BAER RINGS AND QUASICONTINUOUS RINGS HAVE A MDSN

Gary Francis Birkenmeier
BAER RINGS AND QUASI-CONTINUOUS RINGS HAVE A MDSN

G. F. BIRKENMEIER

The notion of a direct summand of a ring containing the set of nilpotents in some "dense" way has been considered by Y. Utumi, L. Jeremy, C. Faith, and G. F. Birkenmeier. Several types of rings including right self-injective rings, commutative FPF rings, and rings which are a direct sum of indecomposable right ideals have been shown to have a MDSN (i.e., the minimal direct summand containing the nilpotent elements). In this paper, the class of rings which have a MDSN is enlarged to include quasi-Baer rings and right quasi-continuous rings. Also, several known results are generalized. Specifically, the following results are proved: (Theorem 3) Let R be a ring in which each right annihilator of a reduced (i.e., no nonzero nilpotent elements) right ideal is essential in an idempotent generated right ideal. Then $R = A \oplus B$ where B is the MDSN and an essential extension of N_t (i.e., the ideal generated by the nilpotent elements of index two), and A is a reduced right ideal of R which is also an abelian Baer ring. (Corollary 6) Let R be an AW^*-algebra. Then $R = A \oplus B$ where A is a commutative AW^*-algebra, and B is the MDSN of R and B is an AW^*-algebra which is a rational extension of N_t. Furthermore, A contains all reduced ideals of R. (Theorem 12) Let R be a ring such that each reduced right ideal is essential in an idempotent generated right ideal. Then $R = A \oplus B$ where B is the densely nil MDSN, and A is both a reduced quasi-continuous right ideal of R and a right quasi-continuous abelian Baer ring.

From [8 & 14], a ring R is (quasi-) Baer if it has unity and the right annihilator of every (right ideal) nonempty subset of R is generated by an idempotent. A Baer ring is abelian if all its idempotents are central. The following examples will give some indication of the wide application of these rings: (i) von Neumann algebras, such as the algebra of all bounded operators on a Hilbert space, are Baer rings [2, pp. 21 & 24]; (ii) the commutative C^*-algebra $C(T)$ of continuous complex valued functions on a Stonian space is a Baer ring [2, p. 40]; (iii) the ring of all endomorphisms of an abelian group G with $G = D \oplus E$, where $D \neq 0$ is torsion-free divisible and E is elementary, is a Baer ring [16]; (iv) any right self-injective von Neumann regular ring is Baer [17, p. 253]; (v) any prime ring is quasi-Baer; (vi) since a $n \times n$ matrix ring over a
quasi-Baer ring is quasi-Baer [15], the \(n \times n \) \((n > 1)\) matrix ring over a non-Prufer commutative domain is a prime quasi-Baer ring which is not a Baer ring [14, p. 17]; (vii) since a \(n \times n \) lower triangular matrix ring over a quasi-Baer ring is a quasi-Baer ring [15], the \(n \times n \) \((n > 1)\) lower triangular matrix ring over a domain, which is not a division ring, is quasi-Baer but not Baer [14, p. 16]; (viii) semiprime right FPF rings are quasi-Baer [10, p. 168]. The examples show that the class of Baer rings does not contain the class of prime rings and is not closed under extensions to matrix rings or triangular matrix rings. However the notion of a quasi-Baer ring overcomes these shortfalls.

Throughout this paper, all rings are associative; \(R \) denotes a ring with unity; \(N(X) \) is the set of nilpotent elements of \(X \) (\(N \) will be used when \(X = R \)) and \(N_1 \) is the ideal generated by the nilpotent elements of index two. The word ideal will mean a two-sided ideal unless it is preceded by the words left or right. A reduced ring is one without nonzero nilpotent elements. Note that in a reduced ring all idempotents are central. A right ideal \(X \) of \(R \) is densely nil (DN) if either \(X = 0 \); or \(X \neq 0 \) and every nonzero right ideal of \(R \) which is contained in \(X \) has nonzero intersection with \(N \). Equivalently, a right ideal \(X \) of \(R \) is densely nil if either \(X = 0 \); or \(X \neq 0 \) and for every nonzero \(x \in X \) there exists \(r \in R \) such that \(xr \neq 0 \) but \((xr)^2 = 0 \). From [3], the minimal direct summand (idempotent generated right ideal) containing the nilpotent elements \(MDSN \) is a semicompletely prime ideal (i.e., if \(x^n \in MDSN \Rightarrow x \in MDSN \)) which equals the intersection of all idempotent generated right ideals containing the set of nilpotent elements of the ring. Also any nonzero direct summand of the MDSN has a nonzero nilpotent element, and the MDSN contains both the right singular ideal of \(R \) and the generalized nil radical [1 & 3]. There are nonreduced rings which do not have a MDSN [3, Example 2.6]. The complement of the MDSN is both a maximal reduced idempotent generated right ideal which is unique up to isomorphism and a reduced ring with unity.

Lemma 1. Let \(R \) be reduced. Then \(R \) is a quasi-Baer ring if and only if \(R \) is an abelian Baer ring. In particular, a commutative quasi-Baer ring is a reduced Baer ring.

Proof. In a reduced ring every right annihilator is an ideal. Hence the right annihilator of any subset will equal the right annihilator of the right ideal generated by the subset. Therefore \(R \) is quasi-Baer if and only if \(R \) is Baer. Commutative quasi-Baer rings are reduced because a quasi-Baer ring contains no nonzero central nilpotent elements. This completes the proof.
Lemma 2. If X is an ideal of R such that $X \cap N_t \neq 0$, then X contains a nonzero nilpotent element of index two.

Proof. From [1 & 9], we have that the generalized nil radical N_g is hereditary and contains N_t. Thus, if $X \cap N_t \neq 0$ then $X \cap N_g(R) = N_g(X) \neq 0$ contains a nonzero nilpotent element of index two.

A right R-module B is an essential extension of a submodule X (equivalently, X is essential in B) in case for every submodule L of B, $X \cap L = 0$ implies $L = 0$. The next theorem presents a decomposition in terms of a reduced Baer ring and the MDSN, furthermore the MDSN is "essentially" generated by the nilpotents of index two.

Theorem 3. Let R be a ring in which each right annihilator of a reduced right ideal is essential in an idempotent generated right ideal. Then $R = A \oplus B$ where B is the MDSN and an essential extension of N_t, and A is a reduced right ideal of R which is also an abelian Baer ring.

Proof. Let $X = \bigoplus_{i \in I} e_i R$ be maximal among reduced direct sums of idempotent generated right ideals [3, p. 714]. Let Y be the right annihilator of X. From [3, Prop. 1.2], $XN = 0$, so $N \subseteq Y$. Thus, if $Y = 0$ then $R = A$. If $Y \neq 0$ then there exists $y = y^0$ such that yR is an essential extension of Y. By [3, Prop. 1.2], yR is an ideal. Then $Y = yR$ because $X(yR) \subseteq X \cap yR = 0$ since X is reduced. To show that yR is the MDSN, let $0 \neq t = t^2 \in yR$. Assume $tR \cap N = 0$. By the maximality of X, $(X \oplus tR) \cap N \neq 0$. Hence there exists $x \in X$ and $c \in tR$ such that $0 \neq x + c$ and $(x + c)^2 = 0$. Thus $(x + c)^2 = x^2 + xc + cx + c^2 = x^2 + cx + c^2 = 0$. Then $x^2 = (-cx - c^2) \in X \cap Y = 0$. Hence $x = 0$ and $c = 0$ because X and tR are reduced. Contradiction! Therefore $yR = B$ is the MDSN [3, Thrm. 1.4] and $(1 - y)R = A$ is a reduced ring with unity.

Let $0 \neq s \in B$ and assume $sR \cap N_t = 0$. Hence $(sR)N_t = 0$. Therefore N_t is contained in the right annihilator of sR. There exists $e = e^2$ such that eR is an essential extension of the right annihilator of sR. Hence $N_t \subseteq eR$. Thus $B \subseteq eR$, since B is the MDSN [3, Thrm. 1.4]. But this is a contradiction because sR, which is reduced, cannot be contained in eR. Therefore N_t is essential in B.

Let D be a right ideal of A. By [3, Lem. 1.1], D is a right ideal of R. Let U be the right annihilator of D in R. There exists $u = u^2$ such that uR is an essential extension of U. Now $(1 - y)U$ is the right annihilator of D in A, and $(1 - y)uR$ is an essential extension of $(1 - y)U$ in A with $((1 - y)u)^2 = (1 - y)u$. Thus $D \cap (1 - y)uR = 0$. Since A is reduced $(1 - y)u$ is a central idempotent
in A. Hence $(1 - y)uR$ is an ideal in A. Thus $D((1 - y)uR) \subseteq D \cap (1 - y)uR = 0$. Therefore $(1 - y)U = (1 - y)uR$. Hence A is a quasi-Baer ring. By Lemma 1, A is an abelian Baer ring. In fact, any idempotent generated reduced right ideal of R is an abelian Baer ring. This completes the proof.

From Lemma 2, it can be seen that every nonzero ideal of R contained in B has nonzero nilpotent elements. Hence every reduced ideal of R is contained in A. Also, we note that commutative FPF rings (e.g., integers mod 12) are not necessarily quasi-Baer but satisfy the hypothesis of Theorem 3 [10, p. 168 Lem. 3A]. In fact, Theorem 3 is a generalization of the decomposition for commutative FPF rings obtained by C. Faith [10, p. 184].

Corollary 4. Let R be a quasi-Baer ring. Then $R = A \oplus B$ where B is the MDSN and an essential extension of N_ι, and A is a reduced right ideal of R which is also an abelian Baer ring.

Letting R be the 2×2 lower triangular matrix ring over a domain (e.g., example vii) and applying Corollary 4, we have

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} R \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} R.$$

A right R-module B is a rational extension of a submodule X if whenever $x, y \in B$ with $x \neq 0$, there exists an element $r \in R$ such that $xr \neq 0$ and $yr \in X$. Note that if B is a rational extension of X then B is an essential extension of X. A MDSN ring is a ring which equals its MDSN.

Corollary 5. Let R be a semiprime (quasi-)Baer ring. Then $R = A \oplus B$ (ring direct sum) where B is a MDSN (quasi-)Baer ring which is a rational extension of N_ι, and A is a reduced abelian Baer ring.

Proof. From Corollary 4, $R = A \oplus B$ where B is the MDSN. Let $B = bR$ where $b = b^2$ and $A = (1 - b)R$. Then $bR(1 - b) = 0$ because R is semiprime. Since $1 - b$ is a unity for A, it follows that $1 - b$ is central in R. Hence A and B are rings with unity. Let $0 \neq x \in B$. Then $xR \cap N_\iota \neq 0$ since N_ι is essential in B. Now $xN_\iota \neq 0$ because R is semiprime. Let $r \in N_\iota$ such that $xr \neq 0$. Then, for any $y \in B$, $yr \in N_\iota$. Hence B is a rational extension of N_ι. This completes the proof.

Corollaries 4 and 5 generalize Proposition 5.7 of [17, p. 255] and Rangaswamy’s decomposition of a von Neumann regular Baer ring which is the endomorphism ring of an abelian group [16]. Further-
more, according to Kaplansky's classification of Baer rings [14], types II and III and semiprime type I_{infr} are MDSN rings. Hence reduced Baer rings are type I_{infr}.

Three important classes of semiprime quasi-Baer rings are the class of semiprime right FPF rings [10, p. 168], the class of von Neumann regular Baer rings (e.g., Examples (i), (iii) and (iv)) and the class of Baer *-rings (i.e., a ring with involution *), such that the right annihilator of any subset is generated by a projection [14, p. 27]). A useful subclass of Baer *-rings are the AW*-algebras (i.e., a C*-algebra which is Baer * [2, p. 21]). Examples (i) and (ii) are AW*-algebras [2, pp. 21, 24, 40]. From Lemma 1 and [14, p. 10], we note that an AW*-algebra is commutative if and only if it is reduced. Thus for AW*-algebras we have

Corollary 6. Let R be an AW*-algebra. Then \(R = A \oplus B \) (ring direct sum) where \(A \) is a commutative AW*-algebra and \(B \) is a MDSN AW*-algebra which is a rational extension of \(N_t \). Furthermore, \(A \) contains all reduced ideals of \(R \).

We remark that a quasi-Baer ring which is a rational extension of \(N_t \) is not necessarily DN. Let \(R \) be a 2 \times 2 matrix ring over a domain which is not a left Ore domain. By [15], \(R \) is a prime quasi-Baer ring; and from [5] \(R \) is MDSN. Hence, by Corollary 5, \(R \) is a rational extension of \(N_t \). However, \(R \) is not DN [5].

The next lemma and theorem show that under mild finiteness conditions (e.g., no infinite direct sums of index two nilpotent left ideals or no infinite direct sums of reduced subrings with unity) a nonsemiprime (quasi-)Baer ring can be decomposed in terms of a reduced Baer ring, a nilpotent ring and a (quasi-) Baer MDSN ring.

Lemma 7. Let \(R \) be a ring which is neither reduced nor MDSN and in which at least one of the following conditions holds:

(i) \(R \) is a direct sum of indecomposable right ideals;

(ii) \(R \) has no infinite sets of orthogonal idempotents \(\{e_1, e_2, \ldots \} \) such that each of \(e_iRe_i \) is reduced;

(iii) \(R \) has no infinite direct sums of nilpotent left ideals of the form \(bRa \) where \(a \) and \(b \) are orthogonal idempotents with \(aRa \) reduced and the ring \(eRe \) has a MDSN for every nonzero idempotent \(e \in R \).

Then there exists a positive integer \(n \) such that for each \(k = 1, \ldots, n \) there is an idempotent \(b_k \) where \(Rb_k = b_kRb_k \), a reduced ring \(S_k \) with unity, and a left ideal \(X_k \) of \(R \) such that \(X_k^2 = 0 \). Also, \(Rb_{k-1} \) is ring isomorphic to
with \(b_0 = 1 \) and \(X_k \oplus Rb_k \) (left ideal direct sum) is the MDSN of \(R_{b_{k-1}} \). Consequently, \(R = S \oplus X \oplus Rb_n \) (additive group direct sum) where \(S = \bigoplus_{k=1}^{n} S_k \) (ring direct sum) is a reduced ring, \(X = \bigoplus_{k=1}^{n} X_k \) is a nilpotent left ideal of \(R \), and \(Rb_n \) is a reduced ring with unity or a MDSN ring with unity.

Proof. The proof of the lemma using condition (i) is in [4]. Suppose that condition (ii) holds. Then by [3, Thrm. 2.4] \(R \) has a MDSN. Hence there exists \(e = e^2 \) such that \(R = eR \oplus (1 - e)R \) where \(e \neq 0 \) and \(e \neq 1 \), and \(eR = eRe \) is a reduced ring with unity and \((1 - e)R \) is the MDSN of \(R \). Let \(b_i = 1 - e \), \(X_i = b_i Re \), and \(S_i = eR \). By [4, Lem. 1] \(R = S_i \oplus X_i \oplus Rb_i \) (additive group direct sum), \(X_i \) is a left ideal of \(R \) such that \(X_i^2 = 0 \), \(Rb_i = b_i Rb_i \) is a ring with unity, and \(X_i \oplus Rb_i = b_i R \) (left ideal direct sum) where \(b_i R \) is the MDSN of \(R \). If \(Rb_i \) is reduced or if \(Rb_i \) is MDSN then we are finished; otherwise we will continue the decomposition with \(R_i = b_i Rb_i = Rb_i \). Observe if \(a = a^2 \in R_i \) then \(aR_i a = a(b_i Rb_i)a = aR_i a \) since \(b_i \) is the unity of \(R_i \). Thus \(R_i \) has no infinite sets of orthogonal idempotents \(\{ a_1, a_2, \ldots \} \) such that each \(a_i R_i a_i \) is reduced. Again by [3, Thrm. 2.4], \(R_i \) has a MDSN. Hence there exists \(e_i = e_i^2 \) such that \(e_i R_i = e_i R_i e_i = e_i R_i e_i \) is a reduced ring with unity and \((b_i - e_i)R_i \) is the MDSN of \(R_i \). Let \(b_2 = b_1 - e_i \), \(S_2 = e_i R_i \), and \(X_2 = b_2 R_i e_i = b_2 R_i e_1 \). Note \(\{ e, e_i, b_i \} \) is a set of orthogonal idempotents of \(R \). From [4, Lem. 1] \(b_2 R_i b_2 = R_i b_2 = Rb_2 = b_2 Rb_2 \) is a ring with unity and thus \(R = S_i \oplus X_i \oplus S_2 \oplus X_2 \oplus Rb_2 \) (additive group direct sum) where \(S_i \oplus S_2 \) is a ring direct sum of reduced rings with unity. Since \(b_i R \) is an ideal in \(R \), it can be shown that \(r = eRe + b_i r e_i + b_i rb_i \) for \(r \in R \). Thus \(r X_2 = (b_i r b_i) X_2 \subseteq X_2 \) because \(X_2 \) is a left ideal of \(R_i \) [4, Lem. 1]. Therefore \(X_2 \) is a left ideal of \(R \). Hence \(X_i \oplus X_2 \) is a nilpotent left ideal of \(R \). Also \(X_i \oplus Rb_2 \) (left ideal direct sum) is the MDSN of \(R_i \). If \(Rb_2 \) is reduced or if \(Rb_2 \) is MDSN, then we are finished; otherwise, we will continue with \(R_i = Rb_2 \). Since \(\{ e, e_i \} \) is a set of orthogonal idempotents such that \(eRe \) and \(e_i R_i e_i \) are reduced, one can see that the above procedure will terminate after, say, \(n \) steps. Thus it follows that \(R \) has the desired group direct sum decomposition. The triangular matrix characterization for \(Rb_{k-1} \) follows from [4, Lem. 1].

The proof of the theorem using condition (iii) is similar to the above proof except that “the procedure will terminate after, say, \(n \) steps because there can be only finitely many \(X_i \).” This completes the proof.
Corollary 8. Let \(R = S \oplus X \oplus Rb_n \) as in Lemma 7. Then
\[N(R) = \{ k \in R \mid k = x + y \text{ where } x \in X \text{ and } y \in N(Rb_n) \}, \]
and \(N(R) \) is an ideal of \(R \) if and only if \(N(Rb_n) \) is a left ideal of \(Rb_n \). Furthermore, if \(N(R) \) is an ideal of \(R \) then \(N(R) = X \oplus N(Rb_n) \) (direct sum of left ideals of \(R \)).

Proof. From repeated use of [4, Lem. 3], \(N(R) = \{ k \in R \mid k = x + y \text{ where } x \in X \text{ and } y \in N(Rb_n) \}. \) Suppose \(N(R) \) is an ideal of \(R \). \(N(Rb_n) = N(R) \cap Rb_n \). Thus \(N(Rb_n) \) is a left ideal of \(R \). Hence \(N(Rb_n) \) is a left ideal of \(Rb_n \), in fact \(N(Rb_n) \) is an ideal of \(Rb_n \), and \(N(R) = X \oplus N(Rb_n) \) (direct sum of left ideals of \(R \)).

Conversely, assume \(N(Rb_n) \) is a left ideal of \(Rb_n \). From the triangular representation of \(Rb_k \), it follows that a left ideal of \(Rb_n \) is also a left ideal of \(R \). Hence \(N(Rb_n) \) is a left ideal of \(R \). Thus \(N(R) = X \oplus N(Rb_n) \) (direct sum of left ideals of \(R \)). Consequently \(N(R) \) is a left ideal of \(R \), hence \(N(R) \) is an ideal of \(R \). This completes the proof.

We note that if \(Rb_n \) is reduced then \(N(R) = X \) is a ideal of \(R \).

Theorem 9. Let \(R \) be a (quasi-)Baer ring which is neither reduced nor MDSN and in which at least one of the following conditions holds:

(i) \(R \) is a direct sum of indecomposable right ideals;

(ii) \(R \) has no infinite sets of orthogonal idempotents \(\{ e_1, e_2, \ldots \} \) such that each \(e_iRe_i \) is reduced;

(iii) \(R \) has no infinite direct sums of nilpotent left ideals of the form \(bRa \) where \(a \) and \(b \) are orthogonal idempotents with \(aRa \) reduced.

Then there exists a positive integer \(n \) such that for each \(k = 1, \ldots, n \) there is an idempotent \(b_k \) where \(Rb_k = b_kRb_k \), a reduced Baer ring \(S_k \), and a left ideal \(X_k \) of \(R \) such that \(X_k^2 = 0 \). Also \(Rb_{k-1} \) is ring isomorphic to

\[
\begin{pmatrix} S_k & 0 \\ X_k & Rb_k \end{pmatrix}
\]

with \(b_0 = 1 \) and \(X_k \oplus Rb_k \) (left ideal direct sum) is the MDSN of \(Rb_{k-1} \). Consequently, \(R = S \oplus X \oplus Rb_n \) (additive group direct sum) where \(S = \bigoplus_{k=1}^{n} S_k \) (ring direct sum) is a reduced Baer ring, \(X = \bigoplus_{k=1}^{n} X_k \) is a nilpotent left ideal of \(R \), and \(Rb_n \) is a reduced Baer ring or \(Rb_n \) is a MDSN (quasi-)Baer ring. Furthermore, \(N(R) \) is an ideal of \(R \) if and only if \(N(Rb_n) \) is a left ideal of \(Rb_n \).

Proof. The proof follows from Lemma 7, Corollary 4, Corollary
8 and the fact that if \(e = e^2 \) and \(R \) is (quasi-)Baer then \(eRe \) is (quasi-)Baer [8] and [14, p. 6].

By observing that an indecomposable reduced Baer ring is a domain, it follows that if \(R \) satisfies condition (i) or (ii) of Theorem 9, then each \(S_k \) is a ring direct sum of domains; consequently \(S \) is a ring direct sum of domains.

From [13], a right \(R \)-module \(M \) is quasi-continuous (also known as \(\pi \)-injective [11]) if it satisfies the following two conditions:

1. each submodule of \(M \) is essential in a direct summand of \(M \).
2. if \(P \) and \(Q \) are direct summands of \(M \) such that \(P \cap Q = 0 \), then \(P \oplus Q \) is a direct summand of \(M \).

From [7], a right \(R \)-module \(M \) is a CS module if and only if each complement submodule of \(M \) is a direct summand of \(M \), equivalently each submodule of \(M \) is essential in a direct summand of \(M \) (i.e., condition (i) in the definition above). A ring is right (quasi-continuous) CS if it is (quasi-continuous) CS as a right \(R \)-module [6]. Right self-injective rings and products of right Ore domains are right quasi-continuous [13 & 19]. A \(n \times n (n > 1) \) lower triangular matrix ring over a field is a right CS ring which is not a right quasi-continuous ring.

Proposition 10. Let \(R \) be a semiprime ring such that the right annihilator of every ideal is essential in an idempotent generated right ideal of \(R \). Then \(R \) is quasi-Baer.

Proof. Let \(X \) be an ideal of \(R \) and \(Y \) is the right annihilator of \(X \). Then \(X \cap Y = 0 \) since \(R \) is semiprime. Let \(eR \) be an essential extension of \(Y \) with \(e = e^2 \). Hence \(X \cap eR = 0 \). Now \((XeR)^2 = (XeR)(XeR) = X(eRX)eR = 0 \). Thus \(X(eR) = 0 \). Therefore \(Y = eR \).

By [8, Lem. 1], \(R \) is quasi-Baer.

Corollary 11. Let \(R \) be a semiprime ring. If \(R \) is a CS ring or a right quasi-continuous ring, then \(R \) is a quasi-Baer ring.

Corollary 11 has no converse since a domain which is not a right Ore domain is quasi-Baer, but such a domain is not a right CS ring. Also the semiprime condition is necessary since the integers mod 4 form a quasi-continuous ring which is not quasi-Baer.

The next theorem and corollaries generalize several results [3, Thrm. 3.9], [11, Thrm. 1.15], and [13, Prop. 5.2 & Prop. 5.5].

Theorem 12. Let \(R \) be a ring such that each reduced right ideal is essential in an idempotent generated right ideal. Then \(R = A \oplus B \)
where B is the densely nil MDSN, and A is both a reduced quasi-continuous right ideal of R and a right quasi-continuous abelian Baer ring.

Proof. By Zorn’s lemma there exists a maximal reduced right ideal K. From [13, Lem. 5.1], any right ideal which is an essential extension of K is also reduced. From the maximality of K, $aR = K$ where $a = a^2$. By [3, Prop. 1.2 & Prop. 1.7], $A = K$ and $B = (1 - a)R$ is the densely nil MDSN. Since every right ideal of A is a right ideal of R [3, Lem. 1.1] we need only show that A is a right quasi-continuous ring. We note that part (ii) of the definition of a quasi-continuous module is satisfied since every idempotent is central in a reduced ring. To show part (i) of the definition of a quasi-continuous module, let X be a nonzero right ideal of A. Then there exists $e = e^2$ such that X is essential in eR as an R-module. Now $X \subseteq aeR$ and $(ae)^2 = ae \in A$. Let $0 \neq aer \in aeR$. Then $er \neq 0$, hence there exists $s \in R$ such that $0 \neq ers \in X \subseteq A$. Thus $ers = aers = (aer)(as)$ since a is a unity for A. Therefore X is essential in aeR as an A-module and as an R-module. From Lemma 1 and Corollary 11, A is a reduced abelian Baer ring. This completes the proof.

Corollary 13. Let R be a right (quasi-continuous) CS ring. Then $R = A \oplus B$ where B is the (quasi-continuous) CS densely nil MDSN, and A is both a quasi-continuous reduced right ideal of R and a right quasi-continuous abelian Baer ring.

From the proof of Theorem 12, one can see that if the reduced right ideals of a ring are essential in idempotent generated right ideals then every idempotent generated reduced right ideal of R is a quasi-continuous reduced abelian Baer ring. Furthermore, A contains every reduced ideal of R since B is DN. Also, any condition on R (such as semiprime) which forces $(1 - a)Ra = 0$ will make the decomposition a ring decomposition. From Corollary 11 and Corollary 13 we have:

Corollary 14. Let R be a semiprime right (quasi-continuous) CS ring. Then $R = A \oplus B$ where A is a right quasi-continuous reduced abelian Baer ring, and B is a (quasi-continuous) CS densely nil quasi-Baer ring.

Any $n \times n (n > 1)$ lower triangular matrix ring over the integers provides an example for Theorem 9 and Theorem 12 which is a quasi-Baer ring but not a right CS ring [6, p. 73]. Example (iv) satisfies the hypothesis of Corollary 14. Also, from [12, Thrm. 2.3]
and [13, p. 219], any strongly modular Baer*-ring is a semiprime quasi-continuous ring and thus satisfies the hypotheses of Corollaries 5 and 14. In particular, any finite \(AW\)-algebra (e.g., example (ii) is a strongly modular Baer*-ring [12, p. 14].

References

11. V. K. Goel and S. K. Jain, \(\pi\)-injective modules and rings whose cyclics are \(\pi\)-injective, Comm. Algebra, 6 (1978), no. 1, 59-73.

Received July 10, 1979 and in revised form September 29, 1980.

SOUTHEAST MISSOURI STATE UNIVERSITY
CAPE GIRARDEAU, MO 63701
Patrick Robert Ahern and N. V. Rao, A note on real orthogonal measures 249
Kouhei Asano and Katsuyuki Yoshikawa, On polynomial invariants of fibered 2-knots .. 267
Charles A. Asmuth and Joe Repka, Tensor products for $SL(2)$, 1.
Complementary series and the special representation 271
Gary Francis Birkenmeier, Baer rings and quasicontinuous rings have a MDSN 283
Hans-Heinrich Brungs and Günter Törner, Right chain rings and the generalized semigroup of divisibility .. 293
Jia-Arng Chao and Svante Janson, A note on H^1_q-martingales 307
Joseph Eugene Collison, An analogue of Kolmogorov’s inequality for a class of additive arithmetic functions .. 319
Frank Rimi DeMeyer, An action of the automorphism group of a commutative ring on its Brauer group .. 327
H. P. Dikshit and Anil Kumar, Determination of bounds similar to the Lebesgue constants ... 339
Eric Karel van Douwen, The number of subcontinua of the remainder of the plane .. 349
D. W. Dubois, Second note on Artin’s solution of Hilbert’s 17th problem. Order spaces .. 357
Daniel Evans Flath, A comparison of the automorphic representations of GL(3) and its twisted forms .. 373
Frederick Michael Goodman, Translation invariant closed \ast derivations 403
Richard Grassl, Polynomials in denumerable indeterminates 415
K. F. Lai, Orders of finite algebraic groups .. 425
George Kempf, Torsion divisors on algebraic curves 437
Arun Kumar and D. P. Sahu, Absolute convergence fields of some triangular matrix methods .. 443
Elias Saab, On measurable projections in Banach spaces 453
Chao-Liang Shen, Automorphisms of dimension groups and the construction of AF algebras .. 461
Barry Simon, Pointwise domination of matrices and comparison of \mathcal{L}_p norms 471
Chi-Lin Yen, A minimax inequality and its applications to variational inequalities .. 477
Stephen D. Cohen, Corrections to: “The Galois group of a polynomial with two indeterminate coefficients” ... 483
Phillip Schultz, Correction to: “The typeset and cotypeset of a rank 2 abelian group” .. 486
Pavel G. Todorov, Correction to: “New explicit formulas for the nth derivative of composite functions”.. 486
Douglas S. Bridges, Correction to: “On the isolation of zeroes of an analytic function” .. 487
Stanley Stephen Page, Correction to: “Regular FPF rings” 488