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Let A and B be uniform algebras and suppose that B is
an extension of A, finitely generated and projective as an
A-module. Let 7 denote the natural projection from the
maximal ideal space of B onto the maximal ideal space of
A. We show that K is a generalized peak interpolation set
for B if and only if n(K) is a generalized peak interpolation
set for A. Then we give a topological description of the
maximals sets of antisymmetry of B in terms of those of
A. Finally, we prove that if B is strengly separable over
A, then the algebra of B-holomorphic functions is strongly
separable over the algebra of A-holomorphic functions.

1. Introduction. The main motivation for this work comes
from a series of results discovered over the last twenty years con-
cerning the structure of certain types of integral extensions of
(commutative complex unital) Banach algebras. More precisely, the
results which we are refering to group roughly in two classes. On
one hand, we have the theory of the so-called algebraic or Arens-
Hoffman extensions [1, 2, 7, 8]. These are extensions of the form
Afx]/(a(x)), where a(x) is a monic polynomial with coefficients in the
base algebra A. Moreover, part of this theory was recently extended
[12] to the case where the extension is finitely generated and pro-
Jective as an A-module. On the other hand, we have results coming
from the study of strongly separable extensions [4, 9], i.e., exten-
sions which are finitely generated and projective as A-modules and
separable as A-algebras.

Still a word on method. As we showed in [12], given a finitely
generated projective extension B of a Banach algebra A and an
element b<¢ B, one can pick out, among all monic polynomials a(x) e
Afx] such that a(b) = 0, a canonical one, which enjoys some useful
properties (see Lemma 1 below for a precise statement). Then, our
method consists in obtaining information about B from information
about A (and conversely) by means of these canonical integrity
equations.

We fix now some notation. M, , and 9, , denote, respectively,
the character spectrum and the Shilov boundary operators on Banach
algebras; f is the Gelfand transform of f. A will denote a fixed
uniform algebra on a compact space X, and B a finitely generated
projective extension of A. It is known that B can be endowed with
a canonical Banach algebra structure [9, Th. 4, p. 138 and 12, §3].
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204 JOAN VERDERA

However, for our purposes, it will not be necessary to handle any
specific Banach algebra norm on B and only the existence of such a
norm will be required. We will also assume, exeept in Theorem 1,
that B is a uniform algebra.

We write = for the projection from M, onto M, defined 7(y) =
Wl Y € M.

If a@) = > ,ax’ is a polynomial with coefficients in A and
¢ €M, then we write

a,(x) = 3, g(a)e € Cla]

and
Z(ay) = {neC:ay,\) =0} .

Our arguments are based on the following result from [12]:

LEMMA 1. Assume that B has a well defined rank over A, say
n. Then for each be B there exists a monic polynomial a(x)e Alx]
of degree n such that a(d) =0 and

(1) Za,) = b(m7(9), ¢eM,.

The notation and terminology we use are standard (see [6] and
[11]). For basic facts about projective modules and (algebraically)
separable algebras the reader is referred to [5].

2. Peak interpolation sets. Before stating our first result we
recall some well known definitions.

Let B be a Banach algebra, Z a closed boundary for B and K
a closed subset of Z. Then K is said to be a peak set for B on Z
if there exists fe® such that f =1 on K and [f| <1 on Z\K. If
K is an intersection of peak sets for B on Z, we say that K is a
generalized peak set for B on Z. We call K an interpolation set for
B if, given any h e C(K), there exists f €D such that f=h on K.
If K is both a (generalized) peak set for B on Z and an interpola-
tion set for B, then it is called a (generalized) peak interpolation
set for B on Z. When B is a uniform algebra on Z, the explicit
reference to Z is usually dropped, so that one simply speaks of
(generalized) peak (resp. peak interpolation) sets for .

As we said before, in the following theorem we just assume
that B is a finitely generated projective extension of A, endowed
with some Banach algebra structure. The corollary in [12, §2]
implies that ¥ = 7z7%(X) is a closed boundary for B.

THEOREM 1. If KCY is a generalized interpolation set for B on
Y, then w(K) is a generalized peak tnterpolation set for A.
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COROLLARY. If KCY is a peak interpolation set for B on Y,
then w(K) is a peak interpolation set for A.

This corollary follows immediately from the theorem and from
the fact that © preserves G;-sets.

Proof of Theorem 1. Without loss of generality, we may assume
B to have a well defined rank over A. This is so because there are
mutually orthogonal idempotents e,, ---, ¢, in A such thate, + --- +
e, = 1 and, for each 1, e¢,B is a finitely generated projective exten-
sion of ¢,A, with a well defined rank over ¢,4 [5, 4.11, p. 31].

Let B, be the uniform closure in C(M,) of B. Then Mz, = Mg
and 05 = 0. Moreover, as it is easily seen, B, satisfies the conclu-
sion of Lemma 1. We shall regard B, as a uniform algebra on Y
and we shall prove the theorem under the weaker hypothesis that
K is a generalized peak interpolation set for B,.

If H = n(K), then, by the Bishop-Glicksberg characterization of
generalized peak interpolation sets [11, 20.10, p. 210], we have to
show that |p|(H) =0 for any complex regular Borel measure g on
X orthogonal to A. In order to see this, it is clearly sufficient to
prove the following:

for each ¢ € H there exists a closed neighborhood (in

(2) X) U, of ¢ such that |p¢|(U,NnH)=0.

Fix ge H and let 4, -+, 4, be the different points in 77%(g).
Apply the structure theorem for z [12, Th. 1] to find mutually dis-
joint open neighborhoods (in Y) Vi, -+, V,, of o, -+, 4, and an
open neighborhood (in X) U of ¢ such that

n(V)=U for each i, n(U)=UV;

and

(3) miy) = > mly), 6elU, 1si=m
Yer~l(oynv;
where m(-) is the multiplicity function defined in §1 of [12].

Let U, be a compact neighborhood of ¢, contained in U. We
have U, N H=U,s(KNn=7%U,) N V,), and so, it order to prove (2),
we can assume that K is included in a V, say V..

We claim now that there exists g € B, satisfying

(4) g (H)N V) ={1} and g@H)NV)={0}, ¢>1.

To prove the claim, write I ={fecA: f(H) ={0}}, J ={f B,
f(K) = {0}}, and observe that B,/J is an integral extension of A/I.
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Hence, each character in M, is the restriction to A/I of a character
of B,/J [14, p. 259]. On the other hand, our hypothesis on K implies
that B,/J = C(K), and thus

H=r1nK)= TC(MBO/J) =M, .

Now, B/IB is a finitely generated projective extension of A/l
and so it is a Banach algebra under some norm. Since My, = n~(H)
(because H = M,,;) and 7 }(H) is the disjoint union of the closed
subsets 7 '(H) N V,, the Shilov idempotent theorem [10, 8.9, p. 73]
can be applied to get g e B satisfying (4).

To end the proof we still need some auxiliary tools. For € M,
and for each neighborhood V (in Mj) of +, we define

ce(V) = (}rzlna(gf card (z7(®) N V)

and
7(af) = ngin ey(V)

where V ranges over all neighborhoods of 4. The number 7(y-) may
be interpreted as a ramification index for 7 at .
For 6 ¢ H we define
N@) = max 7).
Yex~Umnk

Now we can complete the proof of (2). We will proceed by
induction on N(g).

Suppose N(¢) = 1. In this case, we will prove directly that H
is a generalized peak interpolation set for A. As 7(y,) = 1, shrinking
V, and U if necessary, we can also assume that 7|V, is an homeo-
morphism onto U. Given an open neighborhood W of H, WcU,
and given ¢ > 0, then, by hypothesis, there is a peak set K’ for B,
such that Kc K'cn(W). Choose fe B, which peaks on K’ and
satisfies

lf)] <elnllglly, Y\ (W)
and then consider the function % defined by

h(6) =, Z}m m(P)(fO) , 0eX.
If a(x) =37, ax‘ is a polynomial related to b = fg as in Lemma
1, then h = —a,_,€ A by (1). Writing & = h/m(y,), we obtain
k6 =1, 6e¢H
k@) =e, 60eX\W
Ikl < nllglly .
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Thus H is a generalized peak set for A.

Let hye C(H). If feB, is such that f(y) = ho(z(y)), v € K, and
k is constructed from f and g as above, then k|, = h, and ke A.

Now, assume that N(¢) > 1 and that (2) holds for those e H
with N(@) < N(¢). Since N(g) = r(+r,), Wwe may suppose that N(g) =
ey (V). If we put

H, = {0 H: r(4) < r(y,) for each pezx(6) N K}
and
H,={0cH:w(#) N V, is a singleton},

then |p¢|(H,) = 0 by the inductive hypothesis. Moreover, H, is closed
and H = H,U H,. We claim now that H, is a generalized peak inter-
polation set for A. To see this, observe that K, =7 (H,)N K is a
generalized peak interpolation set for B, and that # is an homeo-
morphism from K, onto H,. Then, the same argument as above can
be used to deduce the desired conclusion. Thus, |¢|(H,) = 0 and the
proof is complete.

REMARKS. (a) The projectivity hypothesis on B cannot be re-
laxed, as shown by the following example.

ExAMPLE 1. Let B the disk algebra, and put A = {f € B: f(0) =
f(1)}. Then B is an extension of A, finitely generated as an A4-
module, but 1 is not a peak point for A, although it is a peak point
for B.

(b) It would be interesting to find out whether Theorem 1 is
true when A is a semisimple Banach algebra, and also whether an
analogous statement for peak sets holds. In both cases, the main
difficulty seems to be the reduction to a local statement.

From now on, B will be assumed to be a uniform algebra on Y.
Recall [12, Th. 3] that this is the case if and only if m(y) =1,
4 €05, and then, in particular, d; is a covering space of 9, with
projection x.

THEOREM 2. Let K be a subset (resp. a G; subset) of Y. Then,
K s a generalized peak interpolation (resp. a peak imterpolation)
set for B if and only if w(K) is a generalized peak imterpolation
(resp. a peak interpolation) set for A.

Proof. The “only if part” is contained in Theorem 1.

Assume H = w(K) to be a generalized peak interpolation set for
A. IfI={fcA: f(H)={0}}, then B/IB is a finitely generated pro-
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jective extension of A/I = C(H). Since m(y) =1, €0z and HCa,,
we can write

m(y) =1, yern(H)= Mp;s-

But this means that B/IB is separable as C(H )-algebra (use [5,
Th. 7.1, (¢) — (a), p. 72]), and hence, applying [3, Th. 2, p. 30], we
conclude that B/IB = C(z~'(H)). As n~'(H) is obviously a generalized
peak set for B, the proof is complete.

COROLLARY. If v, and 75 denote the Choquet boundaries of A
and B respectively, then vz = w7(v,).

REMARKS. (a) The “if part” of Theorem 2 is not true without
uniformity assumptions on B. For example, if A = C[0, 1] and B =
Alx)/(x* — f), where f(t) =t for each t<[0, 1], then B is not a uni-
form algebra according to [12, Th. 3]. Therefore, Y itself is not
an interpolation set for B.

(b) The statement in the “only if part” of Theorem 2 is not
true for interpolation sets as shown by the following example.

ExAMPLE 2. Consider a uniform algebra A with the following
property (for example the disc algebra): there exist interpolation
sets K,, K, for A such that K, U K, is not an interpolation set for
A. Put B= A[x]/(2*— 1), so that we may identify M, with M, x {0, 1}.
Now, K = Uj- K; X {j} is an interpolation set for B, but n(K) =
K,U K, is not an interpolation set for A.

(¢) The arguments used in the proof of Theorem 2 can be ap-
plied to deal with some examples arising from the theory of several
complex variables.

EXAMPLE 3. Write
D,={zeC% |z, + -+ + |z, " + |2,/ = 1},

n a positive integer. Then

Dn_—n‘_’Dl

z— (zl, ctty Rpoy Z;)

is an m-sheeted covering map, ramified along {z: 2z, = 0}. Let A (resp.
B) be the algebra of continuous functions on D, (resp. D,) which are
holomorphic in the interior of D, (resp. D,). We claim that Theorem
2 is true in this case. To prove the claim, take first a peak inter-
polation set K for B. Then K is a zero set for B, that is, there is
feB with K = f7'(0). Since Lemma 1 also works in this case, 7(K)
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is a zero set for A, and hence a peak interpolation set for A [13,
Th. 1.1, p. 484]. Assume now that K is a peak interpolation set
for A. Since 7 is a local homeomorphism on D,\{z:z, = 0}, one can
prove that #—*(H) is a peak interpolation set for B for each compact
subset H of K\{z:2, =0}. But on KN{z:2,=0} B and A4 are the
same algebra, thus 77(K) is a peak interpolation set for B.

In particular, we have shown that on 6B zero sets, peak sets
and peak interpolation set are the same, although, for » > 1 and
» > 1, the interior of D, is not strictly pseudoconvex.

3. Antisymmetric decompositions.

LeMMA 2. If A is an antisymmetric algebra, then the maximal
sets of antisymmetry for B on My are the connected components of
MB'

Proof. We show first that if M is connected, then B is anti-
symmetric. To see this, let feB and assume f to be a real funec-
tion. Since A is antisymmetric, there are not nontrivial idempotents
in A, and thus B has a well defined rank over A [5, 4.12, p. 32],
say n. If a(x) = 37, a;x* is a polynomial obtained from f by apply-
ing Lemma 1, then each &, is a real function (by (1)), so constant.
Therefore, f(MB) is finite, but since Mj is connected, AM) is in fact
a point.

Consider now m different connected components of M, say
C, ---,C,, and separate them by means of mutually disjoint open

and closed sets U, ---, U,. As M, is connected, one has #(U,) = M,
for each 7, and this implies that m < ». Thus, M; has only a finite
number of connected components C, ---, C,, which are open and

closed sets. Let ¢; be the idempotent in B whose Gelfand transform
is the characteristic function of C;. The first part of the proof,
applied to ¢,B, tells us that C; is a set of antisymmetry for B. If
C; < S, then é; is real and nonconstant on S, so C; is, in fact, a
maximal set of antisymmetry for B on M,.

THEOREM 3. Let (K,);.; be the family of maximal sets of anti-
symmetry for A on X. Then the family of maximal sets of anti-
symmetry for B on Y is (C;; N Y),;; where, for each i€ I, (C;j)izizy,
18 the collection of commected components of 7 YK,), K, being the A-
convex hull of K;. Moreover, sup;.; p; < oo.

Proof. Assume first that X = M,, so that K, = K, iel. For
each iel, A, = {fl|x: f €A} is an antisymmetric uniform algebra,
M, =K, and 0,,cK;Nd, [6, Th. 11 (c), p. 167]. If we set I, =
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{f e 4: f(K,) = {0}}, then B, = B/I,B is a finitely generated projective
extension of A/I, = A, and M,, = n(K,). By the corollary in §2
of [12], we have

0p; = T H(04;) CT(0,) = 05 -

Now, since B is a uniform algebra, we get [12, Th. 3]

m(y) =1, Ar€0ds

and thus, in particular, m(sy) =1, 4r€dp,. Again appealing to [12,
Th. 3], we conclude that B, is a uniform algebra, hence that B, =
{flTr — L, feB}

By Lemma 2, for each je{1,2, ---, pn;}, C;; is a set of antisym-
metry for B. Let S be the maximal set of antisymmetry for B on
M; containing C;;. If n(S)# K,, then there would exist an ac 4
which would be real and nonconstant on #(S). But then a € B would
be real and nonconstant on S, which is impossible. So 7#(S) = K.
From this we obtain C;; c Scz7*(K,), and, since S is connected, we
get S = C,;. '

In order to prove the general case, notice that (Ki)ie, is the
family of maximal sets of antisymmetry for A on M, [6, Th. 15,
p. 171]. But the maximal sets of antisymmetry for B on Y are the
intersection with Y of these for B on Mj; [6, Th. 14, p. 171}, and
thus from the first part of the proof we can draw out the desired
conclusion.

In the following theorem we write E, (resp. E;) for the essen-
tial set of A (resp. B).

THEOREM 4. We have Ez = n~'(H,). In particular, B is essen-
tial if and only if A is essential.

Proof. One can prove, using an elementary argument based on
the structure theorem for =, that
(5) 7 YC1F) =Clz '(F), for each FcX,

where Cl denotes topological closure.

Let P, (resp. Pz) be the union of all one point maximal sets of
antisymmetry for A (resp. B), so that, by Theorem 3, P; = w7 '(P,).
Using (5) and [6, Corollary 2, p. 65] we obtain

By = Cl (z7(X\P,)) = 27 (CL(X\P)) = = 7(&,) .

4, B-holomorphic functions. If B is a uniform algebra and
U an open subset of M,, then a complex function on U is called a
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locally B-approximable function if each point in U has a neighbor-
hood on which f is uniformly approximable by functions in B. We
write Ly for the algebra of the locally B-approximable functions
defined on all M, and we denote by H, the smallest subalgebra of
C(M,) which contains ¥ and is closed under local uniform approxi-
mation.

At this point, some remarks on the relation between L, and H,
are in order. A simple inductive argument [10, 8.1, p. 19] shows
the following:

There exists an ordinal g such that to each ordinal v < p there
corresponds a subalgebra Hj of C(M,) with the following properties:

(i) Hy =9, Hf = Hy, and H{ S HS for 0 S a < B £t

(ii) If 0<vyv =<y then Hy= L,, where %, is the uniform
closure in C(M,) of the algebra U.., Hs.

Let us observe that, by a theorem of Rickart [10, 40.3, p. 116],
we have M, = M, for each v, so that, according to (ii) and to our
notational conventions, H} is a subalgebra of C(M,).

Functions in Hy (resp. H;) are called B-holomorphic functions
(resp. B-holomorphic functions of class v) by Rickart [10, §17].

THEOREM 5. If B is a strongly separable A-algebra, then
(a) Hpy (resp. Ljz) is a strongly separable H, (resp. L,)-algebra.
(b) If A= H, (resp. A = L,), then B = Hy (resp. B = Lj).

We divide the proof of Theorem 5 into three lemmas.

Let S be an extension of a commutative unital ring B. If Sis
finitely generated and projective as an R-module, then one can define
a distinguished R-module homomorphism from S into R, called the
trace map. Then one proves [5, 2.1, p. 92]:

LEMMA 3. The extension S of the commutative unial ring R is
strongly separable over R if and only if there is an R-module homo-

morphism t from S into R and elements of S x,, -+, ®p Y1, ** ) YUn
with
(1) Xay; =1

(i) =z =>;txy,x;, veS.
Moreover the map t is always the trace map from S to R.

LEMMA 4. If B is a strongly separable A-algebra and has a well
defined rank over A, then for each ¢ € M, there exists a monic poli-
nomial a(x) e Alx] and o d € A with d(¢) # 0, such that B, is isomor-
phic, as an Az-algebra, to AJfx]/(a(x)) (here A; and B, stand for the
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quotient rings of the multiplicative system of the powers of d).

Proof. Given ¢ € M,, consider an element b, of B which separates
the points of 77%(¢), and a polynomial a(x)e A[x] given by Lemma 1
applied to b,. Define d as the discriminant of a(x), so that d(¢) # 0.
Let ¢ be the unique A;-algebra homomorphism from Aj[x]/(a(x))
into B, satisfying @([z]) = b,/1, where [«] is the class of the poly-
nomial z.

Suppose that, for certain nonnegative integers m,,

S, (@/d")@i) =0, aed, n=rank,B.
Then, for a large nonnegative integer m,
S drabi=0.
If d(w) =0, weM,, then the complex polynomial
5, dr@ae)

is annihilated by the » elements of b, (7 (w)). From this we obtain
da; =0, 0<i1<n —1. Thus

af/d™ =0 in A;, 0Z1<n—1,

that is, @ is injective.

Write B,=Im@. Then B, is a strongly separable A;-algebra
[5, Problem 8, p. 85] with a well defined rank » over A;. Since B,
is a finitely generated projective A,-module, we conclude, owing to
the lifting property of projective modules over separable algebras
[5, 2.8, p. 48], that B; is a finitely generated projective B,-module.
But the rank of B, over A; is n, so the rank of B, over B, is 1,
and thus B; = B,. Therefore @ is an isomorphism.

LEMMA 5. With the same hypothesis on B as in Lemma 4, the
Jollowing holds:

If V, U are open set in My and M, respectively, and if ©|V s
an homeomorphism onto U, then, for each beB, 8 =bo(x|V)™ is
locally A-approximable on U.

Proof. Consider ¢€ U and let b,, a(x) and d be as in the proof
of Lemma 4. Shrinking U and V we may assume that d(w) = 0 for
each we U.

By Lemma 4, we have
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8 =3 (a/d"g:

where B, = byo (w|V)™?, a;€ A and m,; is a nonnegative integer for
each 1.

A standard argument shows that d™* is a locally A-approximable
function on U. That g, is also locally A-approximable on U follows
from the fact that, d never being zero on U, 8, may be locally ex-
pressed as a uniformly convergent power series in the coefficients
of a(x).

Proof of Theorem 5. According to Lemma 3 there exist elements
of B2y, +++,%p} Y5, ***, Yn such that > xy, =1 and

(6) Hf) = St fuow., feB.

We may assume B to have a well defined rank » over 4 (use
the argument in the first paragraph of the proof of Theorem 1).
This assumption and the strong separability of B imply that M, is
an n-sheeted covering space of M, with projection 7 [9, Th. 5, p.
138]. In this context, the trace map is given by

(7) ¢(f)(9) =WZ_.1(¢)f(«1r) » feB, ¢eM,.

But C(M;) is a strongly separable extension of C(M,) [3, Th. 2,
p. 30] and, consequently, its trace map is given, for f e C(M;), by
(7). Moreover, relation (6) is true for feC(M;). Therefore, by
Lemma 3, we only have to show that

(8) t(f)eH, if feH;.
We will prove, by transfinite induction, that
(9) t(f)eH: if feHy, for each v.

If v > 0 is an ordinal such that (9) is true for all a < v, then
clearly we have

t(f)e A, if feB,.

Therefore, replacing A, and B, by A and B, we are led to prove
that

t(freL, if felL;g.

Given felLj, fix ¢eM, and consider mutually disjoint open
neighborhoods V; of the points in 7~*(¢), and an open neighborhood
U of ¢ such that
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(i) x|V, is an homeomorphism onto U for each 7.
(ii) f is uniformly approximable on each V, by functions in B.
Given ¢ > 0, consider b, e B with || f — b,]|;, <&, 1 =<7 =n. Thus

|t — S 8| < ne,
where B; = b,o(w|V;)™, 1 £ ¢ < n. Now Lemma 5 says that ¢(f) e L,.
This completes the induction and so the proof of (8).

REMARK. The above proof shows that a slightly more general
statement is true. In fact, we have proved that Hj is a strongly
separable H:-algebra and that A = H} implies B = Hj for each
ordinal v.

Finally, we point out two problems whose solution we do not
know.

ProBLEM 1. In the standard hypothesis of this paper, that is,
Ac B, A and B uniform algebras, B finitely generated and projec-
tive as an A-module, is Hy (resp. L;) finitely generated and projec-
tive as an H, (resp. L,)-module?

ProBLEM 2. With the same hypothesis on A and B, does A =
H, (resp. A = L,) imply B = Hy (resp. B = Lj)?.

Acknowledgment. The author is grateful to the referee for some
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