Vol. 96, No. 2, 1981

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A characterization of the adjoint L-kernel of Szegő type

Saburou Saitoh

Vol. 96 (1981), No. 2, 489–493
Abstract

Let G be a bounded regular region in the complex plane and L(z,u) the adjoint L-kernel of Szegő kernel function K(z,ū) on G. Then, for any analytic function h(z) on G with a finite Dirichlet integral, it is shown that the equation

  ∫ ∫
1-      ′  2
π    G|h(z)|dx dy
∫   ∫                       2
=        |(h(z1)− h(z2))ˆL(z1,z2)| |dz1||dz2|
∂G  ∂G
holds. Furthermore, for any fixed nonconstant h(z), we show that the function L(z1,z2) on G × G is characterized by that equation in some class.

Mathematical Subject Classification 2000
Primary: 30C40
Secondary: 30F99
Milestones
Received: 3 November 1980
Published: 1 October 1981
Authors
Saburou Saitoh