Vol. 100, No. 2, 1982

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Maximal functions for a semiflow in an infinite measure space

Ryōtarō Satō

Vol. 100 (1982), No. 2, 437–443
Abstract

Let (X,) be a σ-finite measure space and Γ = (𝜃t : t 0) a measurable semiflow of measure preserving transformations on (X,). The maximal function f of a function f L1(μ) + L(μ) is defined by

 ∗        1 ∫ b
f (x) = sbu>p0 b 0 |f(𝜃tx )|dt.

The purpose of this paper is to prove that if μ(X) = and the semiflow Γ is conservative and ergodic then for every constant α > 0

             ∫
α μ{f∗ > α } =      |f|dμ.
{f∗>α}

Mathematical Subject Classification 2000
Primary: 28D10
Milestones
Received: 20 August 1980
Published: 1 June 1982
Authors
Ryōtarō Satō