Pacific Journal of Mathematics

DETERMINATION OF BOUNDS SIMILAR TO THE LEBESGUE CONSTANTS

H. P. DIKSHIT AND ANIL KUMAR

Vol. 97, No. 2

February 1981

DETERMINATION OF BOUNDS SIMILAR TO THE LEBESGUE CONSTANTS

H. P. DIKSHIT AND A. KUMAR

Bounds for the Nörlund transformation of a sequence associated with Fourier series are determined. These are applied to obtain a necessary and sufficient condition for the convergence of the Nörlund transformation of Fourier series when the generating function satisfies a condition lighter than the continuity requirement.

1. Introduction. It is well known that the unboundedness of Lebesgue constants implies the existence of a function whose Fourier series diverges at a point of continuity (e.g., see [5], §6). Considering a class of transformed sequences of Fourier series at a point at which the generating function satisfies a lighter assumption than the continuity, we first obtain bounds for the sequence. An interesting application of such a result gives a necessary and sufficient condition for the convergence of the transformed sequence.

In the present paper, we consider the Nörlund transformation (N, p_n) associated with a given sequence of numbers $\{p_n\}$ such that $P_n = \sum_{k=0}^n p_k \neq 0$ and $p_{-1} = 0$. The (N, p_n) transformation of a series $a = \sum_{k=0}^{\infty} a_k$ or the sequence of its partial sums $\{s_n\}$, is defined by the sequence $\{t_n(a)\}$ where

$$t_n(a) = \sum_{k=0}^n P_{n-k} a_k / P_n = \sum_{k=0}^n p_{n-k} s_k / P_n$$
.

Suppose f(t) is a periodic function with period 2π and $f(t) \in L(0, 2\pi)$. Let $F = \sum_{n=1}^{\infty} A_n(x)$ denotes the Fourier series of f(t), at t = x. We introduce the following notations for convenience. For a given number s

$$\begin{split} \varphi(t) &= f(x+t) + f(x-t) - 2s; \ t\varphi_1(t) = \int_0^t \varphi(u) du , \\ \Delta_n s_n &= \Delta s_n = s_n - s_{n+1}, \ \Delta^2 s_n = \Delta(\Delta s_n); \ R_n = np_n/P_n ; \\ P_n V_n(r) &= n^{r-1} \sum_{k=1}^n k |\Delta^r p_{k-r}|; \ P_n S_n(r) = n^{r-1} \sum_{k=1}^n P_k k^{-r} , \end{split}$$

where r = 1, 2.

For sequences $\{a_n\}$ and $\{b_n\}$, $a_n \simeq b_n$ means that a_n lies between two positive constant multiples of b_n .

K denotes a positive constant not necessarily the same at each occurrence and [x] denotes the greatest integer not greater than x, in particular w = [1/t]. For any sequence $\{a_n\}$, $a(x) = a_{[x]}$.

2. The main results. The following theorem which provides bounds of Lebesgue constants for Nörlund method is essentially due to Hille and Tamarkin ([4], Theorem 7).

THEOREM A. Suppose that $\{p_n\}$ is a positive sequence such that $\{V_n(1)\} \in B$, i.e., $\{V_n(1)\}$ is a bounded sequence, then

(2.1)
$$\int_0^\pi |N(n, t)| dt \simeq S_n(1) ,$$

where $\{N(n, t)\}$ is the sequence of (N, p_n) transformation of $1/2 + \sum_{k=1}^{\infty} \cos kt$.

The original version of Theorem A as given in [4] contains the additional hypotheses that $\{R_n\} \in B$ and (N, p_n) is regular. However, we observe that

(2.2)
$$np_{n} = -\sum_{k=0}^{n-1} \Delta(kp_{k}) = P_{n-1} - \sum_{k=1}^{n} k(\Delta p_{k-1})$$

and, therefore, $\{V_n(1)\} \in B$ implies $\{R_n\} \in B$ and the latter implies that (N, p_n) is regular.

As an interesting application of (2.1), Hille and Tamarkin ([4], Theorem II) proved the following result.

THEOREM B. Suppose that $p_n > 0$, $\{V_n(1)\} \in B$. Then in order that the Fourier series F should be summable (N, p_n) to s whenever $\varphi(t) = o(1)$ as $t \to 0$, it is necessary and sufficient that $\{S_n(1)\} \in B$.

Under a less restrictive condition on f(t) viz., $\varphi_1(t) = o(1)$, $t \rightarrow 0$, Astrachan ([1], Theorem I; see also Dikshit [3]) has obtained only a set of sufficient conditions for the (N, p_n) summability of the series F.

In the present paper, we first prove the following and then deduce a necessary and sufficient condition for the (N, p_n) summability of the series F under the assumption: $\varphi_1(t) = o(1), t \to 0$.

THEOREM 1. Suppose that $\{p_n\}$ is a positive sequence such that $\{V_n(2)\} \in B$, then

(2.3)
$$\int_{0}^{\pi} |M(n, t)| dt \simeq S_{n}(2) ,$$

where $\{M(n, t)\}$ is the (N, p_n) transformation of $\{k \cos kt\}$.

Using the result (2.3), we shall prove the following:

THEOREM 2. Suppose that $\{p_n\}$ satisfies the hypotheses of Theorem 1. Then in order that the Fourier series F should be summable

 (N, p_n) to s whenever $\varphi_1(t) = o(1), t \to 0$ it is necessary and sufficient that $\{S_n(2)\} \in B$.

3. Preliminary results. We use the following lemmas for the proof of our theorems.

LEMMA 1. Let $\{a_n\}$ be a given sequence, then for any $x \neq 1$, we have

$$\sum_{k=r}^{s} a_k x^k = x(1-x)^{-2} \left\{ \sum_{k=r}^{s-2} (\varDelta^2 a_k) (x^{k+1}-x^r) + (\varDelta a_{s-1}) (x^s-x^r)
ight\}
onumber \ + (1-x)^{-1} (a_r x^r - a_s x^{s+1}) \ ,$$

where r and s are integers such that $s - 2 \ge r \ge 0$.

The proof of Lemma 1 is direct.

LEMMA 2. Suppose a sequence $\{s_n\}$ satisfies the conditions:

$$\sum_{k=1}^{n} |s_k| \leq KT_n \text{ and } \sum_{k=1}^{n} k^2 |\mathcal{A}^2 s_{k-2}| \leq KT_n$$

for some sequence of positive numbers $\{T_n\}$. Then

$$\sum_{k=1}^n k | \varDelta s_{k-1} | \leq KT_n$$
.

Lemma 2 is a particular case of a more general result given in ([3], Lemma 1).

LEMMA 3. If $\{p_n\}$ is a nonnegative sequence and $\{V_n(2)\} \in B$, then (i) $\{V_n(1)\} \in B$, and (ii) $n = 0(P_n)$.

Proof. It follows trivially from the assumption $\{V_n(2)\} \in B$ that

$$\sum_{k=1}^{n} k^{2} |\varDelta^{2} p_{k-2}| = 0(|P_{n}|)$$

and (i) therefore follows from Lemma 2.

In order to show (ii), we observe that if, for any k, $\varDelta^2 p_{k-2} \neq 0$ then, for all sufficiently large n, $KP_n \geq n$. Otherwise, if $\varDelta^2 p_{k-2} = 0$ for all $k \geq 1$, then $\varDelta p_{k-2}$ is a constant which is obtained by putting k = 1. Thus, $KP_n \geq -\sum_{k=1}^{n+1} \varDelta p_{k-2} = (n+1)p_0$ and (ii) follows.

The next lemma follows from a result due to Hille and Tamarkin ([4], Lemma 9) when we observe that $\{V_n(1)\} \in B$ implies that $\{R_n\} \in B$.

LEMMA 4. If $\{p_n\}$ is a positive sequence and $\{V_n(1)\} \in B$, then $0 < \varepsilon \leq v/u \leq 1/\varepsilon$ implies the existence of an a such that $0 < a \leq P(v)/P(u) \leq 1/a$.

LEMMA 5. If $\{p_n\}$ is a positive sequence and $\{V_n(1)\} \in B$, then for any positive $\delta \leq \pi$,

$$\int_{1/n}^{\delta} t^{-1} \left| \sum_{k=w+1}^{n} p_k \exp ikt \right| dt = 0(P_n) \ .$$

The proof of Lemma 5 is essentially included in ([4], see (6.07) and Lemma 7 with m = 2, 3 or 4 for which the condition: $\{S_n(1)\} \in B$ is not used).

4. Proof of Theorem 1. We first write

$$P_n M(n, t) = \sum_{k=0}^{w-1} p_k(n-k) \cos (n-k)t + \operatorname{Re} \sum_{k=w}^n p_k(n-k) \exp i(n-k)t$$

= $\sum_1 + \operatorname{Re} \sum_2 d$,

say. Applying Lemma 1 to \sum_2 , we obtain

$$\sum_{\frac{1}{2}} = (1 - \exp{(-it)})^{-1} p_w(n - w) \exp{i(n - w)t} - X(n, t)$$

where

(4.1)
$$|X(n, t)| \leq Kt^{-2} \Big\{ p_{n-1} + \sum_{k=w}^{n-2} |\Delta_k^2(p_k(n-k))| \Big\}$$

Thus, we have

(4.2)
$$P_n M(n, t) = \sum_1 + \sum_3 - \operatorname{Re} X(n, t) ,$$

where $\sum_{3} = p_{w}(n - w) \sin(n - w + 1/2)t/\{2 \sin t/2\}$.

We now introduce the intervals $I_r = ((2r+1/3)\pi/n, (2r+4/9)\pi/n)$ for $r = 1, 2, \dots, [n/4\pi] - 1$, which are all disjoint subintervals of (2/n, 1). Considering \sum_{1} , we observe that the restriction $0 \leq k < w$ implies $0 \leq kt < 1$ for all $t \in (2/n, 1)$, so that whenever $t \in I_r$, $(n-k)t \in J_r = ((2r+1/3)\pi - 1, (2r+4/9)\pi)$. Thus, for $t \in I_r$, $\cos(n-k)t$ is not less than $\cos(4\pi/9)$. We also see that for $t \in (2/n, 1/2)$, 0 < t(w - 1/2) < 1 and, therefore, $(n - w + 1/2)t \in J_r$ whenever $t \in I_r$. Thus $\sin(n - w + 1/2)t$ is not less than $\sin(\pi/3 - 1) = 2C_0$, say. In view of these observations, if we write $E = UI_r$ and $Y_n = \int_{1/n}^{\pi} |X(n, t)| dt$, where n is sufficiently large, then

$$(4.3) P_n \int_{1/n}^{\pi} |M(n, t)| dt + Y_n \ge \int_{2/n}^{1/2} |\sum_1 + \sum_3 |dt| \\ \ge 2C_0 \int_E \left\{ \sum_{k=0}^{w-1} p_k(n-k) + p_w(n-w) \left(2 \sin \frac{1}{2}t\right)^{-1} \right\} dt \\ > C_0 n \int_E \left\{ \sum_{k=0}^{w} p_k \right\} dt = C_0 n \int_E P(1/t) dt ,$$

since for $t \in E \subset (2/n, 1/2)$, n - w > n/2.

Writing $d = \pi/9n$, we observe that each interval I_r is of length d and any two consecutive intervals I_r , I_{r+1} are separated by a distance 17d. Now we move the intervals I_r to the left by taking s = t - 17(r-1)d so that all the intervals I_r abut upon each other. Suppose the shifted interval I_r is denoted by I_r^* , then we see that for $s \in I_r^*$ and $t \in I_r$ 18 $s \ge t$ so that $P(1/t) \ge P(1/18s)$ and $P(1/t) \ge c'P(7\pi/3s)$ for some c' > 0, by virtue of Lemma 4. Thus, we have from (4.3)

(4.4)
$$P_n \int_{1/n}^{\pi} |M(n, t)| dt + Y_n \ge C_0 c'n \int_{7\pi/3n}^{7\pi/3b_n} P(7\pi/3s) ds \ge c''n \int_{b_n}^{n} u^{-2} P(u) du \ge c P_n S_n(2) ,$$

where $b_n \to 14\pi/3$ as $n \to \infty$, and c, c', c'' are some positive constants.

In order to obtain the lower bound in (2.3), we assume for the moment that for some fixed K,

(4.5)
$$Y_n = \int_{1/n}^{\pi} |X(n, t)| dt \leq KP_n$$

and deal with the cases $S_n(2) \ge 2K/c$ and $S_n(2) < 2K/c$ separately. In the former case, (4.5) gives that $Y_n \le (1/2)cP_nS_n(2)$ so that we have from (4.4),

(4.6)
$$\int_{1/n}^{\pi} |M(n, t)| dt \ge \frac{1}{2} c S_n(2) .$$

For the other case, we first observe that if $t \leq \pi/3n$, then for all k with $0 \leq k \leq n$, $\cos kt \geq 1/2$. Hence under the hypothesis: that $p_n > 0$, we have

$$\begin{split} \int_{0}^{\pi} |M(n, t)| dt &> \int_{0}^{\pi/3n} |M(n, t)| dt \\ &\ge \frac{1}{2} \frac{\pi}{3n} \frac{1}{P_{n}} \sum_{k=1}^{n} k p_{n-k} \ge \frac{\pi}{12P_{n}} \sum_{k=r(n)}^{n} p_{n-k} \end{split}$$

where 2r(n) = n or n + 1 according as n is even or odd. Now using Lemmas 3 and 4, we have

$$\int_{\mathfrak{o}}^{\pi} |\mathit{M}(n,\,t)| \, dt \geq \pi P \Big(rac{n-1}{2} \Big) \Big/ 12 P_{\mathfrak{n}} \geq c^{*}$$
 ,

where c^* is some positive constant. Thus, in view of the condition $S_n(2) < 2K/c$, we have

(4.7)
$$\int_0^\pi |M(n, t)| dt > (cc^*/2K)S_n(2) .$$

In view of (4.6) and (4.7), we have in either case

(4.8)
$$\int_0^\pi |M(n,t)| dt \ge AS_n(2)$$

where $A = \min(c/2, cc^*/2K)$.

We now complete the proof of the lower bound in (2.3) by showing (4.5). Substituting $t^{-1} = u$ in (4.5) and observing that

$$\{arDelta_k^2(n-k)p_k\}=(n-k-2)arDelta^2p_k+2arDelta p_k$$
 ,

we have

(4.9)
$$\int_{1/n}^{\pi} |X(n, t)| dt \leq Knp_{n-1} + KL(n)$$

where

$$L(n) = \int_{1/\pi}^{n} \sum_{k=\lfloor u
floor}^{n} \{(n-k) | arDelta^2 p_{k-2}| + |arDelta p_{k-2}| \} du \; .$$

But

(4.10)
$$\begin{aligned} L(n) &\leq Kn \sum_{r=1}^n \sum_{k=r}^n |\varDelta^2 p_{k-2}| + K \sum_{r=1}^n \sum_{k=r}^n |\varDelta p_{k-2}| + Knp_0 \\ &= Kn \sum_{k=1}^n k |\varDelta^2 p_{k-2}| + K \sum_{k=1}^n k |\varDelta p_{k-2}| + Kn \leq KP_n \end{aligned}$$

by virtue of the hypothesis $\{V_n(2)\} \in B$ and Lemma 3. Combining (4.9) and (4.10), we prove (4.5), when we observe that $\{R_n\} \in B$ by Lemma 3.

It follows from the proof of Theorem I in ([1], pp. 551-553) that under the hypotheses of Theorem 1

(4.11)
$$\int_0^\pi |M(n, t)| dt = o(1) + o(S_n(2)) .$$

Writing $m = \lfloor n/2 \rfloor$ and using the hypotheses of Theorem 1 it follows from Lemmas 3 and 4 that there is a positive number K such that

(4.12)
$$S_n(2) \ge \frac{n}{P_n} \sum_{k=m}^n \frac{P_k}{k^2} \ge Kn \sum_{k=m}^n \frac{1}{k^2}.$$

We thus obtain (2.3) from (4.11) when we observe that the lower bound in (4.12) tends to K as $n \to \infty$.

This completes the proof of Theorem 1.

5. Proof of Theorem 2. We first observe that in view of

Lemma 3, the hypotheses of Theorem 2, imply the regularity of the (N, p_n) method. Thus, if $\{t_n(F)\}$ is the sequence of (N, p_n) transformation of the series F, then

$$egin{aligned} t_n(F) &- s = o(1) + rac{1}{\pi P_n} \int_0^\pi arphi_1(t) t^{-1} \Big(\sum_{k=0}^n p_{n-k} \sin kt \Big) dt \ &- rac{1}{\pi P_n} \int_0^\pi arphi_1(t) \Big(\sum_{k=0}^n p_{n-k} k \cos kt \Big) dt \ &= o(1) + T_1 - T_2, \ \mathrm{say} \ . \end{aligned}$$

In order to prove the necessity part, we first observe that if the Fourier series is (N, p_n) summable whenever $\varphi_1(t) = o(1), t \to 0$ then it is certainly summable (N, p_n) whenever $\varphi(t) = o(1)$. The latter implies that $\{S_n(1)\} \in B$, when we appeal to Lemma 2 and a result due to Hille and Tamarkin ([4], Theorem II). Further, $\{V_n(1)\} \in B$ by virtue of Lemma 2 and, therefore, following the proof of Theorem 1 in ([4], pp. 769-770), we see that $T_1 = o(1)$ as $n \to \infty$, whenever $\varphi_1(t) = o(1), t \to 0$. Thus, the (N, p_n) summability of Fto s implies that as $n \to \infty$

(5.1)
$$\int_0^{\pi} \varphi_1(t) M(n, t) dt = o(1) .$$

We now claim that a necessary condition for (5.1) is that

(5.2)
$$\lim_{n\to\infty}\sup\int_0^{\pi}|M(n, t)|dt < \infty$$

Assuming that (5.2) fails, that is, that

(5.2')
$$\lim_{n\to\infty}\sup\int_0^\pi |M(n,t)|\,dt=\infty,$$

we construct a function $\varphi_1(t)$ such that (5.1) fails.

In view of the hypothesis $\{V_n(2)\} \in B$ and Lemma 2, we have from (4.1)-(4.2) that

(5.3)
$$\int_{z}^{z} |M(n, t)| dt = C(z) = O(1)$$

for any fixed z > 0. Taking $x_0(0) = \pi$, we observe that in view of (5.2'), we can find an increasing sequence of positive integers $\{n(r)\}_{r=1}^{\infty}$ and a decreasing sequence of numbers $\{x_0(r)\}_{r=1}^{\infty}$ such that

(5.4)
$$\int_{Q_r} |M(n(r), t)| dt > r^2 [r + C(x_0(r-1))]$$

and

(5.5)
$$\int_{0}^{x_{0}(r)} |M(n(r), t)| dt < r^{-2},$$

where $Q_r = [x_0(r), x_0(r-1)].$ By choosing

$$arphi_{ ext{i}}(t) = r^{-2} \operatorname{sgn} M(n(r), t)$$

everywhere in Q_r except in sufficiently small neighborhoods of $x_0(r)$, $x_0(r-1)$ and those points of Q_r at which M(n(r), t) changes sign, it is clear that we can define $\varphi_1(t)$ in each Q_r in such a way that its derivative exists and is bounded everywhere, that it vanishes at $x_0(r)$, $x_0(r-1)$, that $|\varphi_1(t)| \leq r^{-2}$, and that

$$\int_{Q_r} M(n(r), t) \varphi_1(t) dt$$

is arbitrary near to

$$r^{-2} \int_{Q_r} |M(n(r), t)| dt$$
 .

Thus using (5.4)-(5.5), we have

This contradicts (5.1) and hence, we have shown that (5.2) is a necessary condition for (5.1). The necessity part of Theorem 2 now follows when we appeal to Theorem 1.

For the sufficiency part of Theorem 2, reference may be made to [1] and [3].

REMARKS. A simple example of a function $\varphi_1(t)$ meeting the requirements of the construction given after (5.5) is a piecewise quintic polynomial function or more precisely a deficient quintic spline function. For the definition of such functions reference may be made to [2].

The authors would like to express their grateful thanks to Professor B. Kuttner of University of Birmingham for some valuable suggestions.

References

1. M. Astrachan, Studies in the summability of Fourier series by Nörlund means, Duke Math. J., 2 (1936), 543-568.

2. C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York-Heidelberg-Berlin, 1978.

3. H. P. Dikshit, Absolute total-effective (N, p_n) means, Proc. Cambridge Phil. Soc., **69** (1971), 107-122.

4. E. Hille and J. D. Tamarkin, On the summability of Fourier series I, Trans. Amer. Math. Soc., 34 (1932), 757-783.

5. K. Ishiguro, On the summability methods of divergent series, Acad. Roy. Belg. Cl. Sci. Mem. Coll. in 8°, 35 (1965), 1-42.

Received March 14, 1980 and in revised form June 12, 1980.

UNIVERSITY OF JABALPUR JABALPUR (INDIA)

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024 HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90007 R. FINN and J. MILGRAM Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA	UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA	UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY	STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY	UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO	UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY	UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITI	UNIVERSITI OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: \$102.00 a year (6 Vols., 12 issues). Special rate: \$51.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.). 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

> Copyright © 1981 by Pacific Jounal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 97, No. 2 February, 1981

Patrick Robert Ahern and N. V. Rao, A note on real orthogonal measures	249
Kouhei Asano and Katsuyuki Yoshikawa, On polynomial invariants of fibered	
2-knots	267
Charles A. Asmuth and Joe Repka, Tensor products for $SL_2(\mathcal{K})$. I.	
Complementary series and the special representation	271
Gary Francis Birkenmeier, Baer rings and quasicontinuous rings have a	
MDSN	283
Hans-Heinrich Brungs and Günter Törner, Right chain rings and the generalized	
semigroup of divisibility	293
Jia-Arng Chao and Svante Janson, A note on H^1 <i>q</i> -martingales	307
Joseph Eugene Collison, An analogue of Kolmogorov's inequality for a class of	
additive arithmetic functions	319
Frank Rimi DeMeyer, An action of the automorphism group of a commutative	
ring on its Brauer group	327
H. P. Dikshit and Anil Kumar, Determination of bounds similar to the Lebesgue	
constants	339
Eric Karel van Douwen, The number of subcontinua of the remainder of the	
plane	349
D. W. Dubois, Second note on Artin's solution of Hilbert's 17th problem. Order	
spaces	357
Daniel Evans Flath, A comparison of the automorphic representations of GL(3)	
and its twisted forms	373
Frederick Michael Goodman, Translation invariant closed * derivations	403
Richard Grassl, Polynomials in denumerable indeterminates	415
K. F. Lai, Orders of finite algebraic groups	425
George Kempf, Torsion divisors on algebraic curves	437
Arun Kumar and D. P. Sahu, Absolute convergence fields of some triangular	
matrix methods	443
Elias Saab, On measurable projections in Banach spaces	453
Chao-Liang Shen, Automorphisms of dimension groups and the construction of	
AF algebras	461
Barry Simon , Pointwise domination of matrices and comparison of \mathcal{I}_p norms	471
Chi-Lin Yen, A minimax inequality and its applications to variational	
inequalities	477
Stephen D. Cohen, Corrections to: "The Galois group of a polynomial with two	
indeterminate coefficients"	483
Phillip Schultz, Correction to: "The typeset and cotypeset of a rank 2 abelian	
group"	486
Pavel G. Todorov, Correction to: "New explicit formulas for the <i>n</i> th derivative of	
composite functions"	486
Douglas S. Bridges, Correction to: "On the isolation of zeroes of an analytic	
function"	
Stanley Stephen Page, Correction to: "Regular FPF rings"	488