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ENTROPY OF AUTOMORPHISMS ON L.C.A. GROUPS
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In this paper we will consider entropy of automorphisms
on locally compact abelian groups. Bowen’s definition of
entropy of a uniformly continuous mapping applies in
particular to topological automorphisms of l.c.a. groups. If
hy{a,G) denotes the Bowen entropy of a € Aut(G), we investi-
gate the appropriate dual notion 2_(&, @) of the adjoint
automorphism & on the dual group @, and show /hz(a, G) =
h. (&, (). We define the total entropy h(a, G) of a on G to
be the sum /Az(a,G)+h. (a,G) and show that with this defini-
tion, h(a, G) coincides with Kolmogorov-Sinai entropy if G
is compact and furthermore the invariance properties present
in the compact case are retained for an arbitrary l.c.a.
group G. We also obtain the addition theorem for entropy
and a formula for the entropy on projective limits. In
conclusion we mention some questions which arise.

0. Let G be a locally compact abelian group (l.c.a. group) and
Aut(G) the group of topological automorphisms of @, i.e., those
automorphisms which are also homeomorphisms of G. If I' is the
dual group of G and a <€ Aut(G), the adjoint automorphism & is de-
fined by a@(r(x)) = t(a'(x)), rel,xeG. & is in Aut(l"), and in fact
a — & describes an antiisomorphism of Aut(G) to Aut(I"). Consider
the following properties which we would like an entropy function
h(a, G) to possess:

(i) if G is compact, k(x, G) is the Kolmogorov-Sinai entropy
of @ with respect to haar measure; in general i(a, G) = hy(a, G),
the Bowen entropy.

(ii) h(a*, @) = k-h(a, @), k a positive integer;

(iii) if a, a,e Aut(@) are conjugate (i.e., there exists 8¢ Aut(@)
with ga, = a,B), then hia, G) = h(a,, G);

(iv) if G, is a l.c.a. group and a,€ Aut(G,), 7= 1,2, then
hla, X a,, G, X Gy) = h(a,, G) + hla,, G.);

(v) ke, G) = h(a™, G);

(vi) hia, G) = h(@, I');

(vil) R(6, G) = 0, 6 the identity map.

1. Before continuing, let us observe that in the class of com-
pactly generated abelian Lie groups, there is a unique smallest
function satisfying (i) through (vii). For any such Lie group G can
be written as R"x Z™x K, K a compact Lie group, and so any ae
Aut(G) has a corresponding decomposition as «a,xa,Xa,. By (iv),

475



476 JUSTIN PETERS

kla, G) = h(a,, R*) + (a,, Z™) + h{a;, K). Now h(a,;, K) is determin-
ed by (i), and h(a, Z™) = h(&,, T™) is determined by (vi) and (i). «,
is conjugate in Aut(R") = GL(n, R) to a linear transformation 4 =
A, X -+-x A, where each A, has at most two eigenvalues, A, \; (not
counting multiplicities). By (iii) and (@iv) h{(a, R") = h(A, R") =
St h(A;, R*), where k, is the dimension of the subspace correspond-

ing to A, Set el:{_} i mfi By (v), WA, R")=3_ (A%, R").
Now the Bowen entropy hz(A%, R*) = k;log|n;|] [1; Theorem 15].
Thus by (i), h(a,, R") = 3}._ kJlog|n;l|. In fact if we set h(a, R")=

=1 k: |log|\;]], it is easy to check that (i)-(vii) are satisfied.

2. We now recall Bowen’s definition of topological entropy, re-
cast in the slightly more general context of uniform spaces, which
has the advantage that we need not restrict ourselves to metric
l.c.a. groups, without complicating the proofs. Let (X, %) be a
uniform space and T: X — X uniformly continuous. A set Ec X is
(n, U)-separated (Ue %) if for any distinet x, y ¢ F there is a j
such that 0<j<n and (TV(x), T'(y)) ¢ U. A set F' is said to (n, U)-
span another set K (with respect to T') provided that for each xe K
there is a y € F for which (T%(x), T(y)) e U for all 0 < 5 < m.

For a compact set Kc X let »,(U, K) (where Ue %) be the
smallest cardinality of any (n, U) spanning set F for K (with re-
pect to T) and let s,(U, K) denote the largest cardinality of any
(n, U)-separated set E contained in K. Define

Fo(U, K) = lim sup-~log (U, K)
2—00 n

and
5:(U, K) = lim sup %mg s,(U, K) .

It can be shown that

(U, K) = 8,(U, K) = 7,(V, K) < o0
if VoVcCU,; also if U,CU,

(U, K) 2 7,(U,, K) and §,(U, K)=5,U, K) .
Finally set h,(T, K, X) = lim, ., 7(U, K), and
hs(T, X) ———chggcnhB(T, K, X).

In our context X will always be a l.c.a. group G and the uni-
formity % will be the usual left (right, two-sided) uniformity on G.

3. We wish to introduce a second invariant. In doing so, how-
ever, we will restrict our attention to automorphisms of a l.c.a.
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group G. Let acAut(G) and UC G a precompact neighborhood of
the identity. Set

Ua,n =U + a U + .-+ a=n T
and

ho(e, U, G) = lim sup—~log(U,..) ,
£ n

where p¢ is a fixed haar measure on G. Finally, set

he, @) = lim k(a, U, G) ,
U

where the net {U} is directed by U, < U,iff U, C U,.

Note that the value of h.(a, G) is independent of the particular
choice of haar measure. h.(a, G) was considered in [5] in the context
of discrete groups.

4. THEOREM. Let G be a locally compact abelian group and
o€ Aut(G). The function hia, G) defined by hia, G) = hy(a, G) +
ho(a, G) satisfies properties (i) through (vii) above.

5. REMARK. hy(a, G) can also be computed as follows:
i . 1 not
hp(a, G) = lim lim sup — — log /J(ﬂ o “U> ,
U n n =0

where # is a haar measure on G, and the outer limit is taken over
a precompact neighborhood base {U} converging to the identity [1;
Proposition 7].

6. ExampLE. The p-adic shift. Let 2, be the p-adic group;
Q=1 = (", By Bpssy )7 2,€{0,1, -+, p =1}, —c0 <k < oo, and
2, = 0 for all k < n,, where n, is an integer depending on #}. The
group operation and haar measure on 2, are described, for example,
in [2]. Let acAut(2,) be the bilateral shift given by a() =¥,
where y, = #,-, —o0 < [k < . It is easily seen that for any mea-
surable set EcC 2,, the haar measure m(aF) = pm(E), and so a is
a nonunimodular automorphism with modular function 4(a) = p. Let
U,={Ze,:x,=0 for k<n}. Then {U,n=01,---} forms a
neighborhood base at 0 in 2,. We normalize the haar measure p
so that p(U,)=1. hye, U, =lim, .. — 1/klog p(Nizsa=7U,) =
lim,_. — 1/klog #(U,,,) = lim,_.. — 1/klog p~"** = log p. Since this
is independent of n, hy(a, 2,) = log p.

To compute h(a, 2,), once again it is sufficient to consider the
sets U,, n € Z, since any precompact set & is contained in some U,.
Since a'U, = U,;, < U,, for any ke Z* we have
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(U, + a U+ -+ +a- 7)) < ukU,) .

As haar measure on locally compact abelian groups has polynomial
growth, we conclude that

he(a, ‘Qm U, = Ilmllolog‘;l(U + atU,+ - +a=% v

=0, and consequently
hol(a, 2,) =0 .

Consider now a™. a™'Z = ¥, where y, = %, k€ Z. Since aU, =
U,-oU, Nizta’U, = U,. It follows that hy(a™, 2,) =0. On the
other hand, observe that

oy, cU, +alU, +---+a*'U,ca*U, .

(The right hand containment is easily verified by induection.) Thus
1/klog p* "< 1/klog (U, + aU,+ - - - +a*U,) < 1/k log p*~". Hence
ho(a™, 2,) = log p.

Next, recall that the dual group 2F of 2, is given by 2F =
£ =("--, 2 Tptr, ---): 2,€{0,1, ---, »p — 1}, and «, = 0 for all & > =,
where » depends only on Z}. The group operation and haar mea-
sure on 2% are analogous to those of 2,. The adjoint & is given by
a(x) =y, where y, = x,,. It is easy to compute that A&, 2F) = 0,
hao(@, 2F) = log p, hp(@, 2F) = log p, and h.(@ 2%) =0. We see
that h(a, 2,) = h(a™, 2,) = h(@&, 2F) = h(@*, 2F) = log p.

The situation above contrasts with that of the bilateral shift g
on G = [1%-w(Z,):, (Z,); = Z, for all ieZ), with dual group I' =
S5-w(Z,);. Here hy(B, G) = hs(B7, G) =logp by the Kolmogorov-
Sinai theorem. h.(8, G) = ha(8%, @) = 0. Alsohy(B, I') = hy(F, I) =
0 and . (B I = hm(,B“1 I = log p.

7. ExAMPLE. We verify directly that if @ € Aut(R")=GL(n, R),
then h(a, R") = >, k;|log|\||, where {\, ---, \,} are eigenvalues of
« and k; is the multiplicity of ;. (Here our notation differs from
that of §1.) Now «a gives rise to @deGL(n,C) by alx + iy) =
a(x) + ia(y), x, y€ R*. Since & can be identified with axa on R*,
the effect of changing the base field from R to C is to double the
entropy. If we can show h(&, C") = >\, 2k;|log|\;||, the formula
above will follow. There is a basis for C” such that the matrix A
of & is in Jordan canonical form: thus A = A, X --- X A4, and each 4,
is a k,xk; Jordan block with eigenvalue ;.

P» 10---0
Ox1---0

Let B be a kxk matrix of the form B = L: - | with

0 N
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A # 0 on the diagonal and 1 on the superdiagonal. Then B™ is an
upper triangular matrix with A™ on the diagonal and 1/5! (d/d\)(\™)
on the jth superdiagonal, j=1,2, ---,k—1,m=1,2, ---. A crude
estimate shows

kmtlla]l, if M=1

IN["emt|| @], if [N >1.

Thus, if U is a ball in C* and |A] = 1,

U+ BU+ -+ + B¥'U
cU+kU+ -+ + E(N—-1)*U
ck*N*U for every positive integer N .

Bz =

Since haar measure 2 on C* has polynomial growth, 1/Nlog(k*N*U) — 0
as N— . So if [N £ 1, k(B C*) = 0.
If A >1,
U+ BU+ --- + B"'U
cU+ IMEUA+ -+« + NN — D)*U
C@+ N+ s+ INTDENU

cDMT =1y
I —1

The polynomial growth condition on g means that for any convex
neighborhood V of O in C* there is a ¢ > 0 and an exponent ¢ such
that #(tV) = ct', t > 0. In fact we can take ¢ = 2k. Thus

p(BYU) < (U + BU + --- + B¥'U) < ﬂ(%‘—]}v—:—%kl\f"w ~

Since p#(B**U) = 4(B)**u(U), where 4(B) = |»|* is the modular

function, we have

INFYD < (U + BU + ++- + BY'U) < c<]17\,)\‘|‘;" -—11>2kk2kN2kz )
| —

Taking the log of both sides and dividing by N and taking the limit
as N— « we get that h.(B, C*) = 2k log |\ |.
From (8.b) we have

ho(B, C*) = ho(B~, C*) — 2k log |\ | .

We conclude h.(B, C*) = {9:2]5 log || R{ % ]% From [1; Theorem
15] ho(@, C*) = 312,51 2k, Jog |N;|. h(&, C™) = 3L, 2k, |log|\,|| follows.

8. We now turn to the proof of Theorem 4. Property (i) fol-
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lows from the definition of A(ea, G), while (ii), (iii), (iv) and (vill)
need only be verified for h., sinece they are known to hold for
hz(I1]). The verifications are straightforward and are omitted. Ac-
tually, in §9 we will show h.(@, G) = hy(@, G), and so these pro-
perties of h. will in fact follow from those of h;. Note that (vii)
follows since l.c.a. groups have polynomial growth.

Recall that the modular function 4(a) (« € Aut(@)) is defined by

#al) = a)U) ,

where U is any measurable subset of G. Equivalently, for fe
LYG),

[ reade = a@ sap.

To show (v) we will show that

(@) hgle, G) = hp(a™, G) + log 4(a) and

b)) hola, G) = ho{a™, G) — log 4().

If U is a precompact neighborhood of the identity in G and
p is haar measure we have p(N;iZiaU) = pla "'zt ailU) =
M)~ (it ' U)(a € Aut(G)), and (a) follows. For (b) notice
wU+aU+ - +a"*0) = la""2U + aU+ -+ +a* ")) =
o)~ (U + pU + +++ + a»0).

9. To show h(a, G) = (@&, G) we will prove h.(a, G) = hy@, G),
as mentioned above. This, together with the Pontryagain-van
Kampen duality theorem, will yield the assertion.

The strategy of the proof is to rewrite the defining expressions
for h; and h. as limits of convolutions of characteristic functions
of sets, and then replace characteristic functions with nonnegative
positive definite L'-functions, which is self-dual under the Fourier
transform. It will be convenient to introduce some notations. If
¢ is a function on G and ac Aut(G), ap will denote the function
(ag)(x) = ¢(a~x), € G. Also, we will let

C.(g, a) = gx(a'¢)x- - -x(a™"g), n > 0 .

LEMMA 9.1. Letn =1 and U,= — U, be symmetric neighborhoods
of 0,1= 1= n. Then

pUPPU) - (UL o 42U, + -+ + 20U
XUl*XUt*XUg*ng*' . ’*XU,,,*XU”(O) =p@2U + 2 T -+ ).

Proof. The convolution of characteristic functions X, X, is
positive definite, 1 < i < n, since X},(x) = X, (—2)~ = X (®). Thus
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Ko s Ky 2Ky s Xy s+« - xXy #Xy, 18 positive definite, and achieves its max-
imum at 0. Now

HUYEUY U = | Lyt el 5 o (0)p1(2)

< Ao 2 Xy XX - -5 Xy Ay (Op@U, + 2U, + + -+ + 2U,) ,
since the integrand is supported in 2U, + 2U, + --- + 2U.,.

LeMMA 9.2. Let U,1 <1< n be as in Lemma 9.1 and » a
positive integer. Then

p((r + DU + DO - -(r + DU
#EU + 2U oo 4 20 = XTUL*XTLI *Xrl/ *XrU 0)

Proof. Let A, be the point mass at x, so that \,«f(z) = f(z — »).
Let u,ueU,1 <1< n, ande=u, +u+---+u, + u,c2U0,+---+
2U,. We have

X(rﬂ)ul*x(rﬂml* Tt *X(r+1)(/'%*x('r+1)b'n(x)
= N—x*xuﬂ)vl*xwﬂml* ce *X(T+I)Un*x(r+l)Un(0)
= ()"—ul*x(r+1)U1)*()“—ui*x(r-l-l)Ul)* T *(7\'~u”*x(r+uvn)*(N—u;b*X(rﬂ)U,b)(O)
= XTUI*XTUI* te *an*xrt/,ﬂ(o) .

Integrating over 2U, + 2U, + --- + 2U, gives the result.

LeMMA 9.3. Any precompact neighborhood V of 0 in G is con-
tained in a precompact neighborhood U satisfying

limﬂ((”' +1HU) _ 1
Me )

Proof. Let H be the compactly generated open subgroup gen-
erated by V. Then H is a projective limit of abelian lie groups
[2; Theorem 9.6]; hence it is enough to observe that the assertion
holds for G = R" or G = Z™, the proofs of which are straightforward
and omitted.

Using the notation introduced at the beginning of this section
we define

hi(a, G) = sup limsup — X L log {‘““) " (e, a)(O)}
U € G open n (U)Q”

precompact

LeMMA 94. ho(a, G) = hi(a, G).

Proof. Let U be a precompact open neighborhood of O and
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apply Lemma 9.1 with U; = a=%-2U. Take the logarithm of both
sides of the inequality and divide by =; since ¥,_;; = a~7X,, this
yields

Cn(xU*X{/, 0()(0)
/«5( U>2‘u(a—1 U)7 Ce #(0[~(n~1) U)z

Liog p@2U + a=@U) + -+ + a~*1@0)) .
n

log

1
n
=

From p(a=U) = 4(a)~1(U), we conclude that il(a, G) £ ho(a, G).
By Lemma 9.3 we may suppose U satisfies

lim 2 +DU) _
roe p(rU)

From Lemma 9.2 we obtain

L og @U + a'@U) + -+ + a~v-02U))
N

1 [d(a)" " ; r((r +1)U)
= - log 17‘(_"'0')—2" C. Koy, a0) } + 21log 7"'_17)—— .
It follows from Lemma 9.2 that h.(a, G) < hi(a, G) and thus
ho(a, G) = hi(a, G).

Let P(G) denote the continuous positive definite functions on G
with compact support and C,(G)* the nonnegative continuous func-
tions on G with compact support. Set

h/io(a, G) — sup ’ lim sup — ._1_ log {MZ__
9 e P(G)NCop(@) T n n "

Clearly, hi(a, G) = hi(a, G). On the other hand, by an estimate
very similar to the first part of Lemma 9.2, it follows that ri(a, G) <
ho(a, G). Thus hi(a, G) = hi(a, G).

Let L'(G)* denote the positive cone in LY(G) = LY@, #). Define

n{n—1)/
hi(a,G) = sup lim sup — l]og{M

e P(@) NLUG) T n , »
(1, sax)

Cu(3, () | .

C.ls, 0O} .

Clearly hi(a, G) = hi(a, G).
LEmMMA 9.5. hi(a, G) = hi(a, G).
Proof. We sketch the proof briefly, since the details are es-

sentially the same as in [5; Lemma 11} except for the presence of
the modular function. First, a routine estimate shows that in the
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definition of A% each ¢ which appears inside the brackets { } may
be replaced by 4+¢. Then given ¢ e P(G)N LY G)*, |l¢]l, = 1, there is
a compact symmetric neighborhood U of O such that if f= ¢4,
6 — fll<e2. If g = fxf, e PG) N Cu(G)*" and

|~ Liog [ ZWTT_¢ (, )}

m (] van)
+ Llogla(ay=C,(9+5, a)}| = logl — &), n =1,2, -
n
Hence hi{a, G) = hi(a, G).

Suppose now I' is another locally compact abelian group and
B € Aut(I’). As observed in Remark 5, we have

he(B, I') = sup lin:; sup {—%log a)(él,e—fU)}

where w is a haar measure on I" and U is a precompact open neigh-
borhood of the neutral element 1 in I". Define

w8, = sup = Llog Lol 579 (8- Pw)dow)} -

geP(MHALUNT p

¢( yror

LEMMA 9.6. hy(8, I') = hy(3, I).

Proof. Formally the proof is identical to [5; Lemma 12]; the
compactness of I, which is assumed there, is not needed.

9.7. Let G be a locally compact abelian group with fixed haar
measure g, and let I be the dual group with haar measure w, which
is appropriately normalized so that the inversion theorem holds.

We claim that a/zg\f: = Ma)&p, ¢ € LNG):

ap(z) = | as@)c(ordut)
= |, e )@ duta)
= 4| pla)e(an)y-dp@)

= (@) s@@ )@ dp)
= Ma)Ad(T) .
For ¢ ¢ P(G) N LY(G)*,
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A" (6, @)(0) = Ale)yrn" Cﬁa)(g)da)(y)
<SG ¢d;z) (¢(e)) SF
_ A(a)'n(n—l)/Z A/} o <m\——1) d
o I R GO0

= ) HED - @ D).

But by the Fourier Invension Theorem,
{: 9 € P(G) N LNG)*} = PI) N LNI)* .

The above calculation shows that hl(a, G) = h4(&, I'). But hi(a, G) =
hola, @) and ki@, I') = hs(@, I'). Thus h(a, G) = k@, I'), as de-
sired.

10. Addition Theorem. Let G be a l.c.a. group, acAut(G)
and HC G a closed subgroup such that a(H) = H. If «, denotes
the restriction of @ to H and «, the induced automorphism on the
quotient G/H, then

Ma, G) = k(a,, H) + h(a,, G/H) .

Note. Juzvinskii proves the addition theorem using structure
theory in case G, H are compact but not necessarily abelian. The
compact case also follows from [1; Theorem 19].

Proof. Let ¢: G — G/H be the canonical map and write # for
#(x). Let Kc G, Cc H be compact, and U a neighborhood of O in
G. Suppose K, is an (n, U + H)-separated set in K with respect to
a, and E, is an (n, UN H)-separted set in C with respect to a.
For each &€ E,c K choose a representative z € K and denote the set
of representatives by E,. The set F=FE, + E,={h +x:hec E, x¢€
E} is (n, U) separated in K + C. For suppose h + z, b’ + o' € E,
h+x+h +o. If =2, since h, h' are (n, UN H)-separated there
isaj,0=j5<mn, with ai’h — a;’h’¢ UNH. But then a~i(x + h) —
a i@ +h)eU. If x+ 2, then & == &’ and there is a 7,0 7 < m,
with a;i — a;%%’' ¢ U + H. Hence a(x + h) — a~i(x' + A)¢ U. In
either case, h + « and A’ + «’ are (n, U)-separated. Thus

s.(U, K+ C)=s,UnNH,C)s,(U+ H, K),

and hy(e, G) = hg(a,, H) + hpla,, G/H).

To get the reverse inequality, let K G be compact and U a
compact neighborhood of O in G. Let C=(K - K —2U)N H and
F, and (n, U)-spanning set for K with respect to a,, which we as-
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sume is minimal. Let F, (n, UNH)-span C. For any y e K there is
an zeg¢(F,) with ay —azeU+ H,0< j <. Equivalently,
y—xeN=ta’U + H. The minimality assumption on F, implies
F,cK + NiziafU. So for each e F, we can choose a representa-
tive € K + N3zt a’U and denote the resulting set F,. We claim
that FF=F, + F, (n, 2U)-spans K with respect to . Given ye K
there is an € F, and a uwe(\is;a’U so that y —x — uwe H. But
y—c—ueK—-—K+U)—UNH=K-K-2U)nH=C.
Thus there exists h € F', so that
o ily—ox—u)—a'heUNH, 0= < mn;

i.e.,

Y——u— he(ﬁla"U>(‘|H.
Hence

y—(@+heu+ (t:an>mH,

cN @),
7=0

which shows F = F|, + Fy(n, 2U)-spans K, as claimed. It follows

72U, K) < r,(U, K)r(UN H, C),

and consequently hz(a, G) < hy(a, H) + hgla,, G/H).
We prove the corresponding equality for h. by passing to the
dual and utilizing the result above. If K is the annihilator of H

in G, then K = G//FI and G/K = H. By the proof of part (vi) of
Theorem 4,
ho(a, @) = hy@, G)
= hs(@, G/K) + hs(@, K)
= hy(@&, H) + hx(@,, G/H)
= he(®, H) + ho(a,, G/H) .

COROLLARY 11. Suppose G is a projective limit of Lie groups,
G = projlimG,, G, = G/H,, H, compact and a-invariant, and o, is
the induced automorphism on G,. Then

e, G) = lim h(a, G,) .

Proof. Set a equal the restriction of @ to H,. First suppose
G is compact.

hs(@, G) = ha(@, G) = h(@, G,) + ha(@,, H,) .
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Now G, = K,, the annihilator in G of H,. Furthermore, by pro-
perties of projective limits, for any ze@G there is a v with H,C
kernel z. Thus 7€ K,, and we can write G = U. K,. Hence, given
any finite set ECG there is a v, so that ECK, for v = y,. By de-
finition, h(&, G) can be approximated arbitrarily closed by taking a
sufficiently large finite set G and forming the limit, lim, (1/n)log
card(E;,), where K3, = E + a7*E + -+ + @ " E. Thus h.(&, G) =
lim, h.(@,, K,) i.e., hy(a, G) = lim, hy(a,, G,).
Now drop the compactness assumption on G and write
hy(a, G) = hy(a,, G,) + ke, H,)
= hy(a,, G,) + hy(@”, H,)) + hy(ev,,,, H/H,) ,

for v/ = v and «,, the induced automorphism on H,/H,. Suppose
he(a, G) < = and lim, hy(a”, H,) = ¢ > 0. (The limit exists since the
net is nonincreasing.) Choose v so that hy(a’, H) < 3/2s. By the
first part of the proof, we can choose ' sufficiently large so that
hy(e,,,, HJH.,) is close to hz(a, H,), and in particular greater than
e. Since hz(a’, H,) is at least ¢, we have that

h’B(ay’ H;) = h’B(a“,’ HJ’) + hB(aw’y Hu/Hy’)
> 2¢, a contradiction .

Thus hz(a?, H,)) — 0, and hz(a,, G,) — hs(a, G).
If h(a, G) is infinite but hx(a,, G,) < M < o« for all v, we simi-
larly arrive at a contradiction. Once again, write

hy(e, G) = hy(a,, G,) + hy(a’, H,) ,
which forces hy(a*, H) = o for all v. However for v/ >,
hy(e,, G,) = hy(a,, G,) + hy(a,,,, H,/H,) ,
and by the first part of the proof
lim by, HIH) = by, H) = < .
Hence h,(a,, G,) is not bounded, and we have established
hy(a, G) = lim hy(a,, G,) .
Finally, we must deal with h.. But is easy, since

h‘x’(a’ G) = h"’:’(aw Gy) + hw(av) H»)
= hw(“w Gv) ’

as h. vanishes on any compact group.

12.1. Some Questions. For any l.c.a. group G, Aut(@) is itself
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a topological group (though it need not be locally compact). The
topology is described e.g., in [2] or [6]. Is the map acAut(G) —
e, G) €0, ] continuous? If G is a compactly generated abelian
Lie group, from the explicit formula for h(a, G) we can answer in
the affirmative.

12.2. In view of Theorem 4 (vi) one might expect other rela-
tionships between the entropy of ac Aut(G) and @<c Aut(l") to hold.
Even in the case of compact G we do not know of any such re-
sults. If G is compact and I' discrete, the adjoint @ of an ae
Aut(@) extends to a homeomorphism & of the Stone-Cech compacti-
fication I". Is there a A&-invariant measure ® on I’ for which the
measure-theoretic entropy hm(c’(_\, ') equals the (Kolmogorov-Sinai)
entropy h(a, 3? We end the discussion with a counterexample
which answers the question in the negative if we replace measure-
theoretic entropy by topological entropy on I' (see [7] for appro-
priate definitions).

Let G =2 -«(Z,):;, where (Z,), = Z,, the integers modulo p,
for all 1¢ Z, and o € Aut(G) the bilateral shift. Then A(a, G) = log p.

Claim. The topological entropy of & on the Stone-Cech com-
pactification I” is infinite.

Proof. I consists of all infinite sequences
x—:(.“wk; Lh+1s “')’ xkeZp VIGGZ

and only finitely many of the «,’s are nonzero. We will say a
sequence T begins at &k (resp. ends at k) if z, 0 and z; = 0 for
J <k (resp. #, + 0 and x; = 0 for j > k); if © begins at &, and ends
at k,, we call k, — &k, + 1 the length of Z. Given an integer N >0
we will define a finite cover ¢ ={E, E, ---, Ey} of I'. First we
define inductively a sequence of integers I, Set [, =1. Suppose,
for some fixed n, that I;, j < », have been defined; set

I, =inf{l: (p — 1) 2= N™ and [>1,}.

There are (p — 1)'~? sequences of length I(l = 2) beginning at 0.
Set m = N™. Thus it is possible to find m distinct sequences z*7,- - -, T™"
of length [,, beginning at 0. (How they are chosen is unimportant.)
Let F, be any one-to-one function from the integers {1, --., m}
onto the set of all sequences of the form {7, ---, 7,0 2;€{1, ---, N}}.
Let g8: I' — I be the bilateral shift; 8% = %, where ¥y, = x,,,. We
now define subsets E™, ---, EP I’ as follows. We will put giz“"
in E™ ,0=j<n~1, if and only if F,(4) = (4, --+, 1,), L £ 7 < m.

ABY
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Set B, = U,., B and E, = 'Y, E;. Note that

e BEPNATES N - N TVES
CEil n B_lEi2ﬂ e m B—(n—l)Ein

if and only if F,(3) = (4,, ---, 1,); furthermore, giz""¢ K, 0 < j < n.
Thus any covering of I" by £V 8%V .- VB V¢ must contain at
least N™ sets.

Notice that B is the transpose of the bilateral shift o on G.
We embed I" in I’ in the usual way: if Ac I, A is the set of all
ultrafilters containing A. The operation A4 — A respects finite uni-
ons and intersections, and it follows from the above that the topo-

logical entropy of @& on I’ is at least log N, for N arbitrary, hence
is infinite.
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