\phi \).

On the other hand, \(M \) is a projective algebraic manifold, so \(D \) has a real-analytic Kähler metric. Let \(d(P, Q) \) be the distance between \(P \) and \(Q \) measured by the Kähler metric. Let us fix a point \(P_0 \) in \(D \) and define a continuous function \(\psi \) on \(D \) in the following way:

\[\psi(P) = d(P_0, P) \]

for \(P \) in \(D \). We see that for every \(c > 0 \), the set \(\{ P \in D : \psi(P) < c \} \) is relatively compact in \(D \). Denotes by \(\Gamma(P, \varepsilon) \) the set \(\{ Q \in D : d(P, Q) < \varepsilon \} \), where a positive constant \(\varepsilon \) is chosen so that \(\pi(\Gamma(P, \varepsilon)) \)
is contained in some U_d and $\Gamma(P, \varepsilon)$ is homeomorphic to a hypersphere. We define the following operator A_ε mapping continuous function f on D into C^1 function on D:

$$A_\varepsilon f(P) = \frac{1}{V} \int_{\Gamma(P, \varepsilon)} f(Q) \ dv,$$

where dv is the volume element determined by the Kähler metric and V is the volume of $\Gamma(P, \varepsilon)$. We see that the set $\{P \in D: A_\varepsilon \psi(P) < c\}$ is relatively compact in D. Let define

$$\psi_1 = A_\varepsilon \psi \text{ and } \psi_2 = A_\varepsilon \psi_1$$
on D, then ψ_2 is C^2 and the set $\{P \in D: \psi_2(P) < c\}$ is also relatively compact in D. Let compute the Hessian of ψ_2. Since D has a real-analytic Kähler metric, there are a local coordinate (w_1, \cdots, w_n) of $\Gamma(P, \varepsilon)$ and a positive constant K_1 such that

$$|\psi(Q) - \psi(Q')|^2 \leq K_1 \sum |w_i - w_i'|^2 + \cdots + |w_n - w_n'|^2$$

for two points $Q = (w_1, \cdots, w_n)$ and $Q' = (w_1', \cdots, w_n')$ in $\Gamma(P, \varepsilon)$ (see [3] Lemma 1). By the compactness of M, K_1 can be chosen independent of P. Choosing K_1 large enough if necessary, we have

$$\left| \frac{\partial \psi_1}{\partial w_j}(P) \right| \leq K_1 \quad (j = 1, \cdots, n)$$

and consequently

$$\left| \frac{\partial^2 \psi_2}{\partial w_j \partial \bar{w}_k}(P) \right| \leq K_1 \quad (j, k = 1, \cdots, n)$$

for P in D. Therefore a positive constant K can be chosen so that

$$W(\psi_2; P) > -K$$

for P in D. Now we define a C^2 function Φ on D in the following way:

$$\Phi(P) = K \cdot \phi(P) + C \cdot \psi_2(P)$$

for P in D. Then (1) and (2) induce

$$W(\Phi; P) \geq K \cdot W(\phi; P) + C \cdot W(\psi_2; P) > 0$$

for P in D. Hence Φ is a strongly plurisubharmonic function on D and the set $\{P \in D: \Phi(P) < c\}$ is relatively compact in D for every $c > 0$. Therefore D is a Stein manifold by Narasimhan [2]. Moreover from the exact sequence $0 \rightarrow Z \rightarrow O \rightarrow O^* \rightarrow 0$ we obtain the exact cohomology sequence.
\[\cdots \longrightarrow H^1(D, O) \longrightarrow H^1(D, O^*) \longrightarrow H^2(D, Z) \longrightarrow H^2(D, O) \longrightarrow \cdots. \]

Since \(H^2(D, O) = 0 \) by the Cartan’s Theorem B and \(H^1(D, O^*) = 0 \) by the assumption, we have \(H^2(D, Z) = 0 \). This completes the proof.

References

Received December 20, 1978.

Kobe University
Nada, Kobe, 657 Japan
Hédi Amara, Groupe des classes et unité fondamentale des extensions quadratiques relatives à un corps quadratique imaginaire principal 1
Douglas S. Bridges, On the isolation of zeroes of an analytic function 13
Andrew J. Casson and John L. Harer, Some homology lens spaces which bound rational homology balls .. 23
Z. A. Chanturia, On the absolute convergence of Fourier series of the classes $H^0 \cap V[v]$.. 37
J.-F. Colombeau and Mário Carvalho Matos, On some spaces of entire functions defined on infinite-dimensional spaces 63
Edwin Duda, Pointwise periodic homeomorphisms on chainable continua 77
Richard F. Gustafson, A simple genus one knot with incompressible spanning surfaces of arbitrarily high genus 81
Fumio Hiai, Masanori Ohya and Makoto Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras 99
Ted Hurley, Intersections of terms of polycentral series of free groups and free Lie algebras. II ... 111
Robert Edward Jamison, II, Partition numbers for trees and ordered sets ... 115
R. D. Ketkar and N. Vanaja, A note on FR-perfect modules 141
Michihiko Kikkawa, On Killing-Ricci forms of Lie triple algebras 153
Jorge Lewowicz, Invariant manifolds for regular points 163
Richard W. Marsh, William H. Mills, Robert L. Ward, Howard Rumsey and Lloyd Richard Welch, Round trinomials 175
Claude Schochet, Topological methods for C^*-algebras. I. Spectral sequences ... 193
Yong Sian So, Polynomial near-fields? .. 213
Douglas Wayne Townsend, Imaginary values of meromorphic functions in the disk ... 225
Kiyoshi Watanabe, Coverings of a projective algebraic manifold 243
Martin Michael Zuckerman, Choosing l-element subsets of n-element sets ... 247