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Let σ be a permutation of the set {1,2, — -, n} and let
Π(N) denote the lattice of partitions of {1,2, •••,%}. There
is an obvious induced action of σ on Π(N); let Π(N)σ — L
denote the lattice of partitions fixed by σ.

The structure of L is analyzed with particular attention
paid to ^f, the meet sublattice of L consisting of 1 together
with all elements of L which are meets of coatoms of L. It
is shown that - ^ is supersolvable, and that there exists a
pregeometry on the set of atoms of ~^ whose lattice of flats
G is a meet sublattice of ^ C It is shown that G is super-
solvable and results of Stanley are used to show that the
Birkhoff polynomials B (λ) and BG{λ) are

BG{λ) = W - 1)U - i) U - (m -
and

Here m is the number of cycles of σ, j is square-free part
of the greatest common divisor of the lengths of σ and r is
the number of prime divisors of j . ^ coincides with G
exactly when j is prime.

!• Preliminaries* Let (P, ^ ) be a finite partially ordered set.
An automorphism σ of (P, 50 is a permutation of P satisfying x ^ y
iff xσ 5Ξ yσ for all x, y eP. The group of all automorphisms of P is
denoted Γ(P). For σeΓ(P), let Pσ-= {xeP: xσ = x}. The set Pσ

together with the ordering inherited from P is called the fixed point
partial ordering of σ. If P is lattice then Pσ is a sublattice of P.
To see this, let x, y e Pσ. Then (x V y)σ ^ xσ ~ x and (x V 2/)σ ^ yσ = y,
so (ce V 2/)0" ^ %V y. lί {x\f y)σ > xV y, then (a V y) < (x V 2/)tf <
(x V /̂)cτ2 < forms an infinite ascending chain in P which is im-
possible since P is finite. So (x V y)(J = x\/ y hence the set Pσ is
closed under joins in P. Similarly Pσ is closed under meets.

A partition p of a finite set i2 — {α ,̂ , o)n} is a collection
^ = BJB2/ /Bk of disjoint, nonempty subsets of Ω whose union is
all of Ω. The set of all partitions of Ω is denoted Π(Ω); if Ω =
{1, 2, , n) this is written Π(N). Π(Ω) ordered by refinement is a
lattice.

Let Sn denote the symmetric group on the numbers {1, 2, •••,%}.
Define an action of Sn on Π(N) as follows; for cr 6 Sn and BJ - jBh e

5,(7/5,(7/ - /Bkσ
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320 PHIL HANLON

where Btσ = {bσibeBi}. It is easily checked that this permutation
representation is faithful and that each σ e Sn acts as an automor-
phism of Π(N).

Recall that a lattice L is upper semimodular provided that all
pairs of elements x, y eL satisfy the condition (*):

( * ) If x and y both cover x Ay then x\ίy covers both
x and y.

A lattice G is geometric if it is upper semimodular and if each ele-
ment of G is a join of atoms. Its easy to check that every finite
partition lattice is geometric.

Let L be a finite lattice and A a maximal chain in L from 0 to
1. If, for every chain K of L the sublattice of L generated by K
and A is distributive, then we call A an M-chain of L and we call
(L, A) a supersolvable lattice (SS-lattice).

Let L be a finite lattice with rank function r and let m = r(l).
The Birkhoff polynomial of L, denoted BL(X) is defined by

BL(x) = Σ MO, *)λ"-"*>.
xe L

Here μ is the usual Mδbius function of L.
It is assumed in §§ 3 and 5 that the reader is familiar with the

structure theory for supersolvable lattices given by Stanley and
particularly with his elegant results concerning Birkhoff polynomials
of supersolvable geometric lattices (see Stanley [4]). For more about
lattice theory see Dilworth and Crawley, [2].

If if is a lattice and S & subset of K we say S is a meetsublattice
of K if S together with the inherited ordering is a lattice in which
the meet agrees with the meet in K.

2. The structure of (Π(N))σ. Throughout this section we as-
sume that n is a fixed positive integer and that σ is a permutation
of {1, 2, ••-,%}. We write

according to its disjoint cycle decomposition as a permutation of
{1,2, -—,ri\. We refer to (citl, •• ,cί,ιJ) as the ith cycle of σ and
denote it by C*. Note that l% is the length of Ct and so lx + +

lm = w
Let L denote the fixed point partition lattice (Π(N))σ. Observe

that if β = BJ /BkeL then BJ jBh = jBxσ/ /Bkσ and so σ
permutes the blocks of β. We let Z(σ; β) denote the cycle indicator
of this induced action of σ on the set of blocks of β. The following
observation is presented without proof.
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LEMMA 1. Suppose β = BJ /BkeL and mSiU e BiQ. Then there
exists an integer d which divides l8 and there exist distinct blocks
BiQ, Bh, , Bid_x such that the elements of the cycle C8 are evenly
diidd t th d blk B B di h ldivided amongst the d blocks BiQ,

mS)t eBir iff u — t = r

, Bidl according to the rule

mod (IJd) .

FIGURE 1

In a similar way, β induces a partition of the set of cycles
{CΊ, •••,(?„} which is defined in terms of the equivalence relation ~
by Ci — Cj iff there exists c e Ci9 deCd and a block of β containing
both c and d. This relation is transitive since each cycle is divided
amongst a cyclically permuted set of blocks. We denote the resulting
partition of {Cl9 , CJ by p(σ; β).

EXAMPLE 1. Let n = 4 and σ = (1, 2)(3, 4). The partition β =
1/2/34 is in L; the cycle indicator Z(σ; β) = xtx2 and the partition
p(σ; β) puts each cycle in a block by itself.

If instead we let β = 13/24 we have Z(σ; β) = x2 whereas the
partition p(σ; β) has just one block containing the two cycles. The
lattice L appears in the figure below.

1 2 3 4

14/23

1/2/34
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Note that L is not Jordan; in general the fixed point lattices (Π(N))σ

are not themselves highly structured. However the meet sublattice
^ of L consisting of 1 together with all meets of coatoms in L is
highly structured, in the above case isomorphic to the lattice of
partitions of a 3 element set. We begin by investigating the co-
atoms of L.

LEMMA 2. There are two kinds of coatoms y in L:
(a) 7 has 2 blocks, y — BJB2. Each block is setwise invariant

under σ hence each block is a union of cycles. Z(σ, 7) = x\ and
p{σ, 7) is a coatom in the lattice of partitions of {Clf , Cm}.

(b) 7 has p blocks, 7 = BJ /Bp9 where p is a prime. The
blocks Bp are cyclically permuted by σ and every cycle Ct is divided
evenly amongst the blocks Blf •• ,J5 ί). The integer p divides
gcd(ίi, '",lm)9 Z(σ, 7) = xp and p(σ, 7) is the 1 in the lattice of
partitions of {Clf , Cm}.

Proof. Clearly each of the 2 sorts of partitions above is fixed
by σ and each is a coatom in L.

Let 7 be a coatom of L where 7 = BJ jBk (Jc ^ 2). Suppose
the blocks of 7 can be split into two disjoint σ-invariant sets

S = {Bh, ..-,*,,}

T={Bhf • • • , * , , } .

Consider the partition 7' = (UB^S Bi)/(\JBjeτ Bό). Clearly 7 ' e L and
7 <̂  7' < 1. As 7 is a coatom of L, 7' = 7 and so u = v = 1. Thus
7 is of type (a).

Otherwise, σ acts transitively on the set of blocks {Bly •••, Bk}.
Assume the B/s are numbered so that B{σ = Bi+1 for i < k and
Bkσ = Bx. Suppose k factors as k — rs where r > 1 and s ^ 1. Con-
sider the partition

Clearly γ ' e L and 7 ^ 7' < 1, so 7 = 7'. Thus s = 1 and 7 is of
type (b). •

There are 2™"1 — 1 coatoms of the kind outlined in (a); these
will be called coatoms of type a. For each prime p dividing
gcd(Zχ, ••',lm) there are pm~γ coatoms of the kind outlined in (b);
these will be called coatoms of type b.

Note that the coatoms of type a generate a sublattice of ^£
isomorphic to the lattice of partitions of {Cu •••, Cm}. In the case
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that gcd (Zlf , lm) = 1 there are no coatoms in L of type b and so
this sublattice is all of ^£.

A partition β in L with Z(σ, β) = x^ will be called periodic with
period j . The preceding lemma states that every coatom of L is
periodic with period 1 or with prime period. The next lemma will
imply that every partition in ^ is periodic.

LEMMA 3. Let βly β2eL and suppose β1 is periodic with period
j ί and βz is periodic with period j 2 . Then β± A β2 is periodic with
period j = lcm(jl9 j2).

Proof. Choose a block B of βxAβ2 and let c8)UeB. Applying
Lemma 1 and the fact that βx has period jx we see that c8Λ is in
the same block of βx as c8>u iff t = u mod (ls/j\). Similarly, c8>t is the
same block of β2 as cS}U iff t = u mod (ljj2). Hence c8tt is in the same
block of /9i Λ β2 iff t = u mod (ls/j\) and t = u mod (ls/j2) iff t = u
mod(iβ/i) where j — lcm(jlf j2). Applying Lemma 1 again we have
that the block B falls in a j -cycle under the action of a. As B was
chosen arbitrarily we see that every block of β falls in a j-cycle
under the action of σ and so Z(σ, β) = x). •

Write gcd (llf , lm) = pi1 pΐr and let j — pι p r . Lemma
3 tells us that every partition in ^ has period i where i/j. Let
σ be the permutation of {1, 2, , mj} which consists of m cycles of
length j ,

a = (1, 2, , i)(i + 1, , 2Q) - • ((m - l)i + 1, , mi) .

Let L be the fixed point partition lattice of σ and let ^ be the
meet sublattice of L consisting of 1 together with all meets of co-
atoms of £. Let L and ̂ £ be as above.

LEMMA 4. The lattices ^£ and ^ are isomorphic.

Proof. This follows from the classification of coatoms given in
Lemma 2. Returning to σ note that c1Λ, cli3 +u cU23 +lf are in the
same block of every coatom in L, and hence they are in the same
block of every partition in ̂ £. The same is true of ciik, cifk+jt cifk+2ί,
as i ranges from 1 to m and k ranges from 1 to j . So there is a
natural 1-1 correspondence φ between the coatoms of ^ and the
coatoms of ^ given as follows; let 7 be a coatom of ^ and let
citk, cr>8 6 {1, 2, , n}. Write k = jk' + u and s = js' + v where 1 <Ξ
u ^ j and 1 ̂  v ^ j . Then ciyk and cr,8 are in the same block of φ(y)
iff (i — l)i + ̂  and (r — ΐ)j + v are in the same block of 7.
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This is easily seen to be a 1-1 onto mapping between coatoms
which extends to a lattice isomorphism between ^€ and ^ . •

In the next section we will study the structure of the lattice
^ and in § 4 its associated geometry. By Lemma 4 we may reduce
to the case of σ having m cycles of length j , where j is a product
of distinct primes.

5* The supersolvability of ^ C In this section we study the
structure of ^ . Without loss of generality, we assume that n = mj
where j is the product of r distinct primes j — px pr. We assume
that σ is the permutation

σ = (1, 2, , j)(j + 1, , 2j) - ((m - ΐ)j + 1, , mj)

and as before we call ((i — ϊ)j + 1, , ij) the ίth cycle of σ and
denote it Ct. Since σ is fixed we abbreviate Z(σ; β) and p(σ; β) by
ϋΓ(/3) and p(β). Let L = (Π(N))σ be the fixed point partial ordering
of σ and let ^ f be the meet sublattice of L consisting of 1 together
with all meets of coatoms.

Let h be the partition in L which puts each cycle in a block by
itself:

h = {1, 2, , j}/{j + 1, , 2i}/ /{(m - l)i + 1, , mj} .

Note that /̂  is the meet of all type a coatoms in L and so he ^ C
We call h the hinge of ^ ^

LEMMA 5. Iw ^ ^ we have

[h, 1] ~ 77(M)

[0, h] = D, ~ Br

where Όά denotes the lattice of divisors of j and Br denotes the lattice
of subsets of {1, 2, , r}.

Proof. First consider the interval [h, 1], In Π(N), this interval
is isomorphic to /7({1, 2, , m}) and every element of this interval
is a meet of coatoms in the interval. Also each partition above h
is fixed by σ and so [h, 1] £ L. It follows that [h, 1] £ ^£ which
proves the first assertion.

For the second assertion, recall that each partition in ^/έ is
periodic with period d dividing j . For d\j, there is a unique
partition τ{d) below h of period d consisting of dm blocks. This
partition is arrived at by dividing each cycle C{ of σ into d blocks
according to:
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(i — ΐ)j + s and (i — ϊ)j + t are in the same block
iff s ΞΞ t mod d .

If d = ph ph p ί% then τ((Z) can be realized as a meet of coatoms
in L by taking the meet of all coatoms of type a and one coatom
of period pH for 1 <: I ^ u. It follows that [0, h] = D5. Π

Recall that in a lattice 1£, a complement of an element & is an
element fc' with k V &' = 1 and kΛk' = 0.

LEMMA 6. In the lattice ^f, h has j™"1 complements, and each
complement c has the following properties:

(a) p(c) = l
(b) Z(e) = xγ
(c) [c,l]=Di
(d) [0, c] = i7({l, 2, ...,m}).

Proof. Let ί7 be the set of functions mapping {1, 2, , m — 1}
into the set {1,2, •••,;/}, and let feF. Define a partition c{f) of
the set {1, 2, , mj} as follows:

(1) The element (m — ΐ)j + 1 (i.e., the first element in Cm) will
be in a block with exactly one element from every other cycle, these
m — 1 elements being (s — l)i + f(s) s = 1, 2, , m — 1.

(2) Rotate this block cyclically under the action of σ; the ele-
ment (m — l)i + i 1 ^ i ^ j will be in a block with exactly one
element from every other cycle, these m — 1 elements being
(s — ΐ)j + (i + /(»)) where 1 ^ s ^ m — 1 and where f(s) + i is taken
mod j.

It is clear that c(/) uniquely determines / and so there are jm~ι such
partitions c(f). Note that each has p(c(f)) = 1 and Z(c(f)) = x™.

Consider the join h\/ c(f) in Π(N). In h, every pair of elements
in a common cycle are in the same block. In c(/), every two cycles
have elements in the same block. So hVc(f) = 1.

Next consider the meet h/\c{f) in Π(N). In c(/), no two ele-
ments in the same cycle are in the same block whereas in h, no two
elements in distinct cycles are in the same block. It follows that
h A c(f) = 0.

So c(/) is a complement to h in Π(N) hence c(f) will be a com-
plement to h in L. Hence c{f) will be a complement to h in ^£
provided c(f) is in ^ C We examine the coatoms in L which sit
above c(/); clearly all are of type b. Let p be a prime dividing j.
Recall that if 7 is a type b coatom of period p then the element
(m — l)j + 1 is in a block with exactly (j/p) elements from each
block Ct, and specifying any of these elements in Ct specifies them
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all. It follows that there is a unique coatom of period p above c(f)
for each prime p dividing j . The meet of these r coatoms has period
j (by Lemma 3) and has the property that (m — l)j + 1 is in a block
with at least one other element from each cycle. Clearly this meet
is c(f), and so c{f) e ^ C Let the r coatoms above c(f) be labelled
7Ϊ> ••"> Tr so that yt is the coatom of period pi# Define a mapping
φ: Br -> [c(f\ 1] by φ(φ) = 1, <p{β) = Aies 7* for S Φ 0 (here [c(/), 1]
denotes the interval in ^ ) . Obviously <£>(S) ̂  φ(T) iff T £ S, and
it is easy to check that φ is onto, φ is one-to-one by Lemma 3
and the fact that the p/s are distinct primes. It follows that
[c(f), 1] = Br = Dj. It is equally simple to show that [0, c(/)] ~
77({1, 2, , m}). To obtain the isomorphism φ, recall that [h, 1] ~
77({1, 2, - , m}). Define f: [λ, 1] — [0, c(/)] by f (x) - c(/) Λ a?. We've
thus shown that c(f) is a complement of fe in M having the required
properties for each feF.

It remains to show that every complement of h in ^f is of the
form c(f) for feF. Let c be any complement of h in ^ C As
fc Λ c = 0, no two elements in a common cycle are in the same block
of c. As AVc = l, every cycle must have an element in a block of
c with some element of Cm. By the invariance of c under σ, we
may assume that the block of c containing (m — ϊ)j + 1 contains
exactly one element from every other cycle. It is now clear how
to define feF with c{f) = c. •

EXAMPLE 2. Let m = 3 and i = 2. So our permutation # =
(1, 2)(3, 4)(5, 6). The lattice ^£ appears below; note that ^y£ is geo-

i/46 1/2/3^45

1/2/3/4/5/6

FIGURE 3
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metric. We will see later that ^ is geometric iff j is a prime.
Here the hinge h is the partition 12/34/56. The coatoms of type a
are the three to the left, those of type b are the four to the right.
jm-i j s four. £he four complements of h are the four coatoms of
type b.

In this section we prove that ^ is super solvable. This will
require careful analysis of certain elements of ^ C Recall that if
x 6 ̂  then x is periodic of some period d which divides j . We let
Π(x) denote this number d. In the following sequence of lemmas,
we explore the functions Π and p and show that a certain miximal
chain from 0 to 1 in ^ consists of modular elements.

For x, y e ̂ f we let x V y denote the join of x and y in ̂  and
we let x\/Ly denote the join of x and y in L. As ̂ /ί is a meet
sublattice of L we have x\/Ly ^ xV y; in general equality does not
hold. For example, let j = 2 and m = 3 so a = (1, 2)(3, 4)(5, 6). Let
x = 13/24/5/6 and let y = 14/23/5/6. Then x VLV = 1234/5/6 but xVy
must have period 1 since both d and C2 are in the same block of
xyLy. Hence xVy = 1234/56 (see Figure 3).

The function ^, introduced in § 2, is defined for all xeL. It is
easy to check that p respects the join in L, that is p(x) V p(y) =
p(%V LV)> In fact ^ also respects the join in

LEMMA 7. Let xyyz^£. Then p{x V y) = /o(α?) V /o(3/).

Proo/. Note that if <*), zz^€ and α> <; « then ^(ω) ̂  |θ(»). So
p{x) V /o(y) = |θ(aj \fLy) £ ρ{x V »).

Let z be the unique partition in ^ with |θ(β) = ρ(x) V /o(i/) and
Π(z) = 1. Then « ^ α? and 2;^i/ so xV y ^ z. Hence p(x V y) ̂
p(z) = ρ{x)V p(y).

It should be pointed out that the analogous statement for meets
is false; i.e., in general we do not have ρ(x Ay) — p(%) Λp(y) As a
counter example let j = 2 and m = 2 so α* = (1, 2)(3, 4). Let x —
13/24 and let y - 14/23. Then xΛv = 1/2/3/4 so p{xΛv) = 1/2. But
p(x) = |θ(2/) = 12 so /o(α Λy) = 1/2 ^ 12 = (̂cc) Λ /θ(i/). However one
case where equality holds will be of particular interest to us.

LEMMA 7. Let xz^/ί and suppose Π(x) = 1. For any y
ρ(%Λy) = p(χ)Λp(y).

Proof. As Π(x) = 1, each cycle C< is contained in a block of a?.
Let Cp and Cq be cycles with p and g in the same block of p(x) A p(y)>
Then p and g lie in the same block of p(y) so there exist ueCp and
v eCq such that u and t; lie in the same block of y. Also p and #
lie in the same block of p(x) so some block of x contains both cycles
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Cp and Cq. Hence a and v lie in the same block of x Ay so p and
q lie in the same block of p(xAy) This shows that p(x)Λp(y) ^
ρ(%Λy); the reverse inequality is easy to show.

We next consider the function 77. Again we will be interested
in how it behaves with respect to the join operation in ^/£.

L E M M A 9. Let x,ye,

(A) If x^y then Π(y)\Π(x).
(B) Π(x V y) divides gcd (JI{x), Π(y)).
(C) If Π(x Wy) = gcd (77(aO, Π(y)) then x V y = x \/L y.

Proof Note that Π(x) — d iff the elements of each cycle Ct are
evenly divided amongst d blocks according to the rule that u and v
are in the same block iff u = v (mod d), for u, v e Ct. From this
observation (A) follows immediately, and (B) follows easily from (A).

For (c) suppose first that u, v eCt and u = v (mod gcd (d, e)): say
it = v + & gcd (d, e). Write k gcd (d, e) = ad + βe for a, βeZ and
let ft) be the unique element of C, satisfying it + d Ξ α) (modi).
Then w and ω are equivalent mode? hence are in the same block of
x. Also

ft) + βe = (u + αd) + βe = % + k gcd (<Z, e) = v

so w and v are equivalent mod e hence are in the same block of y.
Thus u and v are in the same block of xyLy, which shows that if
% = v (mod gcd (77(#), Π(y))) and u, v eCt then u and t; are in the
same block of x\/Ly.

Suppose u and w are in the same block of x V y with ueCp and
weCq. Since

ô(# V y) — p{x) V /θ(i/) and ^(#) V 0̂(2/) — p{x V 1/)

there exists a sequence t6 = tt0, tc^ , un such that ^ , ui+1 are in the
same block of either x or y and such that uneCg. It follows that
M and un are in the same block of x\fLy hence of xVί/ so ^ and
nn are in the same cycle and in the same block of x V y. S O ^ - K Ξ O
(mod 77(x V y)). Since Π(x V 3/) = 77(cc VL 2/) w e s e e that ^ w Ξ= W
(mod77(x\fLy). By the above observation, ^ w and w (hence u and
w) are in the same block of x\fLy so xVy -^ x\/Ly and equality
must hold.

Note that the sufficient condition for the equality of xVy and
%VLV given in (C) is not a necessary condition. For a counter-
example let j = 2 and m = 4 so σ - (1, 2)(3, 4)(5, 6)(7, 8). Let a? =
14/23/58/67 and let y = 13/24/57/68. Then

x\/y = x\/ y = 1234/5678 so Π(xVy) = 1 .
L
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But Π(x) = Π(y) = 2 so 2 = gcd (Π(x), Π(y)).
We can now construct the bottom half of our maximal chain of

modular elements. Suppose p(x) = 0 and Π(x) — d. Then each block
of x contains j/d elements; the blocks partition each cycle Ct into d
parts. The unique element x of ^€ satisfying these conditions is
denoted τ(d). Note that τ(j)-= 0 and r(i) = h.

LEMMA 10. Let d/j and let y, ze

(A) Ifz^y then z V (τ(d) A y) = (z V τ(d)) A y.
(B) If z<> τ{d) then z V (τ(d) A y) = (z V y) A τ(d).

Proof. We first prove (A). Note that for any x e ^ τ{d) Ax =
τ(e) where e = lcm(df Π(x)) and τ{d) V x is the unique element of ^£
above x which has period gcd (d, Π(x)) and cycle partition p(χ). From
this it follows that z V (τ(d) A y) is the unique element of ^ above
z which satisfies

p(z V (τ(d) Λ V)) = p{z)

Π(z V (τ(d) Λ »)) = gcd Π(z), lcm(d, Π{y)) .

By a similar argument one shows that (z V τ{d)) A y is the unique
element of ^ ^ above z which satisfies

p((z V r(d)) Λ 2/) = /o(»)

V τ(d)) Λ 2/) - lcm{Π{y\ gcd (/7(«), d)) .

Here one needs to use the fact that z ^ y.
As z ^ 2/ we have Π(y)\Π(z). Also, the lattice of divisors of

is modular which together with Π(y)\Π(z) gives

lem(Π(y\ gcd (77(s), d)) = gcd (/7(s), Zcm(d, 77(2/))) .

The proof of (B) is somewhat easier. Assume z = /7(e) where d|
Then

z V (τ(d) Λ ») = τ{e) V (τ(d) Λ »)

- τ(lcm(e, gcd (d,

(zVy)A τ(d) = (τ(β) V 2/) Λ τ(d)
- r(gcd (d,

As before, the condition d|β together with the modularity of
the lattice of divisors of j proves the desired equality.

Recall that j was assumed to be the product of r distinct primes
3 = PiP%" Pr For i = 1, 2, , r let tt = r(p 2p 2 pf), and let
tQ = 0. Then 0 = ί0 < ίx < < ίr = h is a maximal chain from 0
to h consisting of modular elements of ^€ (by Lemma 10).

For i = 1, 2, , m let st denote the element of ^€ which has
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the following ΐ + 1 blocks; block 1 contains only cycle Clf block 2
contains only cycle C2, , block i contains only cycle Ct and block
i + 1 contains the remaining cycles Ci+1, , Cm. Let s0 = 1 so

ft = sm_x < sm_2 < < s0 = 1

is a maximal chain from ft to 1. Note that 77(8,) = 1 and p(8t) =
{l}/{2}/ - I{%}!{% + 1, i + 2, , m}. We will use the fact that ^(s,)
is a modular element of Π(M).

LEMMA 11. Let y, ze ^€, For ί = 0, 1, , m — 1 we ftαve the
following:

(A) If z^y then z V (s< Λ 2/) = (z A 8t) A y.
(B) If z^8t then z V («< Λ 2/) = (» V 2/) Λ 8<.

Proof. We first prove (A); assume z ^ y.

p(z V (s< Λ 2/)) = /o(s) V pfa A y) by Lemma 7

= |θ(2) V (/θ(β<) Λ p(y)) by Lemma 8

= (p(z)Vp(si))Aρ(y)

the last equality holding since p(Si) is a modular element of Π(M).
Using Lemma 7 again we have

ρ(z V (st A y)) = /o(« V st) Λ ρ{y) = /o((« V s€) Λ #) .

The last equality follows from Lemma 8 upon observing that z Vs* ^ s<
so Π(z\/s^Πiβi) = 1.

Also 77(8,) = 77(8, V 2) = 1 so 77((s, Vz)Λv) = Π(y) and 77(s, Λ ») =
77(̂ /). The latter equality implies that 77(2 V (s< Λy))\H(y). But
2/^2 and y ^ SiAy so y ^ zV (SiAy) hence 77(τ/) 177(̂  V (s< Λ 2/)).
Thus

77(2 V (s€ Λ y)) = gcd (77(2), 77(8, Λ y))

and so z V (8, Λ 2/) = z \f L (8, Λ y) by Lemma 9(C). We now show that
z V (s, Λ y) ^ (Si V z) A y which will imply equality since we know

p(zV(8tΛv)) = ρ((siVz)Ay)
and

77(2 V (s, Λ y)) - 77((8, Vz)Λv).

Suppose u and v are in the same block of zV(SiAy). Since
z V (8, Λ y) = z\ZL(SiAy) there exists a sequence w = w0, ̂ i, , un — v
such that uh uι+1 are in the same block of either z or (SiAy)- Since
z ^ y we see that tti, u ί + 1 are in the same block of y so u and v
are in the same block of y. Also %„ ui+l are in the same block of
either z or 8, so u and v are in the same block of zyL8t hence of
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z V 8t. Thus u and v are in the same block of (z V s<) Λ y so (3 V y) ^
(8i\/z)Λy* This completes the proof of (A).

The proof of (B) is the same with a minor exception. As in (A)
we show that

and
p(z V (s, Λ 2/)) = <o((s V y) A «,)

V (*, Λ = Π(y = Π((z Vy)A β,) .

Let c£ = Π(zVy), and suppose that π and v are in the same block
of zV(8iΛv). Then there exists a sequence u = uOfulf , ww such that

(1) wz, wz+1 are in the same block of either z or (β< Λ 2/)
(2) wM = v (modd).

Note that ul9 uί+1 are in the same block of (z V y) A sέ and
^?((^ V y) A Si) = d so u and v are in the same block of (z V y) A «<.
This completes the proof of (B).

Lemma 11 tells us that each s, is a modular element of ^ C
Combining Lemma 10, Lemma 11 and Proposition 2.1 from Stanley
[4, pg. 203] gives the following theorem.

THEOREM 1. ^t is a super solvable lattice with M-chain

0 = ί0 < tx < - < ίr = Λ = sw_x < sm_2 < < So = 1 .

At this point a rough sketch of ^£ is helpful.

4* The geometric properties of ^£. Figure 4 suggests that
might be geometric; in fact ^ is geometric iff j is prime.

However ^/έ does give rise to a pregeometry (in the language of
Crapo and Rota [1]) which we will show in this section. To do so

0 = t n

FIGURE 4
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we need notation for certain elements of ^£. Some of this notation
has already been established; for completeness it is listed below again.

(1) For dIj, τ{d) denotes the unique element of ,,/ί with
p(τ(d)) = 0 and Π(τ(d)) = d. τ(d) sits in the interval [0, h\.

( 2 ) For a partition β e Π(^fZ), σ(β) denotes the unique element
of ^f? with p(σ(β)) = β and Π(σ(β)) = 1. σ{β) sits in the interval

[Λ, 1]
(3) Let F be the set of functions mapping {1, 2, , m — 1}

into the set {1, 2, , j}. For feF, c(f) denotes the complement of
h given by / as in the proof of Lemma β. Note: for notational
convenience in what follows we will extend / to a function from
{1, 2, , m} into {1, 2, , j} by defining /(m) = 1.

(4) Let p and q be integers between 1 and m with p < q and
let r be an integer between 0 and j — 1. Then a(p, q, r) denotes
the following partition in ^ which has exactly j blocks of size 2
and all other blocks of size 1. Each block of size 2 consists of one
element from Cp and one from Cq according to ueCp and v eCq are
in the same block iff u = v — r (mod,?).

EXAMPLE 3. Let j = m = 3 so σ = (1, 2, 3)(4, 5, 6)(7, 8, 9). Let

p = 1, q = 3 and r = 2. Then

α(l, 3, 2) - 19/27/38/4/5/6 .

It is worth noting that Π(a(p, q, r)) = j and that p(a(p, q, ?•)) is the
atom in Π(^/f) having the block {pf q) of size 2 and all other blocks
of size 1.

LEMMA 12. ^ has exactly r + 3\o) ^ioms. Of these, r atoms

lie in the interval [0, h]; these are of the form τ(j/p) for p a prime

dividing j . (These r atoms will be called type a atoms.) The re-

maining jί7!}) atoms lie outside the interval [0, h]. These are of

the form a(p, q, r) and will be called type b atoms.

Proof. Let x be an atom. It is clear that p(x) is either 0 or
an atom in Π(^/f) and that Π(x) is either j or (j/p) for p a prime
dividing j . We consider the four possibilities.

If p(χ) = 0 and Π(x) — j then x = 0 which is impossible. If
p(x) = 0 and Π(x) is j/p then x — τ(j/p). If p(x) is an atom and Π(x)
is jjp then we have 0 < τ(j/p) < x which is impossible.

Lastly suppose Π(x) = j and p(x) is the atom in Π(^/f) which
has exactly one block of size 2 containing p and q with p < q.
Consider (p — ϊ)j + leCp. It is in a block of size 2 with a unique
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element of Cq9 say (q — ί)j + (r + 1) for 0 ^ r ^ j — 1. It is now
clear that x = α(p, #, r).

For the remainder of this paper, A denotes the set of type a
atoms and B denotes the set of type b atoms. Let βeΠ(M) and
let feF. Then B(β) denotes the set of type b atoms x satisfying
x ^ σ(β) and B(f) denotes the set of type b atoms satisfying x ^ c(f).
B(βl f) denotes the intersection of B(β) and B(f). Note that α(p, q, r)
is in B{β) iff p and q are in the same block of β and α(p, q, r) is in
B(f) iff r = /(g)-/(p) (modi).

Let & denonte the lattice of subsets of A{J B.

DEFINITION 2. Define closure operator " on & as follows; let
S G ^ and write S = SA U SB with S , g i and Sβ Q B. Let /3 =
VxeSβp(x)eΠ(M)> Then

Case 1. φ = 0

Case 2. If S^ = 0 ^ S^ and if there exists feF such that
x £ c(f) for all x e S* let S = B(/3; / ) .

Case 3. Let S = A{J B(β) otherwise.

We need to show that " is well-defined in Case 2. Suppose
SA= 0 Φ SB and let f, geF satisfy x <̂  c(f) and x ^ c(g) for all
ίceS 5 . We need to show that B(β; f) = B(β; g). By the symmetry
of / and # it suffices to prove that B(β; f) £ B(β; g).

Assume that a(p, q, r) e B(β, f) so r = f(q) — /(p) mod j . Choose
a sequence α(p0, plf rx), α(^2, p2, r2), , a{pn_u pn, rn) e SB such that
p = Po and q = pn. This can be done by definition of /3. As & <£ c(/)
for all xeSB we know

- f(Pι-i) = n (mod j) .

In particular

r = f(q) - /(p) = f(pn) - /(Po) = Σ (/(Pi) ~ /(Pz-i)) (mod j)

Hence r Ξ χ,Γ=i rι (mod jf). Since a; <Ξ c(βr) for all a ;eS 5 we also have
rx ΞΞ g(pι) — gipi-ί) (mod j). The same telescoping sum shows that

r = g(Pn) - g(Po) = g(q) - g(p) (mod j)

and so a(p, q, r) e B(β; g) as desired.
It is easy to show that is a closure operator—the verification

is left to the reader. The next lemma shows that ~ also satisfies
the exchange condition thus making (β, ~) into a pregeometry. We
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first need the following technical lemma.

LEMMA 13. Let SB S B and let yeB. Let β = yzeSβρ(z) and
suppose that SB is of the form B(β; f) whereas SB U {y} is of the
form A U B(j) for some 7 ^ β. Then p(y) ̂  β and so 7 = β.

Proof. Suppose p(y) ̂  β. We will construct a function geF
with y <̂  c(g) and z ^ c(g) for all z eSB. Let y = a(p, q, r). As
p{y) ^ β we know that p and g lie in distinct blocks of β. Write

β = Bi/iy /Bk with p € B, and g 6 B2 .

Case 1. m ί Bx. Define flr(Z) = /(Z) for I £ Bx.
For I e Bt define

9(1) Ξ (f(Q) - /(P)) ~ r + /(Z) (mod i) .

Note that g(p) = f(q) — r = g(q) — r (modi). Thus g(q) — g(p) = r
(mod j) and so y ^ c(flr). Suppose ^ e S 5 , 2 = α(̂ >x, QΊ, r j . If plf q1 eBi
for i Φ 1 then ^(gO - ^(pj Ξ f(q,) - f(pλ) = rx (mod i) and so ̂  <
If plf q± G JSX then

9(Qi) ~ flf(Pi) = (/(<?) - /(P) - r + /(9 l)) - (/(?) - /(p) - r

= /(?i) - f(Pi) = n (mod 3)

So « ̂  c(fir) as was to be shown.

Case 2. m e £ x . Define g(l) = f(l) for I $B2. For Z 6B 2 define

= f(l) + (f(p) - f(q)) + r (mod j) .

As before, βf(g) Ξ /(p) + r = ̂ r(p) + r (mod i) so 7/ ̂  c(flf). For 2 e
as in Case 1.

THEOREM 2. ( ^ ~) is a pregeometry.

Proof. We need to show that ~ satisfies the following exchange
property (*):

Let x,yeAUB and let S S i U S. If x £ S and

x 6 S U M then 2/ e SU {»} .

The verification of (*) proceeds in several cases. Let β = yzeSjB p(z)

Case 1. cc e A.

Since a? g S we know S = SB Q B. If y e A then obviously 2/ e
S U {x} = A U B(/3), so assume that
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Since x £ SB, we have SB = B(β; f) for some fe F. As x e SB U {y}
we know SB U {#} = B(y) U A for some 7 ^ / 3 . Applying Lemma 13
we have p(y) < β so y e J?(/3). So yeSBΌ {x} = J5(/S) U -A.

Case 2. # e i?, 2/ e A.
If y eS then

which is impossible since a? e S U {y} — S.
So 2/ ί S; i.e., S = JS(/9; /) for some feF. Thus S U {2/} =

and so p(x) ^ /3.
Since x& S there is no function feF with x <̂  c(/) and with

z ^ c(/) for all zeS. So SU {x} = B(/3) U A which gives 7/ e S U {x}.

Case 3. x,yeB and

Since S is properly contained in S U {y} we see that S has the
form B(β f) for some feF and that SU {y} = S(/9) U A. As x e

Since a; e S there is no function feF with x <* c(/) and z ^ c(/)
for all z e S. Thus S U {«} = 5(/3) U A and so # e {x}.

Case 4. a;, y 6 £ , p(y) ^ /S and S = A U B(β).

_Here we have S U M = AU JB(T) for γ = /3V <o(?/) > /3. Since
x ί S we know p(α ) ^ /3 but p(x) ^ βV ρ{y). Hence we know p{y) ^
β\/ p{x) because Π{M) is a geometric lattice.

Case 5. a?, » 6 5 , ^(T/) ^ ff and S = B(β; f) for / e F . '

In this case we have S U {y} = JS(τ; flr) for 7 = β V (̂2/) and for
some greί 7 (see the proof of Lemma 13). Suppose p(x) ^ β. Since
xeSU{|/}, we know x ^ c(sr) and so

xeB(β;g) = B(β;f) = S -»<- .

Thus /o(a ) ^ /3 and /o(a ) ^ ^ V /o(i/) so /o(i/) ^ β V /o(a?) again because
is geometric. Hence 1/ 6 B(Ύ; g) = S U {a?} and this finishes the

proof of Theorem 2.
Let G be the subset of ^£ consisting of all elements of period

1 together with all elements of period j . It is clear that if x, y eG
then x Ay eG so G is closed under meets.

Given any element x of ^f, there is a unique smallest element
of period 1 which is greater than or equal to xf this being σ(p(x)).
In particular this is true of x = y V z for y, zeG. Thus G has a
join operation V<? defined as follows; for yf zeG

_ iyVz if Π(yVz) = j
VGZ~~ \σ(p(y V z)) if i7(y V z)< j .
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G is a meet sublattice of ^£ hence of L and so of i7({l, 2, , mj}).
For the remainder of the paper we continue to let V, Λ denote the
join and meet of ^ and V<?> Λ<? denote the join and meet of G.

j
complements

of h.

FIGURE 5

Let G denote the lattice of flats of the pregeometry ( ^ ""). We
know that G is a geometric lattice. Define φ: G —>G as follow;

( 1 ) φ(φ) = 0
( 2 )
( 3 )

THEOREM 3. φ is a lattice isomorphism and so G is a geometric
lattice. Some elemetary properties of the matroid given by G are
listed below:

A. Bases: If I is a basis containing h then I — {h} :g B(f) for
a unique function /. The set of p(x) for xe I — {h} constitute a
basis for Π{M).

If I is a basis not containing h then I contains an element y
(not necessary unique) such that the set of p(x) for x e I — {y} con-
stitute a basis for Π(M) and such that VG(I — {y}) = c(f) for some
function f

B. Circuits: If C is a circuit containing h then the set of p(x)
such that xeC—{h} constitute a circuit in Π(M). There is no
function f such that x ^ c(f) for all x e C — {h}.

If C is a circuit not containing h then the set of p(x) such that
xeC constitute a circuit in Π(M). There is a function f such that
x ^ c(f) for all xeC.

C. Rank function: Let XG denote the rank function of G and
let λ denote the rank function of Π(M). Let S be a subset of B\J{h};
write S = SA U SB where SB Q B and SA = 0 or {h}. Let
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β = V P(X)
xeSB

Then

XG{ }~^

if S = 0

SBQ B(f) for some feF(SB Φ 0)

1 + X(β) otherwise .

Proof. It is easy to verify that φ is one-to-one, and onto, φ
is obviously order-preserving hence ψ is a lattice isomorphism. The
matroid properties given in A, B and C are clear; proofs are left to
the reader.

COROLLARY 1. ^ C is geometric iff j is prime, or m = 1.

Proof. If j is prime then ^ — G and so the result follows
from the last theorem. If m = 1 then ^/ί is isomorphic to the
Boolean algebra Br (i.e., lattice of divisors of j), and so ^/έ is
geometric.

Conversely, suppose j is not prime and m > 1. We show that
^£ is not geometric.

Consider the join of the two atoms α(l, 2, 1) and α(l, 2, 2). It
is clear that these two do not both sit below c(f) for some / hence

ail, 2, l)V^a(X, 2, 2) - σ(β) > h

where β = {1, 2}/{3}/ /{m}. But since i is not prime and [0, h] = Br

we see that the rank of h is at least 2 so the rank of σ(β) is at
least 3. So ̂ £ is not geometric.

Return to Figure 3, where j = 2 and m = 3. Corollary 1 tells
us that ^̂ ff is geometric in this case. In fact, its easy to check
that this particular _y£ is the projective plane of order 2.

5* The Birkhoίϊ polynomial of ^ C The purpose of this sec-
tion is to determine the Birkhoff polynomial of ^fί. Some results
in this section will be proved in a more general framework and then
specialized to ̂ y£. We begin with some well-known facts about closure
operators on lattices.

Let K be a finite lattice with join and meet operations V* a n ( i
Ax Let x-*x be a closure operator and let K denote the set of
closed elements of K. Then K is a lattice with join V^ and meet
A i given by

xVv=aV#
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Let heK. Define G(h) to be the set of elements of K whose
meet with h is either 0 or h. Define a map x->x from K to K by

_ _ (x if x e G(h)
X ~ [x V h if x ί G{h) .

It is clear that x ^ x. Also ~ maps K onto G(h) so x = #, and it is
easy to check that if # ^ 1/ then & ̂  y. Thus is a closure on K
and the lattice of closed elements is G(h). We sometimes write
G(h) = G0\jGh where

Go = {xeK xΛh = 0}

Gh = {xeK:xΛh = h} .

LEMMA 14. Suppose that K is supersolvable with M-chain C,
suppose heC and let C = CΠ G(fe). Tfcβ^ G(Λ) is supersolvable with
M-chain C.

Proof. Let S be a chain in G(fe), and let T be the sublattice
of G(h) generated by 2f and C. Note that T is contained in the
sublattice of K generated by C and £& since feeC. Also observe
that T is closed under joins in K, if x9 y e Γ with x Ah = y Ah = 0
then

(α? V 0) Λ fc = (α? Λ h) V (tf Λ h) = 0 V 0 = 0 .

The first equality follows by the fact that C is an M-chain for K.
Let α, 6 and ceT. Then

(α V 6) Λ c = (α V 6) Λ c = (α Λ β) V (6 Λ c)

= (αΛc)V(5Λc)
(?

and
((a A b) V c) - (a A b) V c - (α V c) Λ (6 V c)

This proves the lemma.
Apply the last result to ^f with h as in §§ 3 and 4. Note that

G — G{h) and so we see that G is a supersolvable geometric lattice
with ikf-chain

0 < h - sw_! < sm_2 < "- < s, < s0 = 1 .

We now use methods of Stanley to evaluate the Birkhoff polynomial
of ^

THEOREM 4. Let JB^(λ) denote the Birkhoff polynomial of ^fί.
Then
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= (λ - 1) ' (λ - j) (λ - 2j) - (λ - (m -

In particular μjβ, 1) = ^(i)(( —l)m~1(m — I)!);?™"1 where μ(j) denotes
the number theoretic Mobius function.

Proof. Let Bh(X) denote the Birkhoff polynomial of the interval
[0, h]. We first observe that

BΛλ) - Bk(\)( Σ μ(0, &)λ-'(6))
6e(?0

where r(δ) denotes the rank of b. The proof is exactly the same as
the proof of Theorem 2 given in Stanley [3]. In this proof Stanley
assumes that the lattice L under consideration is geometric whereas
^ is not in general geometric. However he only uses that L is
geometic to prove his Lemmas 1 and 2. Lemma 1 still holds since
we've shown h is modular in ^ (see Lemma 10). We now prove
his Lemma 2; i.e., we show that for any ye^f, h/\y is a modular
element of [0, y].

Suppose a e [0, y] and b ^ a. Then

(bW (y Ah)) A a — ((6 V h) A y) A a by modularity of h

= ((6 V h) A a) = b V (h A a)

= 6 V (Λ Λ (0 Λ α)) = δ V ((Λ Λ ϊ ) Λ α ) .

This part of the proof comes directly from Stanley [3, pg. 216]. Next
suppose b ^ h Ay and ae [0, y\. Then

= h A(y A(bV a)) since bV a ^ y

= (hAy)A(bVa) .

My thanks to Prof. R. P. Dilworth for suggesting this half of
the proof.

This shows that

(Σ
beG0

Next consider the supersolvable geometric lattice G. As h is a modu-
lar element of G we can apply the same result again to G. This
time the interval [0, h] is isomorphic to a chain of length 1 so we
have

Combining this with the previous equation yields
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Also the interval [0, h] in M is isomorphic to the Boolean algebra Br

so Bh(\) = (λ - l) r. Thus we have

(5.1) BM(x) = (λ - l ) r - ^ ( λ ) .

Recall that an M-chain for G is 0 < sm < sm_x < < sQ = 1. For
i = 0 to m — 1, let α< denote the number of atoms of G which are
less than or equal to s4 but not less than or equal to βi+1. By
Theorem 4.1 of Stanley [4, pg. 209] we know

BG(\) = (λ - am_γ) (λ - αw_2) (λ - α0)

= (λ - 1) (λ - αm_2) - - (λ - α0) .

We next show that am_t — {% — ΐ)j for i = 2, , m. The atoms of
<? are h together with all type b atoms ^£. A type b atom a is
less than or equal to sm_i iff p(a) < p(sm_%). Now ρ{sm_%) has one block
of size i together with m — i blocks of size 1; the block of size i
consists of {m, m — 1, , m — i + 1}.

Let α(p, g, r) be a type b atom with a(p, q, r) ^ sm_i and
a(p, q, r) ^ β^^x Since a(p, q, r) ^ sm_t we know p, ^ e {m, m - 1, ,
m — i + 1}. Since a(p, q, r) ^ sm_i_i we know that p and g are not
both members of {m, m — 1, , m — i + 2}. As p < q we see

p = m — ΐ + 1

q 6 {m, m — 1, , m — i + 2} .

Furthermore any choice of q e {m, m — 1, , m — i + 2} and r e
{1,2, , j} give a type b atom α(m — i + 1, ?, r) = α with α ^ sw_i
and α ^ 8m_<_i. So αm_; = j(i — 1). Thus

BG(X) = (λ - 1) (λ - i) (λ - 2j) i (λ - (m - l)j)

which together with equation (5.1) completes the proof of Theorem 4.
Return now to Figure 3. Here j = 2 and m = 3 so we have

BM(χ) = (λ - l)(λ - 2)(λ » 4) = λ3 - 7λ2 + 15λ - 8 .

The interested reader can verify from Figure 3 that this is the cor-
rect Birkhoff polynomial for ^ C

In Theorem 4 we obtained, for a nongeometric supersolvable
lattice, factorization results similar to those which Stanley obtained
for supersolvable geometric lattices. We can restate Theorem 4 in
the following more general form.

THEOREM 4A. Let (K, C) be a supersolvale lattice and let h be
an element of C. Suppose that G(h) is a geometric lattice and that
for each y eG0 the map from [0, h] to [y, y\/ h] given by z—>zVy
is one-to-one. Let Cr = C ΓΊ G(h) be
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0 < h = So < 8t < < Sn = 1 .

Then

B,, (λ) = Bh(x) (λ - αx) (λ - α2) • (λ - an)

where α* is the number of atoms a of ^ which satisfy a <* sif a ^ s^.

The assumption that the map z —> z V y is one-to-one is necessary.
Consider for example

It is easy to check that 0 < α < f c < l i s a n Λf-chain for this lattice;
note that the map from [0, h] to [y, yVh] given by z —* zV h is not
one-to-one (h and b have the same image).

G(h) =-o
so G(h) is geometric. It is easy to check that at = 1 and Bh(x) =
(λ - I)2 so

Bh(X)(X - a,) = (λ - I ) 3 .

However one can check that BM(X) — λ(λ — l)(λ — 2) and so Theorem
4A does not hold.
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