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Let f be a complex valued additive number theoretic
function (.e., f(mn)=f(m)+f(n) if m and n are relatively
prime). This paper shows that > D*(p%)p~* = O(D*n)) or
1 f(p)lp~*=0(D(n)) (where the summations are over those
P*=n, p* being a prime raised to a power) is sufficient to
guarantee that the following analogue of Kolmogorov’s in-
equality holds:

o {1\,423 | fu(m)— AR)| >tD<n>}=o<t—2>

where, if p*|/|m denotes the fact that p® divides m but p***
does not (i.e., p* exactly divides m), then

Aln)= %, f(p=)p™
D)= 2 1A~
flm)= 2. f(p%),
PE<k
p{|m
and
vl )=t % 1

for any set 2.

It is known that
%ﬂ | f(m) — A £ eynD*(n)

holds for all additive functions for some absolute constant ¢,, This
implies the analogue of Chebyshev’s inequality. Hence it is of in-
terest to determine whether the analogue of Kolmogorov’s inequality
also holds for all such functions. The author could not do this for
all additive functions, but did find various sufficient conditions to
guarantee the result. The two which were most general and veri-
fiable for specific functions are stated in the opening paragraph.

The author proved his result in two stages. First he determin-
ed in Theorem 1 necessary and sufficient conditions for

>, Max [fi(m) — A(k)|* = enD*(n)

msn k<L
to hold (which implies the analogue of Kolmogorov’s inequality).
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The more manageable problem that resulted provided the basis for
proving the result stated in the opening paragraph as well as an
approach that might eventually help lead to the full solution of the
problem.

1. Preliminaries. Let »* and ¢* represent primes raised to a
power. Given an integer m, let L(m) be the largest p* such that
p*|lm and let S(m) be the smallest such p*. If ¢f||m with ¢ > S(m),
we shall denote by #7(m, ¢°) the largest exact prime-power divisor
of m which is less than ¢*.

The following well known facts are freely used in this article:

2 P~ log p* = O(log n)
and
>, p*=loglogn + B+ O(log™'n)
p%=n
where B is an absolute constant. The next lemma represents an
extension of a known result of sieve methods.

LEMMA. Given L9=Zb=c¢=n, le¢ & = .9(n, ¢ b) be the set
of those m, m < n, such that p*llm implies either p* < b or p* = c.
Then there exists an absolute constant ¢, such that
1.1) >, 1= ¢, n(log b)log™c .

mes

Proof. 1If for any z = 2 we let
7z ={p:p<z and p=<b or p=c}

and & = {m:m < n and ptm if b<<p <min(e, 2)}, then it is known
[1, p. 104} that

12 +nlogz][J]A—pH™.

mes! pew

Since
[TI A —»™) — e 7logx| < 77 log™x
PSS

for # > 1 where v is Euler’s constant [3, p.70], it follows that if
we choose z = n'?log="?n and assume 83 < b < ¢ < 2, then

S 1<_* 4 ¢d+log™8) mlogh _ 68,1000 p)log-c .

wEr logm  (2/8)1 —log=28)* loge

For the cases where 1.9<b<38orz<c¢=<n orz<bxc=<mn, note
that it follows from the last result that
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T 1< 168 n(log b)(log 3)(log n) _- 910nlogb .

me (log 1.9)(og z)(log ¢) log ¢

Now if we let 5" be the set of m, m < n, such that there exists
a p%||m for which b < p < ¢ and p* = ¢, then

131+ 3> 1.

me mes! me !

Since
1= 3 > 21

me &1 b<p<c log c/log psaslog n/log p msn
| Im

A

—a
n> > P
b<p<c azlog c¢/log »

o~ 5,15 20 (1260 ) logd
i< = ¢ \loge /logl.9

IA

= 4n(log b)log—'c

we see that choosing ¢, = 914 yields (1.1). This completes the proof.

2. General necessary and sufficient conditions. The next
theorem is of theoretical significance. However, since it is not easy
to apply the results to specific functions it is not very practical.

THEOREM 1. Given an additive complex valued arithmetic func-
tion f, necessary and sufficient conditions for

2.1) > l}iax | film) — A(B)® = e;nD*(n)

to hold for some constant ¢, are:

(2.2) 3 Max | f(m) — A@@)f < cinD'(m)

and

(2.3) >,  Max Max |A(k) — A(r"|* £ e;nD¥(n)
m=an qBl|m r7(m,qB)<sk<qb

S(m) <gB<L(m)

for some constant c,. Similarly, necessary and sufficient conditions

for
(2.4) v, {Max | fi(m) — Ak)| > tD(m)} = et™,

the analogue of Kolmogorov’s imequality, to hold for all real t >0
and for some constant c, are:

2.5) »,(Max | f,u(m) — @) > tD@)} < it~

and
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(2.6) v{ Max Max |A(k) — A(r7")| > tD(n)} < et
qb||m r7(m,qBysk<gb
S(m)<qgP<L(m)

for some constant c;. Note that (2.2) and (2.3) imply (2.5) and (2.6).
Also, ¢, depends only on ¢, (which may depend on f).

Proof. Let T = T(n, m) = Max,., | fi{m) — A(k)|. Then
T=<Max(T, T, T,) + T, + T

where
T, = Max |A(k)]|
£<S (m)
T, = Max |A(k) — A(L(m))]
Lim)<k=n
T, = Max [A(k) — A(r)]
T (m, L(m)) <k<L(m)
T, = Max | fs(m) — A"
and
T, = Max Max |A(k) — A(r7)| .
a8 |m 77 (m,qB)sk<qb

S(m) <qB<L(m)

Using Schwarz’s inequality and the lemma we see that
mé. T3 é,,;‘, D*S(m)) pag‘(m) Y
=D¥m) 2, p™™ >, 1

PEZM me & (n,p%,1,9)

= ¢mD*(n)(log 1.9) ;, p»~*log~'p*

= O(nD*n))
and
=D 3 p°

msn msn L(m)<p%=n

=Dm) X p* 1

pe=n me & (n,n,0%)

= enD(n)(log m)™ 3, p~*log’p"

= O(nD*(n)) .
Also,
>, T; = D¥(n) 3 > P

msn msn r7(m,L(m)) <pX<L(m)
S D) (S, + S, + Sy)
where
S;= 2> »p*231=0wn

nl/25p%<n msn

and where (noting that there are no exact divisors of m larger
than p* once m is divided by L(m) in the sum)
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S.= 2 p7* 3 > 1
px<nl 2 p2<gBPsnp—® me 5 (ng~B,mqg~8,p%)
= en > (¢°log ng=?)? > p~* log p*
fzn p@<Min(¢f,ng—8)
= O(n) + O(n , 2, (log ¢°)(¢ log mg~*))
qB<nl/2
= 0(n) + O[nlog~'n ﬂZ q* log ¢f]
gB<nl?
= O(n)
and
S;= > p* 3 ng?
pA<nl 2 np~%<qfsn
=OWH%)n§]wﬂ@—Eﬂ;]
p*<nl 2 log np—*
= O(n) + O [fn S pe log[l _ logp® Tl]
PALRL2 log »
= O(n) + O[nlog~'n azm p~* log %]
= O(n) .
Hence

>, Max(T%, T3, TS) < enD¥(m)
where ¢, is absolute and does not depend on f. From this it also
follows that

v Max(T,, Ty, T;) > tD(n)} < ¢t

for all real ¢ > 0. This establishes the sufficiency of the conditions.

The fact that T = T, establishes the necessity of (2.2) and (2.5).
The necessity of (2.2) and (2.5) together with T' = T, — T, establishes
the necessity of (2.3) and (2.6). This completes the proof.

3. A practical sufficient condition. The next theorem pro-
vides an easily verifiable sufficient condition for (2.1) and (2.4) to
hold.

THEOREM 2. Given an additive complex valued arithmetic func-
tion f, a sufficitent condition for (2.1) and (2.4) to hold is

.1 é. D¥q%)q~* = O(D*(n))
or
3.2) pazéznv (2M)|p~* = O(D(n)) .

Proof. 1t is known [2, p. 81] that there exists an absolute con-
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stant ¢, such that for any complex valued additive function ¢
3 lg(m) — Am)F < aD¥n) .
Hence if (3.1) holds then
S, Max |f(m) — A@)F
= > 2 (2ifqﬁ(m) — Al + 2[ f(¢")P)

gBzn m<ang—

=< 2¢m Z Dz(tf){f" + 2nD*(n)

gB=an

= O(nD*n))

which guarantees that (2.2) holds. Noting that for m = n, ¢®|m
and ¢f < L(m), we must have ¢* < n'? it follows from Schwarz’s
inequality and the lemma that

>, Max Max |A(k) — A@7)]?

m<n qBiim T (m,qB)sk<qbf
S(m) <gP<L(m)

= > > D > p°

mzn aB1im »7(m,q8) <p¥<qf
& (m)<gB<L(m

= > DA¢) Z p° >, 1
gBzal? pe<gh me S (ng—FB,q8,p%)
Sem E D*(¢*)(q% log ¢°)~* Z p~*log p*
gB<n p& <q
= 0(n 2 D*(q*)q~*)
gBsn
= O(nD*n))

which guarantees that (2.3) holds. Hence (2.1) and (2.4) hold ac-
cording to Theorem 1.

Now suppose that (3.2) is true and define the additive function
9 by g(p®) = | f(p*)]. To avoid confusion let /I(n) = >, g(p*)p~* where
the sum is over those p* < n; A(n) is thus reserved for f. Note
that D*n) is the same for both f and g. We see that

3 Max | fi(m) — A(k)P
= 2 3 (Am) + g'(m))
=2 3 (go(m) — Am)) + 44(n) 3 g(m)
< 2cmD*(n) + 44(n) 3 9@ 31

msn
aflim

= 2¢mD*(n) + 4n[ WEQ | f() | o~
= O(nD*n)) .
This completes the proof.
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Examples of functions which satisfy (3.1) and (3.2) are the ad-
ditive functions determined by f(»*) = log p* and f(p%) = p% An ex-
ample of a function that satisfies neither (3.1) nor (3.2) is the one
determined by f(p*) = 1. Any nontrivial function f such as f(p*) =
log='p® for which 3 |f(p*)|p~* and D*n) are bounded satisfies (3.2)
but not (3.1).
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