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LOCALLY COMPACT GROUPS ACTING ON TREES

ROGER ALPERIN

Following Serre’s original description of groups having
the fixed point property for actions on trees, Bass has intro-
duced the notion of a group of type FA’. Groups of type
FA’ can not be nontrivial free products with amalgamation.
We show that a locally compact (hausdorff) topological group
with a compact set of connected components is of type FA’.
Furthermore, any locally compact group which is a nontrivial
free product with amalgamation has an open amalgamated
subgroup.

1. A group G is called an amalgam if it is a free product with
amalgamation of subgroups A and B along C, i.e., G = A}B, so that
C+A,C+#B.

If a group G acts without inversions on a tree so that it hasa
fixed vertex we say G has property FA on X. Serre has introduced
the notion of a group of type FA. We say that G is of type FA
if G has property FA whenever it acts on a tree. The following
theorem characterizes G group theoretically.

THEOREM 1 (Serre). A group G is of type FA if and only if it
satisfies the following conditions:

(1) G has no infinite cyclic quotient.

(2) G is not an amalgam.

(3) G is not the union of any sequence

GogG1;G2 ang
of its proper subgroups. O
This theorem was originally formulated by Serre for countable
groups [6, Theorem 15; 2, Theorem 3.2]. Bass has introduced the
notion of a group of type FA’. In order to formulate this we

introduce the ends of a tree X. Consider the collection & of half-
lines of X: L €. is isometric to the standard half-line

oee o

0 1 2 3 4
The ends of X is the set of equivalence classes & of & under the
equivalence relation ~:
L~M if LNM is a half-line.
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Notice that if e, fe &, ¢+ f, we can choose representatives Lee,
Me f so that LU M is a doubly infinite line of X denoted (e, f).
If G acts as a group of isometries on X then it also acts on the set
% of half-lines of X and the set & of ends of X. If Le &£ ge@G
we say L is neutral, repulsing or attracting for ¢ if gL = L (i.e.,
pointwise fixed), gL 2 L, or gL & L respectively. If L contains a
half-line L'(L — L’ is finite) which is neutral, repulsing or attracting
for g then we say L is almost neutral, repulsing or attracting for
g. An end ee & is neutral, repulsing or attracting for ge G if it
possesses a representative half-line which is so for g. Denote the
ends which are fixed by G(ge = ¢, Vg G) by &°.

We can now formulate the property FA’.

THEOREM 2. Suppose G acts without inversion on the tree X.
The following conditions are equivalent.

(i) FEach element of G has a fixed vertex.

(ii) FEach finitely generated subgroup of G has a fixed vertex.

(iii) There is either a fixed vertex for G or a neutral fixed end.

Proof. The implication (i)= (ii) is proved by Serre [6, Corollary
3 to Proposition 26]. The implication (i)= (iii) is proved by Tits [8,
Corollary 3.4]. The implications (ii)= (i) and (iii)= (i) are obvious. []

If G satisfies the equivalent conditions of Theorem 2 for a given
action without inversions on a tree X then we shall say G has
property FA’ on X. This property has been further analyzed by
Bass [2, Propositions 1.6,3.7]. In case G has property FA’ on X
and has no fixed vertex then there is a half-line L with vertices
(v.), n=20, so that G, CG n=0, and

Yn+1?

G=UG,, .

720

We say that G is of type FA’ if G has property FA’ whenever it
acts on a tree.

THEOREM 3 (Bass). A group G is of type FA' if and only if it
satisfies the following conditions:

(1) G has no infinite cyclic quotient.

(2) @G is not an amalgam. 1

One obtains information about homomorphisms from a group G
of type FA or FA’ to amalgams using the next propositions.

PrOPOSITION 1 (Serre [6, Proposition 21]). If G is a group of
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type FA and ¢: G— A%B is a homomorphism to an amalgam then
P(GF) is contained in a conjugate of A or B. ]

PROPOSITION 2. If G is a group of type FA' and ¢:G— A*B
is a homomorphism then @(G) is contained in a conjugate of A or B.

Proof. First notice that a homomorphic image of type FA’ is
also of type FA’. Thus @(G) acts without inversions on the tree X
for A*B. Using condition iii) of Theorem 2, ¢(G) has a fixed point
and consequently @(G) is contained in a conjugate of A or B, or
there is a neutral fixed end for ¢(G). However, the edge stabilizers
for this fixed end are trivial since A*B has no amalgamation; this
is impossible and consequently @(G) has a fixed point. ]

2. If H is a normal subgroup of type FA of a group G and
G/H is of type FA'(FA) then G is of type FA'(FA). To see this
notice that if G acts on a tree X and K is a finitely generated
subgroup of G then L = K H has a fixed tree X* and thus the
finitely generated subgroup KH/H = K/L of G/H acts on X* with a
fixed vertex which is then fixed by K. Also, if G contains a sub-
group of finite index H of type FA’ then G is also of type FA'.
Indeed, if K is a finitely generated subgroup of G then L = KNH
is a finitely generated subgroup of H; without loss of generality we
may assume H is normal and thus the finite group K/L has a fixed
point for its action on XZ.

Based on some remarks of Tits [7; §2.3] we shall show that
every extension of groups of type FA’ is again of type FA'. For
this we shall need some further comments on ends. We suppose
that a group G is acting without inversions on a tree X.

PROPOSITION 3. Let ec &¢. Any half-line L € e is almost neutral,
repulsing or attracting for ge(@.

Proof. Given geG and Lee. Let P be the initial vertex of
L. If gPeL then L is neutral or attracting for g. If gP¢L
there are two possibilities: (1) The geodesic from P to gP meets L
only at P or (2) The geodesic from P to gP meets L at a vertex
@ = P. 1In the first case L is repulsing for g. In the second case
let L' be the half-line contained in L starting at Q.

N
L:

f’Q'gR
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If ReL’ then ¢gR belongs to the geodesic from ¢gP to @ for only
finitely many R. Thus there is a half-line L” ¢ I so that gL”"CL’'.
Choose Re L’ so that Q belongs to the geodesic from P to R and
9Q Dbelongs to the geodesic from gP to gR. If ¢gQ belongs to the
geodesic from gP to @ then L' is repulsing or neutral for g; other-
wise, L' is attracting for g. It is now easy to see that if one
half-line L ee is almost neutral, almost repulsing or almost attracting
for g then so is every half-line in e; viz. if g has a fixed point on
L in e then it must be almost neutral for g. [l

PROPOSITION 4. If G has a neutral fived end e then either & ° =
{e} or there is a doubly infinite line of fixed poinis for G.

Proof. Suppose f is a repulsing or attracting end for geG.
Let Pee so that gP = P and choose L f on which ¢ is repulsing
or attracting starting at Q.

Q
P L
gQ

This is impossible since the length of the geodesic from P to @ is
different from that of gP to ¢gQ. Thus any other fixed end f for
G must be a neutral fixed end. Choose representative Lee, M€ f
so that L U M is a double infinite line.

L M
P Q@
Thus for each ge G there exists Pe L, Qe M fixed by g¢g; hence the
doubly infinite L U M is fixed identically for all geG. W

From the above remarks we see that every half-line in ec&'¢
is one of the mutually exclusive alternatives for a given g G. We
can then define »,: G — Z for a fixed end ¢ as follows

min | L — (L N gL)| ¢
Lee, L attracting for g¢
—min|gL — LNgL)|
Lee, L repulsing for g

0 if e is neutral for ¢
e 1is attracting for g¢

v,(9) =

¢ 1is repulsing for g¢.

THEOREM 4. For each fixed end ec&’“ there is a camonical
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homomorphism
V. G—Z

with the property that v,(9) = 0 if and only if e is meutral for g
and L* #= @ for all Lee.

Proof. To see that v, is a homomorphism let g, g, G achieve
their v, value on L,, L, respectively and let g,9, achieve its v, value

on L. Consider the half-line g;'L, N L, N L starting at P.

L,

LPI .
f

9L,

Now Pe L, and thus g,PC L, so P has moved v,(g,) under the
action of g, However g,(9.P) C L, so that g.P has moved v,(g,) under
the action of g,. Thus P has moved »,(g,) + #,(g,) under the action
of g,9.; however Pe L so P moves v,(g,9. under the action of g,g,,
so that

V(9192 = v.(9)) + v.(gs) .

If v,(9) = 0 then e is neutral for ¢ and L, # @ for some Lee.
Moreover, since g fixes identically a half-line L' < L then it must
have a fixed point on every half-line in e. Conversely if g has a
fixed point on some Lece then L is almost neutral for g and e is
neutral for g; thus ».(9) = 0. O

COROLLARY 1. If for a given action of G on a tree X a normal
subgroup H has a unique neutral fixed end e then either e is a
neutral fived end for G or there is a nontrivial homomorphism
v:GIH—Z.

Proof. It is easy to see that e is a fixed end for G; viz. suppose
ge = fe &, then for he H
e = g 'hge = g7'hf .

Thus f = ge = hf and by uniqueness f = ¢. Thus from the theorem
above v,: G — Z factors through a homomorphism »: G/H — Z since
e is neutral for H. O

COROLLARY 2. If G has a mormal subgroup H so that H and
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G/H have property FA' then G has property FA'.

Proof. Let G act on a tree X. If H has a fixed point then
there is an action of G/H on X*”. Since G/H has property FA’' we
can find a fixed point for g€ G by finding a fixed point for gH on
X%, If H has no fixed points on X then it has a neutral fixed end
and thus since G/H has no homomorphism to Z this neutral fixed
end for H is also a neutral fixed end for G. ]

COROLLARY 3. Suppose that G acts without 1nversions on a tree
X. If G 1is generated by a set S with X*+ @ for all se€S then
either G has no fixed end or a fixed end is neutral.

Proof. If G has a fixed end e then any sc S has a fixed point
lying on some half-line L ee; thus v,(s) = 0. It follows immediately
from the theorem then that v, is trivial and consequently that e is
neutral for G. O

A nonempty collection of subgroups .+ = {N,|lae.} of a
group G is called a normal filtering family if

(1) given a, Be .57, 3y e .7 so that N, C N, N N, and

(2) given €., geG,3B3e€ . so that N,C gN,g™".
(These are the conditions that guarantee G is a topological group
with _#~ as a fundamental system of open subgroups.)

PROPOSITION 5. Suppose that G acts without inversions on «a
tree X such that &°¢ = @. If 4" is a normal filtering family of
subgroups of G having property FA' on X then some Nc 4~ has a
fixed point.

Proof. Suppose by way of contradiction that no Ne_+~ has a
fixed point; it follows then from the FA’ property that each N, e
.+~ has a unique neutral fixed end ¢,. Given N,, N,€._#; choose
N, N, N N;; we have then

{e} = Ve = &V = & = {e,)} .

Thus there is a common neutral fixed end e for 4. Given N, e_1+/;
g €@, choose Ny C gN,g; it follows that

fe} = & = Fovart = {ge)
and thus e is a fixed end for G. ]

Since an amalgam has elements which have no fixed points on
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the tree corresponding to the amalgamation it follows from Corollary
3 and Theorem 2 that there can be no fixed end for this action.
Similarly, for an HNN extension A%(C # A) acting on its correspond-
ing tree there can be no fixed end. To see this, we may choose
without loss of generality a representative half-line for this end
with initial vertex and edge having stabilizers A and C respectively;
then for ge A it follows from Theorem 4 that ¢ is neutral on this
half-line and thus geC, whence C = A. We shall use these remarks
together with Proposition 5 to derive some important consequences
for topological groups. Also, this proposition will provide useful
information if the family consists of a single normal subgroup.

As a further remark on extensions of groups having property
FA’ we have the following result.

THEOREM 5. If H and K are subgroups of G having property
FA' and G = HK then G has property FA'.

Proof. Let geG be written as g = hk, h€ H, k€ K; express now
kh = 'K, eH, kKecK. Thus we have

(R'RYE' (R kh) =1 .

By results of Serre [6, Corollary 1 to Proposition 26] we can find a
common fixed point Pe X of the automorphisms A~*A/, k', h=k'h for
an action of G on the tree X if each has a fixed point; this is so
from the FA’ hypothesis for H and K. Consequently, we have the
properties:

WP = WP, KP = P, k(hP) = hP.

Let X*, X* Dbe the trees of fixed points of k& and k'; X* N X" = @
since K has property FA’ (condition (ii)). Since Pe X*, hPec X*, it
follows that the midpoint @ of the geodesic from P to kP is fixed by
h |6, Corollary 2 to Proposition 23] and also by &’ since hP = h'P; thus
RQeX*or Qe X¥. If Qe X* then hkQ = Q. If Qe X* then M'K'Q =
Q; but hk = h(kR)R™ = R(W'E)h™ so hk(Q) = hk(hQ) = h(kh)h(hQ) =
hAVE'Q = hQ = Q. Hence ¢ has a fixed point for its action on X. [7]

3. We now derive consequences for topological groups from the
results of the previous sections.

THEOREM 6. If G 1is a connected locally compact topological
group them G is of type FA'.

Proof. As a first step we decompose G as
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G = LCR

where L is a semisimple (connected) Lie subgroup, C is a compact
connected semisimple subgroup and R is the radical of G (maximal
solvable connected closed normal subgroup) and CR is a closed normal
subgroup [5, Theorem 1]. [One uses the solution of Hilbert’s fifth
problem to see the equivalence of connected locally compact and
Iwasawa’s notion of (L) group [3].] Now using [4, Lemma 3.12] we
decompose the group L as L = HM where H is a connected solvable
Lie group and M is either the maximal compact subgroup K of L
or M =K xV where V is a vector group. It suffices then using
Theorem 5 to verify that H, M, C, R are of type FA’. Compact
groups are of type FA’ [1]; also any vector group being divisible
and abelian is FA’. It remains to show that a connected solvable
group S is of type FA’. Using Iwasawa’s decomposition of a locally
compact connected group as

G=HH,- - HK

where K is maximal compact and H;, = R 1 £ 1 < r [4; Theorem 13],
we see that G has no nontrivial homomorphisms to Z. Now if S
is an amalgam then using Bass’ result for solvable groups [2, Theorem

6.1] we obtain a surjective homomorphism S LA Z}Z,. However using
the Iwasawa decomposition above for S(=G) we obtain @[, @|, are
trivial homomorphisms. To see this notice that H,, K are of type
FA’ and hence by Proposition 2 each of the restrictions has image in
a conjugate of one of the Z, factors; the divisibility of H;1<¢<r, K
then forces each image to be trivial and thus also . ]

COROLLARY 1. If G is a locally compact topological group with
G/G, compact then G is of type FA'.

Proof. This follows immediately from the theorem above,
Corollary 2 to Theorem 4 and main result of [1].

COROLLARY 2. Suppose G is a locally compact topological group.
If G is an amalgam, G = AiB, or an HNN extension, G = A%, then
G,cC.

Proof. The connected component of the identity G, is of type
FA’. Using Proposition 5 and the remarks following it we see that
G, has a fixed point for its action on the tree corresponding to the
amalgam or the HNN extension if C s A. Since G, is normal we
see immediately that G, C. In case the HNN extension has C = A
the corresponding tree has a fixed end, say e; using Theorem 4 now,
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each element of G, has a fixed point so G, Ckerwv, = A. M

COROLLARY 3. Suppose G is a locally compact topological group.
If G is an amalgam, G = A}B or an HNN extension, G = A, then
C is open in G.

Proof. Without loss of generality we may replace G by G/G,
using Corollary 2 above and assume then that G is a locally compact
totally disconnected topological group. It is well known that G has
a neighborhood basis of the identity given by compact open sub-
groups [Hewitt and Ross, Abstract Harmonic Analysis, p. 62]. Since
compact groups are of type FA’ this is a normal filtering family of
type FA’; by dint of Proposition 5 then some compact open subgroup
U has a fixed point. Without loss of generality we may assume
Uc A. In case G is an amalgam choose ge B — Cso that UNgUg™C
ANgAg*cC;, hence C is open. If G is an HNN extension it is
generated by A together with an element ¢ (which generates the
fundamental group of X/G [6, p. 62]); thus

UntUt'cAntdi"cC.

For the HNN extension to which Proposition 5 doesn’t apply, viz.
G = A* we notice as in the proof of Corollary 2 that there is a fixed
end ¢ and hence for any compact open subgroup U,

Uckerv,Cc A

since U is of type FA’. O
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