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ON FINITE SUMS OF REGRESSIVE ISOLS

JOSEPH BARBACK

Our paper deals with isols that can be represented as a
finite sum of regressive isols, and with recursive functions
of one variable that have canonical extensions that map isols
such as these into the isols.

1. Preliminaries. We shall use familiar notation in the theory
of isols. We denote by w, 4 and A, respectively, the sets of non-
negative integers (numbers), isols, and regressive isols. If f is any
recursive function, in any number of variables, then f, denotes the
canonical extension of f to the isols. The degree of umsolvability
of a regressive isol is defined in the following way, as it is introduced
in [3]. FEach regressive isol contains a retraceable set, and all
retraceable sets that belong to the same regressive isol will have
the same Turing degree of unsolvability. If a is a regressive isol,
then its degree of unsolvability is defined to be the Turing degree
of any retraceable set that is a member of a. For a regressive
isol a, 4, will denote the degree of unsolvability of a. It is proved
in [3], that if ¢ and b are any infinite regressive isols, then

1. a<b—4d,=4,,
2. o0 <*b—— 4, < 4,, and
3. a + b regressive implies 4, = 4, .

Several times in the paper we use refinement property of isols. This
property refers to the following feature of the isols, and it is obtained
in [6, corollary to Theorem 19]. If y and a,, ---, @, are any isols,
and

yéao_}' +am’
then there will be isols v, -+, ¥, wWith y =y, + --- + ¥, and with
each y, < a,.
2. Finite sums of regressive isols. Let m = 1 be any number.
We set
mAdy ={ay+ - + Qi@+, Cp_y € AR} .

When m = 1 then m, is simply the collection of all regressive isols.
It is easy to see from their definitions, that one has

wCA,C24,Cc34, - .
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Bach of the inclusions that appear above will be proper. That the
first two are, follows from the work of J. C. E. Dekker in [3]. Each
of the remaining ones may be shown to proper by an approach
similar to the one applied in [3], for showing the second inclusion
is proper. We do this next. Leta,, ---, a, be m + 1 infinite regres-
sive isols, selected to have mutually distinet degrees of unsolvability.
Then, it is clear, the isol y = a, + -+ + a, is in (m + 1)4,. But y
is not a member of ma,. For if otherwise, it then would follow,
from the refinement property for isols, that there exist infinite b,
and b; with 7+~ 7,5, < a,, b; < a;, and b, + b, regressive. This would
mean that b, and b, have the same degree of unsolvability, and
therefore also, that a, and a; have the same degree of unsolvability,
and thus contradicting our selection of the isols a, and a;. Thus
each mdy, is a proper subset of (m + 1)4;. It follows from this fact
that also each of the collections md4, for m = 1 is not closed under
addition.

Let m = 1 and let yemd,. Then it is easy to see that each of
the isols ¥y + 1,y + 2, --- and 2y, 3y, --- is also a member of m/,.
These are similar features that the collections md, share with the
collection of regressive isols. In contrast, it will not necessarily be
true that %° is a member of md,. This fact will follow from Pro-
position 2 that appears below. The next result establishes two
analogues for the collections ma, of properties well-known for the
regressive isols.

ProprosiTION 1. Let m =1 and let yecmd,. Then for all isols
a and b,

(1) a=y=acmd, and

(2) (a =y and b < y)=—a + bemdi;,.

Proof. In the special case m = 1 then both results are proved
by Dekker in [3]. For the general setting, let y =9, + -+« 4+ ¥
with each y, a regressive isol. If ¢ < v, then by the refinement
property, it will follow that ¢ = a, + --+- + @,_, where for each <,
one has g, < y,. Then each of the isols «; is regressive, and there-
fore a emd,. This verifies (1). To verify statement (2), assume
both ¢ < y and b < y. Then we obtain,

=0+ *+ + ap_,, and
b:bo+"'+bm—1,

with o, £ y, and b, £ y, for each 7. Since each y, is regressive, then
also ig each of the sums a; + 0;,. Hence the isol
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a+b=(a +b)+ -+ (@ + b,y)

belongs to mAd,. This verifies (2), and completes the proof.

In the next result it is shown that when ¢ and b are each
infinite regressive isols and y = a + b, then the degrees 4, and 4, are
comparable if #%* is an element of 24,. If we would therefore select
such isols @ and b to have incomparable degrees, then the associated
isol v will belong to 24, but the isol y* will not. Our proof below
will assume some familiarity with the notion of the minimum of
two regressive isols and with the relation of <* among isols. Each
of these notions is introduced and studied in [3].

PROPOSITION 2. Let a and b be infinite regressive isols, and let
y=a+b. Let uw and v be regressive isols with y* = u + v. Then
either 4, < 4, or 4, < 4,.

Proof. Because y = a + b it follows that
a®+ 2ab +b6*=u+ v,
and therefore also, since min(a, b) < ab, one has
(1) a +min(a, b)) +0=u +v.

It is known, from [3], that min(a, ) < * @ and min(e, b) £*b. From
the refinement property of isols, it follows from (1) that one of the
cases below will necessarily occur.

Case 1. There are infinite regressive isols a’ and z with o’ < a,
2z < min(a, b), and either o’ + 2w or o’ + 2 £ ».

In this case then o’ and z will have the same degree of un-
solvability. The degree of o’ is the same as the degree of a. The
degree of z will be the same as the degree of min(a, b), which is
known to have the property 4, < d.i(a, d). Thus it will follow that
4, = 4,.

Case 2. There are infinite regressive isols ' and z with b < b,
2 < min(a, b), and either ' + 2= u or o' + 2z = ».

In this case, it will follow, in a similar way as in Case 1, that
4, < 4,. We will omit the details for showing this.

Case 3. There are infinite regressive isols ¢’ and b’ with o' < a,
b’ < b, and either o' +b' Zu or o/ + b’ = v.

In this case, it will follow that both &’ and b’ have the same
degree of unsolvability. Since both o’ and @, and b’ and b, share
the same degree one obtains 4, = 4,.
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In view of the three cases considered above, it follows that the
degrees 4, and 4, will be comparable, and this completes the proof.

3, Canonical extensions of recursive functions. Let m = 1.
In this section we characterize the recursive functions of one variable
with the property that their canonical extensions map m4, into A.
We are grateful to E. Ellentuck for showing us how to obtain this
result based upon his work in [7], and our proof of Theorem 2 is
based upon his ideas. We also obtain in this section a characteriza-
tion of the recursive functions of one variable with canonical exten-
sions that map md, into the isols and that are order preserving on
md, with respect to the relation of < among isols. In the case
m = 1 the latter result was first proved by F. Sansone in [11]. We
first introduce some definitions and results, taken mainly from the
work of Ellentuck in [7].

Let n=1. For xew”, we write z = (x,, - - -, ,_,), with x, denoting
the (4 + 1)st component of z, and set min & = minimum (%, ---, 2, _,).
For kew, we write k& for the particular element of ®", each of
whose components is equal to k. For all &, y € w” (respectively 4"),
we write 2 -+ y for the element of @” (respectively A*) with (& + 9), =
xz, +Yy,. Let g be any function from ®” into w. With g associate
a new function § from ®" into w, defined by

gx) =0 if minxz = 0,
gx) = g(y) where y+1=2, if minex=>1.

For each j < » define n-ary functions K;¢ and 4,9 by

Eg(x) = gly) where y;,=a;-+1 and y, =, for i =7, and

4;9(x) = (E;g(®) — g(x) .
Let 4=4,--- 4, , be the composition of the 4js. A funection ¢: w* —»w
is called recursive increasing if g is recursive and Ag(z) = 0 for
every x < w®, and is called eventually recursive inmcreasing 1if there
is a value ke w” such that the function g(x + %) is recursive incre-
asing.

In the special case that we are considering a function of only

one variable, as f(x), then we let » =, and 4f(x) = 4,f(x), and
define, for each number m,

Lf(x) = fl@) and 477 f(x) = 44" f(@)) .

Later in the paper we will want to examine when for a particular
function of one variable, as f(x), the associated function 4"f(x) is
eventually recursive increasing. From the definition above, it is
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easy to check that in this case one has the following characterization:
4™ f(x) is eventually recursive increasing if and only if f(x)is recursive
and there exists a number ke ® such that 4" f(x + k) = 0 for all
numbers x. It is this latter characterization that is applied later in
the paper.

We introduce next the ideas associated with the concept of an
almost recursive increasing function; as these are introduced in [7].
If « is a finite set then the cardinality of « is denoted by card. a.
Let v(0) = ¢ and for n = 1, let v(n) = (0, ---, n — 1). Then card. v(n) =
n for each number n. Let h, @, d and j together satisfy the following
properties:

(1) acy(n), h:a— o, card. (y(n) — a) = d with d > 0, and
j:(d) — (¥(m) — @) is strictly increasing.

With % associate a new function 2}: w* — w", defined in the following
way: hi(x) = y where y, = h(¢) for ica, and y;, = x, for ¢ < d.

A function ¢: @® — ® is called almost recursive inereasing, if for
every function A that satisfies (1), the composition function goh} is
eventually recursive increasing. An almost recursive inereasing
function will be recursive, and also, will be eventually recursive
increasing, for one may select as a function % in (1) one with a = 4.
The following theorem is proved in [7].

THEOREM 1. (Ellentuck). Let n =1 and let g: ™ — @ be a 7re-
cursive function. Then g, maps A% into A iof and only if g is an
almost recursive increasing function.

We characterize next the recursive functions of one variable
with canonical extensions that map m4d; into 4. Our proof below is
due to E. Ellentuck.

THEOREM 2. Let m =1 and let f(x) be a recursive function.
Then f, maps mA, into A if and only if, for each j < m, 47 f(x) is
an eventually recursive increasing function.

Proof. (Ellentuck). Let the function g: @™ — @ be defined by
gy, 0, ®poy) = f@ + -++ + ®,,). Then g is a recursive function.
Also, g @y, +++, Tpy) = f (% + -+ + x,_,), for all isols =, ---, x,_,.
From Theorem 1, one obtains the following equivalent statements:

fi maps md, into 4, if and only if
g+ map A% into 4, if and only if
¢ is almost recursive increasing .
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To obtain the desired result, we will verify that ¢ is almost recursive
increasing, if and only if, for each 7 < m, 47f(x) is an eventually

recursive increasing function.

Let 7 = 1. Consider the following set of equations.

Aglxy + 1, -+, 2, + 1,1, -, 1)
= (I, ;4)9(xy + 1, -+, 2;, + 1,1, ---, 1)
(2) = (I;<;4)9(%, -+, %;_,, 0, - -+, 0)
= (I;4) f(@o + -+ + x;_0)
L O ST

The first three equalities follow from definitions. The last equality
holds because 4, f(x, + -+ + ®;_,) = 4,1 (@ + -+ + @;_,), for all », s <
j. Therefore, the particular function g(x,,- - -,%;_1, 0,---,0) is recursive
increasing, if and only if, 47~'f(«) is recursive increasing. Combining
the definition of an almost recursive increasing function and the way
in which the function ¢ is defined in terms of f, it follows from the
equations in (2) that ¢ is almost recursive increasing if and only if
A f(x) is eventually recursive increasing for each j < m. This com-
pletes the proof.

Let m =1 and let f(x) be a recursive function. We say that
f1is order preserving on mdy,, if fy maps md, into 4, and if for all
a, bemdy, one has o < b implies fy(a) < f,(b). F. Sansone, in [11],
characterized the recursive functions f that have f, order preserving
on A,. In the next result we consider the corresponding problem
for an arbitrary value for m.

THEOREM 3. Let m =1 and let f(x) be a recursive function of
one variable. Let A47°f(x) be eventually (recursive) increasing, for
each j < m. Then the following three conditions are equivalent:

(1) 4™f(x) 1s eventually recursive increasing,

(2) fulwo+ o+ Tp) = ful@o + -0 + Ty + @), for all regressive
180l8 Xy, <+, X

(8) f4 18 order preserving on mAg.
Proof. For the case m = 1, the equivalence of statements (1)

and (38) was proved by F. Sansone in [11].
Define the functions ¢ and h, from ™™ into w, by

g(xoy °",xm>:f<x0+ e +xm)7
h(xo; ) xm) = g(wa ) xm) - g(xO; Crty Ly 0) .
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From these equations it follows that both g and % are recursive
functions, and, in addition, one also obtains, for all isols x,, ---, «

’ m?

(4) (2o, ~ ) p) = fa(@ + =0 + ) — FA + o+ + Tpy) ©

Let us assume that statement (1) holds. Let xz, -.-, 2, be
any regressive isols. By Theorem 2, both f.(x, + --- + 2, and
falxe + --+ + x,_,) are isols. Also, from (4), it follows that

fA(xo + e+ xm—l) éf/l(xo + e+ xm)

holds, if and only if, h,(x, ---, ©,) is an isol. Therefore, (2) will
follow if h, maps A% into 4. By Theorem 1, this property is
equivalent to & being an almost recursive increasing function. We
now verify that h has this feature.

Let d < m + 1 and consider the following two separate computa-
tions that involve 4h.

Case 1. When d <m. Let kecw and let u =2, + --- + x4_..

(@ + 1, «o  qy + 1,1, -+, 1,k + 1)
= dh(y <, 24,0, -+, 0, k)
= (U j<adi)h(@o, -+, %4, 0, -+, 0, k)
= (I ;cqd)l9(@oy -+ +, 244, 0, - -+, 0, k)
—9(®gy vy X4, 0, -+, 0,0)],

and, by representing the last expression in terms of u and the
function f, the equations may be continued, to give,

= Lf(w + k) — f(w]
= A2, 4f(u + 1)]
= Za:<kdd+1f<u + 1) .

Case 2. Whend=m +1. Let v=2,+ --- + z,.
dh(xy + 1, -+, @, + 1) = dh(xy, -+ -, %)
= A[g(xm ) xm) - g(xoy cr oty ey 0)]
= (Hj<m+1Aj)[g<x0) Tty xm) - g(xﬁy Ly 0)]
= (Hj<m+ldj)g(x0; tt wm)
j— A’m+lf(,v> .
By combining both the hypothesis in the theorem and the
assumed property in statement (1), it follows that each of the
expressions computed for 4k, in Cases 1 and 2, is nonnegative. As

in the proof of Theorem 2, this fact implies that % is an almost
increasing function. Thus we obtain statement (2).
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Let us assume now that statement (2) holds. Let a and b be
any members of mA, with ¢ £ b. Let

b:bo+"'+bm 1

with each of b, ---, b,_, a regressive isol. Because a =< b it follows
that we may represent a as,

a:ao-i—...—{_amfl,

where for each 1, a, is regressive and a, < b,. For each 7 let the
isol »;, be defined by »,=0b, —a,. Let »r=2,+ --- +7,,. Then
each 7, is regressive and a + » = b. We may now obtain the desired
result, statement (3), by successively applying the property given in
statement (2), as follows:

f/l(a> = fA(ao R a’m—l)
= fao + o+ A Qo+ 70)
= fulbe +a; + - + )

:.: fA(bo + o bmAl)
= f40) .

To complete the proof we now show that statement (3) implies
statement (1). Assume statement (1) does not hold. Then, from
Theorem 2, the canonical extension of the function 4f(x) = f(x + 1) —
f(x) to the isols will not map mA, into 4. There then will exist an
isol a e md, with f(a + 1) — f (a) being a value in the isolic integers
but not in the isols. This is equivalent to having, f,(a) < f.(a + 1) not
holding true. Since a < a + 1, and, a € mA4, implies a + 1emd,, it
follows that f, is not order preserving on m/,. Hence, if statement
(1) does not hold, then statement (2) does not hold also. This completes
our proof.

ExamMpLE. We would like to illustrate some of the ideas of the
previous discussion with one example. Let the function f(x) be

defined by f(x) = [x —g 1} . [x JZF 4], where [g] denotes the greatest

integer obtained when y is divided by 2. It is easy to to see that
f(x) is both a recursive and an increasing function. It is also easy
to verify, perhaps easiest by computing the associated difference
table, that the function 4f is neither increasing nor eventually
increasing. Hence, by Theorem 2, f, does not map 24, into 4. On
the other hand, the function f*(z) = (f(«x))*is recursive and increasing,
and, in addition, has the feature that it’s first difference function
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4f* is also increasing. This fact can perhaps best be recognized by
constructing a difference table for the function f*x). Thus, while
f1 does not map 24y into 4, the function f? will. We can apply
these properties to illustrate one feature in the nature of isols. Let
a and b be regressive isols such that f(a +b)¢d. If we set y =
fie + b) then we obtain an example of an isolic integer ¥, such
that neither y nor —y is an isol, and ¥* is an isol. (This feature
of the isols is well-known now, and we first learned about it from
A. Nerode.)

REMARK. We would like to indicate some connections of our
work in this section with combinatorial functions and their pro-

perties.
Let m =1 and let f(x) be a recursive function. We say f(x) is
increasing of order m, if A°f, - -+, A"~'f are each increasing functions;

and say it is eventually increasing of order m, if for some number
¢ the function f(x + ¢) is increasing of order m. If, for each me
, f(x) is increasing of order m, then f(x) is said to be a combina-
torial function. This definition of a combinatorial function agrees
with the familiar one introduced by J. Myhill in [9]. We would like
to assume that the reader is familiar with some basic features of
combinatorial functions. We note that f(x) will be eventually
increasing in each order of m, if there is a sequence of numbers
Co, €1, -+ such that, for each m the funection f(x + ¢,) is increasing
of order m. Also, f(z) is called eventually combinatorial, if there
is a constant ¢ such that f(x + ¢) is combinatorial. Let
wld, = Umdg .

m<w
m#0

Then, from Theorem 2, it follows that f, maps m4; into 4 if and
only if f is eventually increasing of order m. Hence f, maps wA,
into 4 if and only if f is eventually increasing in each order of m.
From the work of A. Nerode, in [10], one has that f, maps 4 into
A if and only if f is eventually combinatorial.

If f(x) is eventually combinatorial, then it is eventually increasing
in each order of m; in this case the sequence of associated values
of ¢, can be selected to be constant beyond some point. The converse
is not true, as there exist recursive functions that are not eventually
combinatorial, yet that are eventually increasing in each order of
m. Such a function g(x) may be constructed in the following manner;
below is an array with some of the initial values and associated
difference values for g(x). Values along the diagonals, in the table
following, for the function g¢g(x) and its differences will all be con-
stant.
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7 9(x) dg(x) Lg(x) ALglx) ALg(x) Lg(x)
0 2 —1 3 —4 7T —11
1 1 2 -1 3 —4 7
2 3 1 2 -1 3 —4
3 4 3 1 2 -1 3
4 7 4 3 1 2 ~1
5 11 7 4 3 1 2

Recursive functions of this type will have canonical extensions
which map wA; into 4, but not map 4 into 4. It is easy to find
isols a with a € 4 — wA,, for we may let ¢ be any infinite isol con-
taining an infinite set which contains no infinite regressive subset.

Additional remark. In a recent paper, [8], V. L. Mikheev
introduced some classes of functions like the ones we also studied
in this paper.
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