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The results of this paper combine two areas of abstract
mathematics: the theory of radicals for associative or alter-
native rings, and model theory for universal algebras. The
main theorem provides necessary and sufficient conditions
on the radical of any product ring and on the radical of
any uliraproduct ring in order that the radical class and
its corresponding semisimple class be finitely axiomatic
(elementary). As a corollary, it follows that if a radical
class of rings and its corresponding semisimple class are
axiomatic, then they are both finitely axiomatic. In addition,
several subsidiary results are given, and unanswered ques-
tions posed.

1. Introduction. Let .o denote either the class of all asso-
ciative rings, or the class of all alternative rings. Suppose that
2 is a subclass of .. For any ring A in .7, let <Z(A) denote
the sum of all the ideals of A which belong to <#. Let S(<#)
denote the class of all rings in .9~ having no nonzero ideals
belonging to <#. Then <Z is a radical class in . provided the
following properties (R1), (R2), and (R3) hold.

(R1) =2 is closed under homomorphic images.

(R2) For every ring Ae .o, #(A)e FA.

(R3) For every ring A€ .7, the quotient ring A/<#Z(A) € S(<Z).
The rings in S(<#) are called semisimple with respect to <. Pro-
perties (R4) through (R7) below are useful consequences of proper-
ties (R1), (R2), and (R3). The ring A is assumed to belong to the
class 7.

(R4) If I is an ideal of A such that Ie<Z and A/Ie.<Z, then
Ac.Z. This is called the extension property of radicals.

(R5) If I is an ideal of A and if A/ITe S(<#), then “#(A) < I.

(R6) <2 N S(<#) consists of the trivial ring (0).

(R7) S(<#) is hereditary; that is, if AeS(<#) and if I is an
ideal of A4, then Ie S(<#).

References [4], [8], and [13] will provide the reader with the
fundamentals of radical theory for rings. Properties (R1) through
(R6) are basic facts. Property (RT7) is a result from [2], and can
be found also in [13, Corollary 5.3 or Theorem 8.1] for associative
rings. The radical class <2 in . is called hereditary provided
property (R8) holds.

(R8) If Ac.2Z and I is an ideal of A4, then Ie.<Z.
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For a technical definition of an axiomatic class in model theory,
the reader is referred to [3] or [7]. Roughly stated, the subclass
A of &7 is axiomatic, respectively finitely axiomatic (or elemen-
tary), provided there is a set, respectively a finite set, S of formal
ring sentences (made up from variables, ring operations, equality,
and quantifiers) such that .<#Z is the class of all rings in .o that
satisfy all the sentences of S. A relevant example here is the
class of all Jacobson radical rings, which can be described as the
class of all associative rings satisfying the formal ring sentence
Vedy(e + y + zy = 0).

The last definition needed before stating the Main Theorem is
that of an ultraproduct of rings. References [3] and [7] will again
serve as technical sources. For rings in .%, the definition is given
below. Suppose that I is a set. A filter on I is a collection F' of
subsets of I such that (a) if H,JeF then HnJeF; (b) if He F
and J is a subset of I such that H & J then J¢c F; (¢) the empty
set does not belong to F. Given a family {4,|7 € I} of rings in 2,
let A = wA, be the product ring of the family, and let

K={acAl{i|a@) =0 cF}.

One can check directly that K is an ideal of A. The quotient ring
A, = A/K is the reduced product of the family modulo the filter
F on I. If F is a maximal filter on I (one not properly contained
in any other filter on I), then A, is called the wltraproduct of the
family modulo the wultrafilter F. If <2 is a radical class of rings
in .97, one can consider the ideal L of A, defined as follows:

L={acA|{ila@d) e BA)cF}.

Note that K & L.

MAIN THEOREM. Suppose that % is a radical class of rings.
Consider the following conditions on FZ:

(A) # is closed under arbitrary products of members of Z.

(B) If I is a set, F' an ultrafilter on I, and {4;|tcl} is a
famaily of rings, then

FH(Ap) € LIK,
where
K ={aecrmdA,|{i|la(i) =0eF},
and

L ={aerd,l|{ila@) e B(A)} e F}.
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The following implications hold:

(1) If 2 and S(2) are both axiomatic, them <% satisfies
conditions (A) and (B).

(2) If #Z satisfies conditions (A) and (B), then both <# and
S(2) are finitely axiomatic.

The proof of the Main Theorem is in §1I. The proof depends
heavily on the results of [3, §V. 6 and VI. 6], using versions of
the theorems there relativized to the elementary model class .o
of rings, and requires the generalized continuum hypothesis. The
following corollary is an easy consequence of the Main Theorem.

COROLLARY. If &2 is a radical class of rings such that 2
and S(2) are both axiomatic, then B and S(Z) are both finitely
axiomatic.

In §III it will be shown that the ideal L/K of the reduced
product 4, is naturally isomorphic to the reduced product

[TC'%(A%)]F - %(A)F ’

provided <2 is closed under products. If # is closed under pro-
ducts and if <#Z(A), is identified with L/K, then condition (B) of
the Main Theorem could be written <#(A,) S .Z(4),.

The axiomatic radical classes of associative rings known to the
author are all finitely axiomatic. These radicals are described
below.

(1) Radical classes determined by certain polynomial regulari-
ties.
See §III for a more complete discussion and references. Well-known
examples include the Jacobson radical, with axiom vz2iy(x + vy +
2y = 0), and the von Neumann regular radical, with axiom
Vaxdy(zyx — x = 0).

(ii) The radical-semisimple classes V(P, N) characterized in

[6].
These radical classes are subvarieties of rings. Included in this
characterization are the radical-semisimple classes o7, (n=1, 2, ---),

where o7, has defining axiom Vz(x" = 0). ]

Proposition 2 of §III gives sufficient conditions for S(<#Z) to be
axiomatic, and displays a defining axiom for S(<#). The Jacobson
radical satisfies the conditions of Proposition 2, but the question of
which other axiomatic radical classes have an axiomatic semisimple
class remains open at this writing.

Proposition 3 of §III gives sufficient conditions, again satisfied
by the Jacobson radical, in order for the containment .#(A;) &
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H(A)y of (B) of the Main Theorem to be an equality for all ultra-
products A, of rings.

Ultraproducts of associative rings have been used with success
in connection with the theory of prime rings satisfying polynomial
identities; see [1], [9, §3 of Chapter 7], or [11].

II. Proof of the Main Theorem.

LEMMA. Suppose that 2 is a radical class of rings.
(@) If I is a set and {A,|i€ I} is a family of rings, then

A (wA) S nF#(A,) .
(b) 2 is closed under arbitrary products if and only if
RB(wA,) = tH#(A,)

for any set I and family of rings {A;|i ¢ I}.
(¢ If A, ---, A, are rings, then

FB(A X - X A)=FB(A) X - X F(A,) .

Hence, 2 is always closed under finite products.

(d) 2 s closed under products if and only if Z s closed
under reduced products.

(e) If <& is axiomatic, them # is closed wunder arbitrary
products.

Proof. Items (a), (b), and (c) are fairly straightforward and
can be found in [10]. In particular, (c¢) follows by induction after
one has proved that the product of two radical rings is radical,
and the latter can be accomplished using the extension property
(R4) of radicals. To be technically correct, one should note that
the product of the empty family of radical rings is the trivial
ring (0), and (0)e.&#. Item (d) follows, on the one hand, from the
fact that any reduced product (w4, = 7A,;/K is a homomorphic
image of a product, so that if the produet 7wA, belongs to .Z# then
the reduced product (A, belongs to &Z by (R1). Conversely, any
product zA,; is isomorphic to the reduced product (7A,)r, Where
F = {I}, hence if <Z is closed under all reduced products, then &#
is closed under all products. For (e), a theorem in model theory
applies [7, p. 292]. This theorem, stated for associative or alter-
native rings, states that an axiomatic class of rings which is closed
under finite products is also closed under arbitrary products. Il

(1) Suppose that <& and S(<Z) are both axiomatic. Then (A)
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follows by the Lemma (e). For (B), suppose that I is a set, F' an
ultrafilter on I, and that {4;|1€ I} is a family of rings. Let R, =
(A, for all 1e1, and A =7wA,. Also let

K={acAl{i|a(®) =0 F},

L={acAl{i|la(d)eR}eF},
and

E ={fen(AJR)|{i| f(i) = 0}e F}.
Then a straightforward check will confirm that
¢: AL — w(A,/R,)| 2
is an isomorphism, where
¢lea + L)y=@a+ K,
and where den(4,/R,) is such that, for i€ 1,
at) =a(t) + R, .

Since S(<#) is axiomatic, S(<#) is closed under ultraproducts [3,
Corollary 6.6, p. 244]. Hence, the ultraproduct w(A4,/R,)/.% belongs
to S(.<#), since each A,/R,; e S(<#) by (R3). Thus, A/Lec S(<#). But
A/L = (A/K)/(L/K), and so “#(A/K) = #(A;) C L/K by (R5). Con-
sequently, (B) also holds.

(2) Suppose that conditions (A) and (B) hold. To prove that
% is finitely axiomatie, it suffices [3, Corollary 6.6, p. 244, rela-
tivized to the model class .~ of rings] to show that both < and
%', the complement of .22 in the model class .o~ of rings, are
closed under ultraproducts. <2 is closed under ultraproducts by
the Lemma (d). To show that <%’ is closed under ultraproducts,
suppose that the ultraproduct A, = wA,/K belongs to 2. Then
FB(Ap) = A(wA,/K) =nA,/K, and so, by (B), wA,/K = L/K. From
thig it follows that some A; belongs to 2. For suppose that, for
each i, R, = #(A,) # A,. Then, for each 7, there exists a,c 4,\R,.
Let aemA, be such that a(i) = @, for each 4. But then a + K =
b+ K for some beL. Let S ={ila@®@) =0bk)}, S,={id®)eR;}.
Both S, and S, belong to F. Since F is a filter, S, NS, is not
empty. Thus there exists some jeS,NS,. Consequently, a,=a(j)=
b(j) e R;, contrary to a;¢ R;. Hence some A, must belong to ..
Thus 2’ is closed under ultraproducts, and so &% is finitely ax-
iomatie.

It remains to show that S(<#) is finitely axiomatic. Suppose
that {A;|te I} is a family of rings in S(<#), and that F is an
ultrafilter on I. Set A = wA,. Then <#(4,;) € L/K, by (B). But



86 JOHN R. FISHER

since each A,eS(##), L = K, so ZZ(Ay) = (0). Thus A, e S(<#), and
so S(#) is closed under ultraproducts. To show that S(<#Z) is
closed under ultraproducts, suppose that the ultraproduct A, =7A,/K
belongs to S(<#). Let R, = <#(A,) for each ¢. Then R = nR,
belongs to <, by (A). Moreover, (R + K)/K = R/(RN K), and
R/(R N K) belongs to .<# by (R1). But, by (RT), (R + K)/K belongs
to S(<#) since (R + K)/K is an ideal of A/K, and A/K=A, e S(#).
Thus (R + K)/Ke#ZNS(#), and so (R + K)K=(0) by (R6).
Hence R =7R, < K. One can easily show that this implies that
some R; = (0), and consequently A;eS(<#). Therefore S(Z#) is
also closed under ultraproducts. Thus S(.&#) is finitely axiomatic. []

I1I. Further results, comments, and questions. Suppose that
% is a radical class of rings that is closed under products. Sup-
pose further that {A4;|7el} is a family of rings, and that F is a
filter on the set I. Let R, = &#(A4,) for each iel, A =xA, and
R =7rR,. Then H#(4A) = #(rA,) =R, by the Lemma (b) in §II.
Let

K ={acAl|{i|la(i) =0} F}
and
K,={reR|{i|lr(i))=0eF}=RNK.
Then
R, =R/K,=R/(RNK)=(R+ K)/K=L/KC A,,
where, as before,
L ={acAl{ila@t)eR}cF}.

Thus, if L/K is identified with its isomorphic copy R,, condition
(B) of the Main Theorem would read “Z(4,) € <#(A),.

Every axiomatic radical class must be closed under products,
by the Lemma (e) in §II. Since the lower Baer radical, the
Levitzki radical, and the nil radical are not closed under products,
these radical classes for associative rings are not axiomatic. It also
appears unlikely that the Brown-McCoy radical class is closed under
products; see [10, pp. 56-57].

At the end of §I, it was stated that certain polynomial regu-
larities determine finitely axiomatic radical classes for associative
rings. The concept of a polynomial regularity is characterized in
reference [12]. A brief statement of the necessary definitions is
given below, with a slight change of notation.

Suppose that p, ---, », are integral polynomials. For each
associative ring A define function .2#, as follows:
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(@) = p(a)Ap(a)A - - - Ap,(a),

for every ac A. <%, is a function from the ring A into the class
of all subgroups of the additive group of A. That function which
maps a ring A to the corresponding .2#, is called a polynomial
regularity. An element ae A is said to be .F#,-regular provided
ac Z,(a). A is said to be FZ-regular provided each element of A
is .Z,-regular. The class of all & -regular rings is a radical class
of rings, which is conveniently denoted by .&Z. That is,

# = {Alaec.HZ,(a) for all ac A}.

.2 is said to be the radical class determined by the corresponding
polynomial regularity.

PRrROPOSITION 1. Suppose that # s the radical class of associa-
tive rings determined by a polynomial regularity. Then the follow-
ing statements are equivalent:

(1) <#Z is axiomatic.

(2) 22 1s closed under products.

Proof. (1) implies (2) by the Lemma (e) of §II. Conversely,
suppose that <#Z is closed under products. Then .&Z is closed under
ultraproducts by the Lemma (d) of §II. To show that <7 is
axiomatic, it suffices [3, Corollary 6.5, relativized to the model
class of associative rings] to show that .&#’, the class of all associa-
tive rings not belonging to &2, is closed under ultrapowers. This
result is implied by the following lemma. O

LEMMA. Suppose that <& is the radical class of associative
rings determined by a polynomial regularity. Then the class F'
of all associative rings not belonging to & is closed under reduced
products.

Proof. Suppose that some reduced power U = A'/K of the
ring A belongs to .. Let F denote the underlying filter. Suppose
further that .<# has the following representation:

(/}A(a) = pl(a)Apz(CL)A v pr(a) ’

for any ac€ A. Given ac A, let d< A’ be such that @(1) = a, for
all 7€l. Since Ue.s#, @ + Ke .2#, (@ + K). However,

Fp(G + K) = p@ + K)Upy(a + K)U --- Up,(@ + K)
= [p,(@)A'p,()A” --- A'p, (@) + K]/K .
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Thus, there exists a positive integer k, and f,, fu, * -+, fu_.,: belong-
ing to AY, for 1 =1, ..., k, such that

& = 3@ Bl fu+ fortu@ K |

Hence, the set

s=1{i

CORSWACY YOV AW RO

belongs to F. Thus S is not empty. Let seS. Then

06) = 3 2@ Sib@ i+ Frr 2o @D6)

or

0= 3 B@OFEBOS(6)  fraieDA@)

that is, o ¢ Z,(a). Consequently Ac.<#. Thus, .2’ is closed under
reduced powers, as claimed. |

The conjecture that the Brown-McCoy radical class is not closed
under products was stated earlier. In view of Proposition 1, this
conjecture is equivalent to saying that the Brown-McCoy radical
class is not axiomatic. A representation of the Brown-McCoy radical
class as a polynomial regularity is <Z,(a) = AQ + a) + A1 + a)A.
The element a of the ring A is <Z,-regular provided there exists
some positive integer %k, and b,¢,d;eA (=1, ---, k), such that
a=01+a)+ >Ff,c(l + a)d;,. To say that <& is axiomatic would
seem to force some upper bound on the numbers %k for represent-
ing all such sums as above, so that <#& could have as a possible
defining axiom some sentence of the form vaiydy,---3y,(---). This
remains conjecture. More generally, we could ask the following
question:

Question 1. If <2 is an axiomatic radical class determined by
a polynomial regularity, does representation of <2 have to take a
form #Z,(a) = p(a)Ap,(a), using exactly two integral polynomials
p, and p,?

It should be observed that each of the axiomatic radical classes
given at the end of §I can be defined by a single universal-existen-
tial axiom. In general, a universal-existential sentence is one that
has the form vz, .--Vvz,3y, ---3y,P, where P does not contain
quantifiers; included is the case where universal quantifiers are
absent or existential quantifiers are absent, as in the case of
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Vz(x® = 0). A result in model theory [7, Theorem 2, p. 279] gives
the following. Suppose that <Z is an axiomatic class of rings
in &7, and that S is the set of all universal-existential ring
sentences that hold in <#. Then <Z is exactly the class of all
rings in .7 satisfying the sentences in S if and only if <% is
closed under countable chain unions. A countable chain union of
rings consists of a union ring R= UR,, where R, C R, C --- is a
countable chain of rings, and where each R, is a subring of R,.,.
Most of the known radical classes, whether axiomatic or not, are
closed under countable chain unions. For example, the nil radical,
the Brown-McCoy radical, the Jacobson radical, the von Neumann
regular radical, the Levitzki radical, and .27, radicals mentioned in
§I are all closed under countable chain unions. Moreover, any
radical class for associative rings determined by a polynomial
regularity is closed under countable chain unions. (Thus, if such a
radical class were axiomatic, it would have some axiomatization
using universal-existential axioms, as suggested in the paragraph
preceding Question 1.) Other radical classes may not be closed under
countable chain unions. For example, is the lower Baer radical
class closed under countable chain unions? It seems reasonable to
ask whether or not every radical class of associative rings is closed
under countable chain unions, or, in the special case of axiomatic
radical classes, we have

Question 2. If <2 is an axiomatic radical class of associative
rings, is <7 closed under countable chain unions, and hence definable
by universal-existential axioms?

Another connection with model theory involves the closure of
a radical class under homomorphic images (R1). An axiomatic model
class is closed under homomorphic images if and only if it can be
defined by positive sentences. A positive sentence is one which
results from the quantification of a formula that can be built up
using conjunction and disjunction but not negation. See [3, § VI. 5]
and the references there, or [7, § 45].

The Jacobson radical for associative rings has an axiomatic
semisimple class. Certain properties of the Jacobson radical are
stated as abstract hypotheses for Proposition 2.

PROPOSITION 2. Suppose that 2 is a radical class of associa-
tive rings defined by an axiom of the form Vaxlyp(x, y) = 0, where
o(x, ¥) 18 a ring word formed using variables x and y and ring
operations. Suppose further that the following three conditions
hold:

(1) <#Z is hereditary for left ideals. That is, if Ae . and
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L is a left ideal of A, then L e .
(2) A(A) contains every left ideal of A that belongs to A.
(8) If acA and A satisfies Iyp(a,y) =0 and Aa = (0), then
Z.acF. Here Z.a={n.a|neZ}and Z denotes the ring of integers.
Then S(ZZ) 1s also axiomatic, and S(Z) is defined by the
Sfollowing axiom:

~ dz[x # 0 & Iyp(x, y) = 0 & VzIydu(p(ze, y) =0 & y = ux)] .

Proof. Let & denote the model class of associative rings
having the long formal sentence as defining axiom. Suppose that
e, and let ae #Z(A). Then A satisfies Iyp(a, y) = 0, since
A(A)e . But Aa is a left ideal of #(4), so Aacs# by condi-
tion (1). Thus A satisfies Vvz3aydu(p(zz,y) =0 & ¥y = wux). Since
Ae.%”, it must be the case that «a = 0. Hence #(A) = (0), so that
AeS(<#). Consequently, & & S(#).

Now suppose that A¢.5”. Then there exists some ac€ A4, a0,
such that Aee€.<?. By condition (2), Aa & HF(A). If Aa + (0),
then “#(A) # (0), so A¢ S(#). If Aa = (0), then Z.a € &Z, by con-
dition (3). But in this case Z.a would be a left ideal of A since
A(Z.a) = (0). Thus Z.a S <#(A), by condition (2). Since Z.a + (0),
A(A) # (0), so again A ¢ S(<#). Consequently, S(#) & &. ]

Question 3. For which other axiomatic radical classes do the
hypotheses of Proposition 2 hold? More generally, what conditions
on an axiomatic radical class suffice to imply that the correspond-
ing semisimple class is also axiomatic?

PROPOSITION 3. Suppose that & is a radical class of associa-
tive rings defined by an axiom of the form Vxlyp(x, y) = 0, where
o(x, ¥) is a ring word, and assume that S(#) is axiomatic. Then,
for every ultraproduct Arp of associative rings FH(Ap) = FB(A)p.

Proof. Suppose A, = mwA,/K is an ultraproduct. For each 7, let
R, = #(A,). Then #(A;) & L/K by the Main Theorem. Take any
xeL. Then H = {i|x(4)eR;}eF. If 1eH, then x(:)€R, and so
there exists ¥, € R, such that p(zx;, y,) = 0. Define ye L by y(t) = v,
if 1€ H, otherwise y(i) = 0. But then {¢|p(z, y)(?) =0} 2 H and
therefore »(x, y)e K. Thus L/Ke.2#, and hence L/K S .Z(A,).
Consequently #(4;) = L/K = #(A);. ]

Proposition 3 remains true provided <7 is defined by any collec-
tion of axioms of the form Vzx,---Vx,3y,- - -3y, 0@y, -, Tp, Y1, ** ) Yu)=
0, and the proof is similar.
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The Jacobson radical and the V(P, N) radicals are equational
classes, or varieties in the sense of universal algebra. The V(P, N)
radicals are subvarieties of associative rings. The Jacobson radical
is not a subvariety of associative rings, but is an “extended”
variety subordinate to the wvariety of associative rings. The
Jacobson radical is an equational class over the operator domain
which extends the ring operations with a quasi-inverse operation,
and for which an axiom stating the existence of quasi-inverses of
elements is added to the usual ring axioms. It is shown in [5] that
not every hereditary radical class of associative rings that is closed
under products is necessarily a variety. Both the Jacobson radical
and the V(P, N) radicals are closed under equalizers of ring homo-
morphisms. That is, if f, g: R— S are ring homomorphisms, where
R and S belong to the radical class .Z#, then the equalizer subring
E={reR|fr =gr} belongs to <. It can be shown that if a
radical class .<# of associative rings is closed under products and
equalizers, then <% is close under countable chain unions. Hence,
an axiomatic radical class that is closed under equalizers can be
defined by universal-existential axioms.
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