Pacific Journal of

Mathematics

TENSOR PRODUCTS FOR SL;,(¥). I. COMPLEMENTARY
SERIES AND THE SPECIAL REPRESENTATION

CHARLES A. ASMUTH AND JOE REPKA




PACIFIC JOURNAL OF MATHEMATICS
Vol. 97, No. 2, 1981

TENSOR PRODUCTS FOR SL,(-*%¥7), I COMPLEMENTARY
SERIES AND THE SPECIAL REPRESENTATION

C. ASMUTH AND J. REPKA

We obtain the decomposition of the tensor product of
two irreducible unitary representations of SL, of a local
field in the case when at least one of them is the special
representation or in the complementary series. This is done
by considering the analytic continuation of the unitary
principal series.

1. Imntroduction and notation. Martin ([3]) has studied the
tensor product of a principal series representation of SL,(227) with
any irreducible unitary representation. His work makes extensive
use of the Mackey machinery. In particular, an application of
Mackey’s Tensor Product Theorem ([2], pp. 128-133) shows that the
tensor product of two principal series representations is unitarily
isomorphic to a representation induced from the diagonal subgroup.
This idea was originated by Williams ([7]) and used by Martin. It is
also worked out in detail for SL,(R) in [4].

In this paper we shall view the complementary series and the
special representation as analytic continuations of the class one
principal series, and study tensor products with them in this light.
We obtain the decomposition of the tensor product of any unitary
irreducible representation with a complementary series or special
representation.

Let .9 be a local field of odd residual characteristic, with ring
of integers ¢ and prime ideal &7 = (7); let ¢ be the order of &7/~
Let @ be an additive character of .2 which is trivial on < but not
on 7,

Let G = SL(%"), let A be the diagonal subgroup, let N (resp.
V) be the subgroup of upper (resp. lower) triangular unipotent
matrices, and let K = SL,(¢”), a maximal compact subgroup of G.

For g = [g’ db]eG, xe o7, let x-g = (ax + ¢)/(bx +d). If o is a
quasicharacter of .27, define a representation T, of G on L* 5%¢") by
T(f(x) = oz + d)|bx + &|7*f(x-g). This is called a (non-unitary)
principal series representation. In particular, if ¢ = |-|=*, we write
T, = T,. The representations 7, with sc€ R are unitary, the “class
one principal series”.

Following Sally ([5]) we give another realization of T,. Let C,
be the kernel of the norm map of the quadratic extension . (V/'7)
over .7%2. We take o, a quasicharacter of %™, and extend it to
2 (V'Ty*. We define a map E,: L¥C,) — L*(.5%¢) by
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Ef@@)=11V2(1 -V 7|6l — vV ra)f(1+ 1V ze))l -V 1)
E7f(t) =V 2|1 + 8)/2]7a((1 + 0)/2)f(¢ — D/ = (¢t + 1))
(cf. [5], 2.20, 2.21).
If ¢ is unitary, then E, is a unitary isomorphism, and in any

case E, gives an isomorphism between the realization of T, on L*( %)
and another realization on L*C,) (see [5], 2.22).

2. Tensor products of principal series representations. Let
o, o' be quasicharacters of .2¢™*; following Sally ([5]), we write ¢ =
o*|-7%, o =d™*|-]7", with o* ¢'* characters of #~*. We assume
that s, s’etRU[—1, 0) and that if s (resp. s') e[—1, 0) then ¢* (resp.
0'*) is trivial. Though we will not say so from now on, we will
interpret s€ iR to mean —7z/lng < Ims < w/lng.

As remarked above, if s,s'€iR, then T, QX T, ~ Indé(o(c’)™).
This is proved in [3], where it is also shown that this last repre-
sentation depends only on the value of g(¢’)™* at —Id. We write the
equivalence explicitly.

We define:

L=L:IN% X %)— L% X %)
T="T,:L(% X %)—> L(F X %)
LA X %) — LA % X %)
S =38,,: L% X %)— L% X %)
as follows:
Lf(x,y) = |z|"o(®)f(y + L/z, ¥)
Tf(x,y) =z —y| 7ol —n)fQ/(x—y),y)
&b “f@, ) = | _0@)fz, v
Sf(x, y) = =] """ f(z, y)

(we understand ¢(0) = 0; ~ is the partial Fourier transform).
All these maps are unitary isomorphisms. Note L = T

For any quasicharacter 7 of A, we realize Ind§ 7 on L*(.2¢" X 9% )~

IAN x V)~ L*A\G). For g= l:g 3] € @, the action is given as follows:

2.2)  g-flx, y) =70y + )7 f(by + d)((by + d)x + b), yg) .

The transform of this action by (7)™ is given as follows:

Me() ' f (=, v)
= by + d)7*|by + d|7°@(—bx/(by + d))f(x/by + d), yg) .

Now T,® T, acts on L¥C, ® LXC,) ~ L*C. x C;) or on

(2.3)
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LA x2¢),and E = E,Q K, gives the isomorphism between these
two spaces. The map So"oLoE: L¥C, X C;) — L5 x 9¢7) gives a
unitary isomorphism from T, ® T, to Ind%(c*¢’*)~"), with the action
(2.2), where 1 = o*(¢"*)™.

3. Extension to complementary series. Now suppose we allow
one or both of 5,3’ to be in [—1,0). The maps defined by the
formulae (2.1) need no longer be unitary. And the action of G
on L¥C, x C;) or L*(2% x 2¥) is not unitary. We recall that G
does act unitarily with respect to a different inner product (see [5],
pp. 429-431, where it is worked out for s, s"€(0, 1], but the results
are similar, or [1], p. 169); if s or s’ equals —1, then we must take
a quotient space. If either s or s'e(—1,0), let L2 x 2¢7)* be
the Hilbert space on which G acts unitarily (i.e., completion with
respect to the unitary inner product of, say, the Schwartz functions
& = (% X 7). Similarly, let L*(C, x C,)* be the Hilbert space
of functions on C, X C, on which G acts unitarily. We see from [5],
(3.7), that the characters of C, x C, form an orthogonal basis for
this space. Note too that every element of L*C, x C.)* is also in
L¥C, x C,) and the identity map gives a continuous injection

J: LA(C. x C)* —> LXC, x C.)

(see [5], (8.7) and (3.9), noting however that s > 0 there).
We now consider the map defined by

F = So"oLoFoJ .

This is a map from some subspace of L*C, X C,)* to some subspace
of L} (o7 x 2¢7). It is a G-map from the unitary representation
T,® T, on L¥C, x C)* to the unitary representation Ind§(c*(c"*)™?)
realized on L*(.%%" x 27) by (2.2). We shall show that Fis a closed
map and study its domain and range so that we can apply Schur’s

Lemma.
Let .45 .S (2% x .2%7) be the subset which vanish on {0} x .27

LemMMA 3.1. For s,s’eiRU[-1,0),
(So WA N domain(Se™)) is dense in L2 x %) .

Proof. Clearly domain(S)2.%4, so S,N (domain(S+"))28,N ("(.4)).
Thus

(S™)(.5% N domain(S o)) 2 { fe.sh S F, y)|z|= " ds = 0, Vy} .

Since .&4 is dense in L*(.2¢" x 2¢7), the fact that the above set
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is dense is a consequence of the fact that |2]|®~*” is not square-
integrable on 97" ]

Trivial computations show that (at least formally):

LY = T T% = Ly
(3.1) S:,s' = S.-T,.;’ Ss_,i’ = Ss’,s
B = (Bo) .

We also define two more spaces of functions. Let &4 c &P ( % X .5%)
be the subset of those functions which vanish on the diagonal. Let
P c L¥C, x C,) be the set of finite linear combinations of characters
of C; X C, which vanish on the diagonal and on {—1} x C; and C, x
{—1}

It is easy to verify from the definitions (2.1) that

(3.2) EZ) =% WA= T(A=5%.

These relations hold for any choice of o, ¢’ (specifically, they
remain true when o is replaced by 5%, as suggested by (3.1)).
From now on we assume

(3.3) Res = Res’
PROPOSITION 3.2. F' is a closed, injective map.

Proof. What we mean by this statement is that F'is “closable”,
i.e. its closure is a function, and moreover that it is an injective
function. If the closure were not a function, then there would exist
f.€e LXC, x C)* such that f, -0 and Ff, — f # 0. Since J is con-
tinuous, Jf, — 0. Since ((S*)")(.S4 N domain((S*)™*=")) is dense in
LM 2% x %), there exists ¢e€.5% N domain((S*)™-") such that
(8% (g), f> =¢+0.

Now

{(8*)72e7(9), Ffay = ((8%)7'e"(g), Se"oLoKioJf,) = {p, LoEoJf.)
= (T51¢, EoJf,) .

Note T7-1¢ = + € .95; we claim E*y € L*C; x C;). Indeed, since supp
is bounded, ¢~ (1 + ¢)/2)d’ (1 + t')/2) is bounded on supp(E*+), so
E*yp = (B-1 Q Ez-1)"'yr € L*(c. X ¢;). Letting 6 = E*4, we have that
{{(8*) e ™)g, Ffo) = <0, Jf), and 0= c = lm{(S*)7")g, Ff,) =
lim{@, Jf,>, which is impossible, since Jf, — 0. This contradiction
shows F' is closed.

Next we show that the closure of F' is injective. It suffices to
show that the image of F* is dense in domain(F'), or, since J is
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injective, that image((Se"oLoE)*) is dense.

In the case where Re(s — s') < 1, image(S*) D .5, so image("+S*) D
.&%. Thus, by (3.1), (8.2), image((Se" o Lo E)*) 2 (Lo E)*(.%5) = &, which
is dense in L*C, x C,).

By (8.3), the other possibility occurs when s = —1, sciR.
In this case, ¢ is a unitary character and I and 7 are unitary
maps. Now E* = (Ex-)"'Q (E,-)™"; we write E,-1 = E7%M,
where 1 means the trivial character and M is the multiplication
operator on L*.%") given by Mf(x)=0"""2/1 —V 7wa)f(x)=
|1 — V' 7w)/2]-f(x). Then E* = [(E~1)"® E'][l ® M], and since
the left-hand operator is unitary, it suffices to prove the image of
(1 Q® M)oL*"oS* is dense in L*(.2¢" x 2¢7). Note that the operator
1&® M maps & onto itself.

It would suffice to show we can approximate any element of &
by an element of the image. In fact, it suffices to approximate a
function of the form f(x, ¥) = h(x)¢(y), where £ is a Schwartz function
and ¢ is the characteristic function of a set y, + .Z°", where = is
large enough that h(x) and |1—1/ 7| are constant on cosets of 7.

We would like to find A’ close to h in L*.%¥") and such that
' X ¢ is in the image of L*o"oS*. The image of S* contains .54,
so k' should satisfy

S(L*)“l(h’ & ¢)(x, y)dz = 0; equivalently,

S[ml”la'“(x)h’(y + 1/x)de = 0, for all yey, + " i.e.
Slx]‘lé(w)h'(y + x)de =0, for,all yey, + F i.e.
S{xl“&(w)h'(yo + x)dx = 0 using the condition on n) .

Since |#|'d(x) is not square-integrable on .27, it is possible to
find &’ satisfying this last condition and arbitrarily close to . Rather
than ' ® ¢, we let f'(z, y) = h'(x + y, — ¥)¢(y). This f’ is close to
f and is also in (Se"oL)*(54).

By the choice of #, we know that M just multiplies ¢ by a
constant K = 1, so f is approximated by /' = (1 Q M)(1/K)f’), which
is in the image of (1 ® M)oL*-"0S* as desired. ]

Now we consider the image of F.

PROPOSITION 3.8. Image(F') is dense in L*( 55 x 7).

Proof. By Lemma 3.1, it suffices to show that .o is contained
in the image of LoFE-J, which is clear from (8.2). l:l
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Now we turn to the study of the domain of F. Of course, if
s, s’€iR, it is all of L*C; x C,).

PROPOSITION 3.4. F' is defined on a G-invariant subspace, which
18 dense if s or s'€iR or if 5,8'€(—1,0) and s + 8 = —1.

If, on the other hand, s,s'€(—1,0) and s + s’ < —1, then the
orthogonal complement of domain(F') is a subspace on which G acts
as the (trreducible) complementary series representation T,,,..,.

Proof. By (3.2), (3.3), we see that domain(F) 2 . Since " is
a unitary isomorphism, to show that domain(F') contains the G-span
of this set, it suffices to show that the action (2.3) of G on L*(%" X .%")
takes & into L 2¢ x 2¢7), when we let » = d(0’)™. In light of
(3.3), this is obvious.

The span of the G-translates of &7 (even the C,-translates) con-
tains the space of all locally constant functions which vanish on the
diagonal in C,xC,. Let us call this space &%. So domain(F)2.Z,.

Now let X eC; and consider

LAC. x Cp), = {f € L¥Cy % Co): flat, at') = X(@)f (&, '), Va, t, t' € C.} .

The space L*C, x C,.), is is isomorphic to L*C,) under the mapping
f — f., where £i(t) = F(L, t).

The projection (), of &, on L*C, x C,), ~ L*C,) is the space
of finite linear combinations ¢ of characters of C. such that 4(1) = 0.
We index the characters of C; as +r.,, 0 < 4, as in [5], p. 420. Then
an orthogonal basis of L*(C; x C;), is given by ¢.; = X471 @ r.;, and

(), = {¢ =2, Guuit 3 Qs = 0} .

We wish to determine the closure of (<7;), with respect to the
norm induced by the norm | - ||* in LXC; X C;)*. If seiR, let ||,
be the ordinary norm on LXC.); if se(—1,0), let || ||, be defined as
in [5], (3.8). Then

(3.4) [ @sell” = 1 X-Aprzille- | dsallor -

We note that if s and/or s’ (—1, 0) and if ¢ is large enough so
that cond(y:}) & cond(X), then cond(X+r:}) = cond(vrs,), and

3.5) Iyl = a7 lgpaclle = g% .

Here i is the number such that +., is trivial on C”, nontrivial on
Civ_ ef. [5], (2.17), (8.13); note that for each A =1, there are
2¢"(1 — 1/q) such characters.
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Recall that ¢ € (&), iff ¢ is in the kernel of the linear functional
» given by

N DUy P > 2, Ay

To prove the proposition, we must determine whether or not \ is
continuous (i.e. whether ker ) has || - ||*-closure of codimension 1 or 0).

LEMMA 3.5. (i) (Z), is || - ||*-dense in ker \;
(ii) N s || - ||*-continuous iff s, s'€(—1,0) and s + s’ < —1.

Proof. (i) is trivial. For (ii), suppose s, s’e(—1,0). Consider
the orthonormal basis formed by the elements ¢%; = (||@.:(|*)'¢+s; SO
if ¢ =3 a.p.,, then ¢ = 3 (aullg]*)pt. Thus N = S aw =
Sas ] ¢ M 6=: "), so the continuity of A is equivalent to the
convergence of > (|| ¢, |[*)%

By (3.4) and (3.5), ignoring finitely many terms, 3. (|| ¢+:|)™ ~
S 21 — 1g)g-q* > = 2(1 — 1/g) >, ¢*****".  This converges iff
1+s+s8 <0;ie.s+s < —1. If either s or s’ ¢iR, we replace it
in the above norm calculations with 0 (its real part), and the sum
obviously diverges. M

All that remains of the proposition is to discuss the action of G
on &+ in the case when it non-trivial. Note that in this case (&4),,
the projection of <+ on L*C, x C,)* has dimension 1 for each X.
If we can show that &%}/ contains the complementary series repre-
sentation T,,,.;, then we shall be done, since by considering the
representation of C, on &+ we see that 2} cannot contain more
than this one representation.

We argue that if s + ¢’ < —1, then T,Q T, must contain some
complementary series representation. Indeed, if w and w are unit
K-fixed vectors in T, and T, respectively, and v = v ® w, consider
the coefficient function on G given by ¢(g9) = (T, ® T..(g)v, v) =
<Ts(g>uy u> <Ts’(g)w’ w>

The spherical functions <{T,(9)u, w) and {(T.(g)w, w) can be
calculated (ef. [1], pp. 174-176), and we note that T, is “of class L’
iff ¢ > 2/ + s) (i.e. the spherical function is in LYG)). We also see
that if |a| = ¢, n = 0, then ¢[g’ 1%} = const. ¢~ "*") g0 ¢ € LYG)
iff ¢ > 2/(s +s +1). In particular, T,& T, is not of class L**¢ for
arbitrarily small ¢ > 0. But since the representation of G on the
closure of &7, is isomorphic to Ind%1, which ¢s of class L**, we
must have that the representation of G on &#; is not of class L**°,
and hence must contain complementary series representations, since
all other irreducible unitary representations are of class L*". But
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since it can contain at most one such, and must be of class L¢ iff
g > 2/(s + s’ + 1), this one must be T, ., as claimed. O

THEOREM 3.6. (i) If se(—1,0) and ¢ is a unitary character
of 27, then

T®T, ~T,®T,;
(ii) Ifs se(~1,0) and s+ = —1, then
T.QT, ~Ti® T, ;
(iii) If s,8'€(—1,0) and s + 8" < —1, then
T.RQT, ~T,QToD Tororss -

Proof. We apply Schur’s Lemma ([4], Lemma 3.1) to the map
F. It tells us that the representation of G on the closure of domain(F")
is isomorphic to Ind§(c*(¢’*)™*). Parts (i) and (ii) follow since domain(F’)
is dense in these cases. Part (iii) follows since G acts on .7/ by
T,,... and on the closure of &, by Ind§1. O

REMARK. The decompositions of Ty,&® T, and T,Q T, can be
found in [3], Theorem 3.

4. The special representation. To extend our results to include
the special representation 7_,, we must study the above situation in
the case when s or s’ is allowed to equal —1, still subject to (3.3).
In this case, G acts unitarily not on L*C; x C;) with a new norm,
but on a quotient of it. We let L*C. x C,)* be the Hilbert space
which has an orthogonal basis +r.; @ 4r.;, such that |4, @ 4] =
sl ll 4reslls, where || -], is as before if s # —1, and, when s = —1,
” "P‘—o”—l = (2/1 +1/))", || Vo |l = ¢**, I 'Sb'+o”—1 =1; here h is as before,
and we have (in effect) used [5], (8.15), and we have just defined
|| ¥r10]l_, arbitrarily. Note that G does not act unitarily on L*(C; x C;)*,
just on the quotient by {y,,} ® L*C:) and/or L*C;) ® {4r;.} according
as s and/or s’ equals —1.

Then the identity map J: LXC, x C,)* — L*C, x C,) is bounded
and we may define the map F as before. Moreover, Lemma 3.1 and
Propositions 3.2 and 3.3 still hold in this case. The analogue of
Proposition 3.4 is this:

PROPOSITION 4.1. Let at least one of s,s" equal —1. Then F
is defined onm the G-space generated by . For each X € C., the closure
of (), has codimension one in L*C,xC.)y iff meither s mor s’ €iR;
otherwise 7 is dense.
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Proof. In the notation of Lemma 3.5, ) is continuous exactly
in this case (same argument). ]

Next we let V < L¥C, x C,)* be the G-invariant subspace spanned
by {¥.0 @ v} and/or {y.; Q 4}, according as s and/or s’ is —1. So
G acts unitarily on L*C, x C)*/V, as T_.® T_, or T,® T_,. Then
F' induces an injective map F,: L*(C. x C)*/V — L .97 x 2|V’
where V' = F(V N domain F).

ProprosITION 4.2. (i) F, 18 a closed map.
(ii) If only one of s, s is —1, then V' = {0}.

Proof. (1) Suppose F) is not closed, then for some X the map
which F, induces, (F)),: L*(C. x C)4/V,— L*(2% x 2%),/V, is not
closed. So there exist f, € domain F' such that Ff, — f, f = 0 modulo
V; and f, — 0 modulo V,. By adding elements of V, to f and of
V,Ndomain(F') to f,, we may assume 0= f € (V,)* and Ff,e(V,))*. So
Ff,— f. Also, there exist v, V, such that f, — v, —0.

As in Proposition 8.3, we see that any ¢ ¢ .Z” is in domain(F™*™),
so for any ¢ €., {f,, ) = {Ff,, F*'¢>, which converges. Thus we
see that (v,, ¢) converges for any ¢<c .. Since v,€V,, which is a
finite-dimensional space, and inner products with & give all of its
dual, this implies that v, converges, to v, say, and so f, — v.

But since F' is closed and Ff, — f, we must have vedomain F
and f = Fwe V', a contradiction, as desired.

(ii) Suppose V N domain F' = 0; V is a G-invariant space, iso-
morphic to T,. If F were defined on V, there would be an embedding
of T, into Ind5(s*(¢’'*)™"), which is not possible. O

ProPOSITION 4.3. If s =5 = —~1, then V s the span of {y, &
Yoy Pas Q Py} AlSO Ay Q i € domain F, so F induces a map on
VI o @ ryop. This space is of course two copies of T_;; exactly
one of them is in domain(F).

Proof. If 4, & € domain F, then the trivial representation
would be embedded in Ind§(c*(¢'*)™*), which is impossible. F is
defined on &%, which contains ., & iy — s @ 4y, for each 1.
These vectors span a G-invariant subspace of V/{4r,, & 4r.,» on which
G acts as T_,.

Now either domain F' contains all of V/{yr s @ +rsoy or only this
one copy of T_,. We claim that the latter case obtains. Indeed, let
us show that o, &y, is not in domain F. Now J(yrye X ;) =
g0 @ ys, where B is as before; and LoEoJ(yrio & i), ¥) =
1/2)q " (1 + 1V wy)/Q — V' wy), which is mot in L*(% X 5%).
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Since ~ is unitary and S (in this case) is the identity transformation,
o & apy; is not in domain F. O

THEOREM 4.4. (i) If s # —1, then
T6®T——1NTU®TONTH®TS'7 VS’G’I:R;

(ii) T\ QT ~T,®T,.OT_,
=87, .

Proof. We note that by Proposition 4.1, &/V N &2 is dense in
LXC; x C)*/V. Then part (i) is immediate from Proposition 4.2.

For part (ii), we note that by Proposition 4.3, V’ is one copy of
T_;, so Ind{(c*(e'™*)™/V"is T,Q T,& T_,, and we are done. ]

5. Tensor products with supercuspidals. As is remarked, for
example, in [6], every supercuspidal representation T is induced from
some maximal compact subgroup, K = K,, say. Let T’ be any unitary
representation of G. A simple application of Mackey’s Subgroup
Theorem says that if T is induced from the representation 7 of K,
then

T® T ~Indi(n ® (T"(x) -

To study the tensor product of T with a complementary series
representation or the special representation, we must therefore study
the restrictions of these latter representations to K,. We shall
compare the K,-decomposition of a complementary series or special
representation with the K,-decomposition of a class one principal
series representation. Since the structure of the tensor product of
T with a class one principal series representation is known from [3],
we shall then be able to describe the tensor product of a supercuspidal
representation with a complementary series or special representation.

For convenience, in this section we let K = K, be either maximal
compact subgroup of G.

LemMMA 5.1. Let s€(—1,0). Then
Txg~Tigr~T.|x, Vs€EiR,

i.e. these representations have the same K-types.

Moreover, T_,|x Pl ~ Tl x, i.e. the K-type of the special repre-
sentation plus the trivial representation is the same as the class one
principal series.

Proof. The class one principal series and the complementary



TENSOR PRODUCTS FOR SLy(-%"), 1 281

series representations can all be realized on Hilbert spaces of functions
on K which are invariant under left multiplication by (AN)N K; K
acts by right translation. The subspace consisting of locally constant
functions is dense in each of these Hilbert spaces, and is obviously
K-invariant; the actions of K on these dense subspaces are isomorphic,
so the whole spaces are K-isomorphic. Furthermore, the special
representation is realized on a completion of the quotient by the
space of constant functions. |

Combining this with Mackey’s Subgroup Theorem, we find

THEOREM 5.2. Let T be any supercuspidal representation of G.
Then:

T T~T,QT vse(—1,0)
T.®T~T,®THOoT,

i.e. to get the decomposition of T_, X T, remove one copy of T from
the decomposition of T,Q T.

Proof. Suppose T'=Ind% 7. Then by Mackey’s Subgroup Theorem
and Lemma 5.1,

T, QT~Indi [ Q@ T\l =Ind[n Q@ Tolxl~ T ® T,
and

T.®@T~Ind[7® T«
~Ind[7® (T, x © 1x)]

=Ind[7® T, |x] © Ind(7 ® 1x)
=T,®TOT, as claimed. |

Since the tensor product of a supercuspidal representation with
a class one principal series representation is completely described in
[3], we can read off the results for the special representation and
complementary series representations too.
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