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1* Introduction* Let Xl9 X2, , be independent, identically
distributed random variables. Suppose the X% are integer-valued and
have span one:

(1.1) g.c.d.{i - k: j, k e S > 0} - 1 , where j e S iff P{X, = j} > 0 .

Suppose too

(1.2) E(X}) < - .

Let

(1.3) μ = E(Xd , σ2 = Var XL , μs = E[{Xt - μf] .

Let Sn = Xι + + Xn. Take k independent copies of Sn, and let
Nnj be the number of these sums which are equal to j. Up to
scaling, the counts Nnj correspond to the empirical histogram for
the k sums.

Of course,

E(Nnj) - kpnj , where pnj - P(Sn = j) .

In a previous paper [2] we studied the behavior of

(1.4) max,- (NΏd - kpnj) ,

corresponding to the maximum deviation between the empirical
histogram and its expected value. In this paper we will study the
maximum deviation between the empirical histogram and an approxi-
mation to the expected value, based on the normal curve.

In more detail, the probabilities pnj can be well approximated by

(1.5) pnj = —77^= exp (-—t λ
σv2πn \ 2 /

where

tnj = U ~ nμ)l(σλ/~n) .

The asymptotic behavior of the maximum deviation

(1.6) max, (Nnj - kpnj)

is the topic of this paper.
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Our main results give the asymptotic distribution of the location
and size of this maximum deviation. When the number of repeti-
tions k is "small", sampling error dominates and the maximum
deviation is asymptotically the same as the maximum in (1.4). When
the number of repetitions k is "large", the bias term enters. In
both cases the maximum deviation is taken on at a unique location
with probability approaching one. The location and size of the
maximum are asymptotically independent; and suitably normalized
the location has a limiting normal distribution while the size has a
limiting extreme value distribution. The results are more carefully
described in §2.

Of course, the empirical histogram could be approximated by the
normal curve directly. In this case too, the asymptotic behavior of
the maximum deviation can be analyzed by methods very similar to
the ones presented here, but we do not pursue the details. Similar
remarks apply to the frequency polygon derived from the empirical
histogram, and to Edge worth expansions for pnί.

2. The normal approximation* Clearly,

(2.1) Nnj - kpn5 = (NnJ - kpnj) + k(pnj - pnj) .

The first term on the right represents sampling error; the second,
basis. Suppose that

(2.2) k/[n1/2(log nf] > oo as n > oo .

This condition insures that the histogram converges uniformly to
the expected histogram pnj. See [3] for further discussion. Suppose
too

(2.3) μz = EKX, - μf]^0 , where μ =

The results of this section can be summarized as follows.
If k < ns/2, bias is negligible, so maxy (JVnj — kpnj) shows the same

asymptotic behavior as maxy (Nnj — kpnj). This maximum has been
carefully analyzed in [2].

If kynd/2logn, sampling error is negligible. The maximum is
analyzed in §3.

If k is between nm and ns/2 log n in order of magnitude, sampling
error and bias both contribute to max,- (Nnj — kpnj). The asymptotic
behavior of maxy (Nnj — kpnj) will be described in this section.

If μz = 0, the critical rates for k change: we do not pursue
this. Likewise, if (2.2) fails, the asymptotics change: large deviation
corrections become relevant. We do not pursue this either. Finally,
if the fourth-moment condition is dropped, new behavior is possible:
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see §5 of [2] for a related discussion. We begin with case k =
O(nmlogn), and use Theorem (1.24) of [4].

The following notation will be helpful, although it seems tedious
indeed. In view of (1.1-1.2), we have from the Edgeworth expansion

(2.4) <7l/2^Γ (pnJ - pnj) = -^H3(tnj) exp (~t\ (

where

*./ = U ~ nμ)l{aVn)
Hs(t) = tf - 3ί

The "0" is uniform in j . Let

n ί[2 log (

/3nί = [2log{σVn)Y112• /• σ\/2τm(pnj - pnj) .

By (2.4), βnj can be approximated as

(2.10) βΛj = /Έ

where

(2.11)

(2.12) /3(ί) = σ-υ\2πYυicH%{t) exp ( — | * 2 )

Let

(2.13) a(t) = exp ( ~ ^ *

(2.14) wn{x) = (log % - 2 log log w + x + log 4σ2)1/2

(2.15)
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The main result of this section is (2.17), which disposes of the
case k — O(nm\ogn). We next give the precise conditions for this
result to hold.

Condition for (2.16)* Suppose (1.1-1.3) and (2.2). Do not assume
(2.3). Define yn by (2.11). Suppose 7 n-*7 finite as n —>°o. Note
that y = 0 is allowed. Suppose, as will be the case for most τ's,
that the function a + yβ has a unique global maximum, say at £<*>;
and that a"(tj) + yβ"(tj) < 0. Abbreviate

(2.16) p* = ~[α"(Q + 7/3"(ίco)]/α(ίoo) > 0 .

As is easily seen, for n sufficiently large, a + ynβ has a unique
global maximum, say at tn; and tn —> t^.

(2.17) PROPOSITION. Suppose the conditions given above: in
particular,

n1/2(logn)s<k = O(nm\ogn) .

With probability approaching one, Mn = max^ (Nnj — kpnj) is assumed
at a unique index Ln. Furthermore, the chance that

p[2 log (σl/¥)]1/2 [—±r-(Ln - nμ) - ίn] < y

and

MJ/< a(tn)wn(x) + αn/β(

converges to

Proof. Let J be a long (but finite) closed interval, which contains
too as an interior point. If the j in max,- (Nnj — kpnj) is restricted
so that tnj e I, the conclusions of the proposition follow from Theorem
(1.24) of [4], taking εn — \\{σV~n) and cn = nμ and an = a and
βn — ynβf so /3oo = 7/3. Conditions (1.1-23) of [4] are satisfied by our
assumptions and the Edgeworth expansion (2.4).

It only remains to show that if / is long enough, the j's with
tnj ί I make essentially no contribution to the maximum: compare
(2.34) of [4]. Indeed, the maximum over / has been proved to be
of order

p [α(ί») + 7/3(O] Vlog n .
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Now *«, is the location of the global maximum of α( ) + 7/3(0, which
is necessarily positive, for α(0) + 7/9(0) > 0. By (4.1-3) of [2], for I
long enough, the maximum of Nnj — kpnj over j with tnj g I is, with
probability near one, only a small multiple of /• i/log w. Likewise,
by (2.4) of the present paper, the maximum of k(pnj — pnj) over j
with tnj ί / is bounded above by

exp ( ——t

In the remainder term, n"1/2 = o[/(logw)1/2]. In the lead term,
n~1/2 = 0[/ (logw)172], and the sup is small for I long. It was at
this point that the growth condition k — O(nV2 log n) became
critical. Π

(2.18) COROLLARY. Suppose (1.1-2). Suppose k/n1/2(log nf —> oo
as n—> oo, but k/ns/2-+0. Then, the asymptotic joint distribution
of the location Ln and size Mn of max,- (Nnj — kpnj) coincides with
that of max,- (Nnj — kpnj), as determined in [2].

Proof. Clearly, a has its maximum of 1 at t^ = 0, where it is
locally quadratic:

a{t) = 1 - —t2 + O(ί4) as ί > 0 .

4

Furthermore,

= bt + O(ί8) as ί • 0 ,
where 6 depends on σ and μ3; it may vanish. Recall that tn is the
location of the maximum of a + ynβ. Recall Ίn from (2.11) and
verify that yn —• 0.

Some easy calculus shows that

so ίn may be dropped from the normalization of Ln in (2.11). Like-
wise,

so the term

7n/9(O[2 log (<π/¥)]1/2 = o[(log n)~1/2]

can be dropped from the normalization of Mn. Finally,
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α(ίn) = 1 - O(72J

so a(tn) can be dropped from the normalization. •

3* The bias term. We now consider the case kj[nz/2 log n] -> co ,
when the bias term in (2.1) dominates. Assumption (2.3) is back in
force. Recall β from (2.12). Note that c = μj[6σ*]?tθ; without real
loss of generality, suppose c > 0.

The graph of β is sketched in FIGURE 1 below. This function
is anti-symmetric about 0, where it vanishes. Likewise, it vanishes
at ±oo. It has four critical points, at the roots of x* — 6x2 + 3 = 0.
The global max occurs at

(3.1) ί* = -(3 - l/ΊΓ)1/2 = -0.74 .

The second derivative of β does not vanish at any of the four critical
points.

FIGURE 1. The graph of β

(3.2) PROPOSITION. Suppose (1.1-2), and fc>w3/2 log n. Suppose
μs > 0, the case μz < 0 being symmetric. Then

,1/4Vn max, (Nnj - kpuS)lβ(fi*)s* > σ

in probability. Furthermore, for any δ positive, with probability
approaching one, the max is taken on only for j's with

\tnj-t*\<δ.

Proof. Refer back to (2.1). As Theorem (1.8) of [2] demonstrates,
the sampling error term in (2.1) is of order /-(logw)1/2. On the
other hand, the Edgeworth expansion (2.4) shows the bias term to
be of order

(3.3) ^-1/V2ί71/2(2π)1/4/3(ίrιi) + O(n'1/2) .

If tnj is close to t*9 then β(tnj) is close to β* > 0, and ^~1/2/2 dominates
the sampling-error order / (log n)m. Plainly, n"υV2 also dominates
the remainder n~V2. If on the other hand tnj is bounded away
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from t*9 then β(tnj) is bounded below by β(t*)f so (3.3) is too small
to influence the max. •

Suppose

(3.4) μ3 > 0 and nm log n < k < nW2/log n .

Then the asymptotic distribution of maxy (Nnj — kρnj) can still be
deduced from [4, (1.24)], as we show next. The case μz < 0 is
symmetric, but μ3 = 0 is different. If k is of order nδ/2/log n or
larger, more terms in the Edgeworth expansion (2.4) for pnj become
relevant. If k is of order nm or larger, the assymptotic distribution
becomes degenerate. We do not pursue these issues here: See §3
of [1] for a related discussion.

Before stating Proposition (3.19) formally, we indicate the
heuristics. Proposition (3.2) suggests that

max (Nnj - kpnj)l/

is essentially

/ ¥ = 7n/3(«*)[2 log (<7l/¥)]1/2 .

We consider the difference. The idea is to use [4, (1.24)] again, but
on a new scale and with new functions a and β. The starting point
is (2.6). In particular,

(3.5) s~\Nni - kpnj) - τn/3(ί*)[2 log (<7i/¥)]1/2 - anjZnj + Ύnj

where

(3.6) yni = [βnj - 7n/3(ί*)][2 log (σv/¥)]1/2 .

Now β is locally quadratic at t*, and in effect we expand ynj around
t*. Informally, by (2.9-11),

βnό ~ Vnβ(tnj)

SO

Ύn,' = [/3(ί»i) - /S(ί*)] Tn

= — β"(t*)σ-\j -nμ-σVn ί*)2 k1/2/nVi .
Δ

Parenthetically, this heuristic can be made rigorous if k > %3/2(log nf,
but is a bit too aggresive with smaller λ 's.
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The center cn called for in [4, (1.23)] is now defined as follows:

(3.7) cn = nμ + aVn' t* .

The scale factor εn should satisfy

We set

(3.8) m = n7/8/kι/* and εn = m~\2 log m)~1/4

Thus,

where we write

(3.9) θnj = εn(j - cn) .

This is to avoid confusion with the tnj — (j — nμ)j{σVn) used earlier.
More formally, to make contact with [4] we view k and hence m as
functions of n. We make the definitions (3.6-3.9). Let / b e a long
(finite) closed interval with 0 as an interior point. Let

(3.10) βnj = Ύnj [2 log j-j .

We propose to study the maximum of

s~\Nni - kpn3) - Ίnβ{t*)[2 log (σ

( 3 ' Π ) = α B i Z B ί + iS1,i Γ21ogi l :

L ε^

over j's with θnj el, using [4]. For the function an of [4, (1.4)] we
take

ί*(3.12) an(θ) = α(ί*

where α was defined in (2.13) and

(3.13) δί = &

Thus, an is defined over the whole real line. Clearly,

(3.14) tni = ί* + r U i

So an(θnj) ~ a(tnj). Note, however, that tn i is centered at t* while
ίnί is centered at 0. Further, dn—>0 because k > w3/2logw by (3.4).
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Thus, tnj —> 0 uniformly over j with θn5 e /.
For the function βn in [4, (1.5)] we take

(3.15) βM = (log m/log ±-Y*. δ~2[/3(ί* + σ^δj) - β(t*)]

where β was defined in (2.12).
Before proceeding, it is helpful to note

2 7 1
(3.16) — log n < log m < — log n and log — ^ log m

& 8 sn

by the growth condition (3.4). We claim

(3.17) αn / = αn(0ny) +as n-+°o9 uniformly in j with tnj confined to a compact interval.
This is routine to verify, estimating anJ from (2.8) and the Edgeworth
expansion (2.4), the pnj having been defined in (1.5). More explicitly,

a2

nj = σ\/2πn pnj

= α ( U 2 + O(l/i/^Γ) .

Now a(tnj) cannot run away to zero, and

n)

because i/"5Γ > log tι ^ 8/7 log m by (3.16). This completes the proof
of (3.17). If θnj is confined to I, then tnj = ί* + 0(δn), and δn->0
because &>w3/2logw. So (3.17) establishes condition [4, (1.4)].

Condition [4, (1.5)] can be verified by tedious algebra: this is
where the growth condition k < wδ/2/log n comes in. We need a little
more:

(3.18) βnj = βn{θnά) + o(l/log m) ,

as n > oo , uniformly in j .

Indeed,

by (3.8)

= [log (<τi/¥)/log i-1 1 " [/3nj - 7»/3(**)] by (3.6)

= 7, [log σi/¥/log ^ T [/3(ίni) - /3(t*) + O(l/l/¥)] by (2.10)

Ϊ
i η-1/2

2 l o g i j [/S^ ) - /S(ί*) + O(l/v/*)] by (2.11)
Ϊ
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2 log -M [β(tnj) - £(«•)] + o(l/log m)

because k < wδ/2/log n and log m ~ log n

2 log i - S-2[/3(U - /3(ί*)] + o(l/log n)

[ 1 Ί 1 / 2

log w/log -1 δ-2[/3(ίnί) - β(t*)] + o(l/log m) by (2.31)

= £»(*»,) + o(l/logm) by (2.32-2.33) .

This completes the argument for (2.36), i.e., condition [4, (1.5)].
Condition [4, (1.6)] is clear. For [4, (1.7)], let «„,(£) = α(ί*) for

all <9, so α n —> α^ because a is continuous and <5n —»0. Likewise, let

βjfl) = ^ " ( ί * ) ( 7 - 2 ^ 2 .

That /3n -^ /3oo can be verified by expanding β in a Taylor series
around £*, the location of its maximum; β'(t*) = 0 and β"(t*) < 0.
Condition [3, (1.8)] is clear, at least for large n. We write Θn for
the location of the maximum of an + βnf and note that θ* = 0. By
calculus, #„ = O(δJ> and 5ra -• 0. The remaining conditions for [4,
(1.24)] are all verified easily. In conformity with [4, (1.15)], let

(3.19) PROPOSITION. Assume (1.1-2) α^d (3.4). In the notation
given above, with probability approaching one, Mn — max,- (Nnd — kpnj)
is assumed at a unique index Ln. Furthermore, the chance that

(3.20) p^2 log -ί[en(Ln - cn) - θn] < y

and

s-'Mn - 7n/3(«*)[2 log (σ
(3.21) Γ 1 1 Ί 1 / 2 r i Ί 1

< αn((?n) 2 log -ϊ. - 2 log log i + α̂  + βn{θn)\ 2 log i

converges to

Proof. If the max is taken only over j witn 0n i e I, the con-
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elusion is immediate from [4, (1.24)]. The right side of (3.21) is
essentially

»(0») + βn(θn)] * [2 lOg j - J

and an(θn) + βn(θn) > αn(0) + βn(0) - a(t*) > 0.
Consider the j ' s with

(3.22) θnj e I b u t | tnj -t*\<δ.

We have to argue that such j ' s do not matter, i.e., the max over
such j ' s is of smaller order than a(t*) [2 log l/εn]

1/2. Apply [4, (3.1)]
to the Znj, but use the original scaling, i.e., take the εn in [4, (3.1)]
to be l/(σ]/n). With overwhelming probability

max Znj < 2[2 log (σV/~n)]m

Γ 1 Ί 1 / 2

< 4 2 log -i-
L εj

by (3.16). Hence

max \anjZnj + βn^2 log ^-J^

Γ 1Ί 1 / 2 ~
£ 2 log — [4 max α n i + max βnj]

L ^Ti-" '̂ i

[ 1 Ί 1 / 2

2 log — - [4 max an(θnj) + max βn(ΘJ + o(l/log m)]
ε n J 3 J

by (3.17-3.18), where the max is taken over the j ' s satisfying (3.12).
Now a ^ 1 by its definition (2.13), so the definition (2.30) of an shows

max ajβni) S 1 .
3

Next, ί* is the location of the global maximum of β and β is locally
quadratic at t*, so for δ small, for 0 < δ' < δ,

max {/9(ί* + u): δ' ^ u ^ δ} = /9(ί* + δ')

max {/3(ί* - u): δ' ̂  u ^ δ} = β(t* ~ δ') .

Let I =[-θ0, θ0]. Then, by (3.15),

m&xβn(θnj) ^ max [βn(θ0\ βn(-θ0)] .
3

So

lim sup max βn{θn}) ^ —β"(t*)δ~2θl .
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Recall /9"(ί*) < 0; choose θ0 so large that

X = 4 + i-/9"(ί*)<r2« < 0 .
Δ

With overwhelming probability,

( ~ Γ 1 Ί 1 / 2 ) Γ 1 Ί 1 / 2

max \anjZnj + /3 J 2 log i < λ 2 log -±- + o(l)

where λ < 0 and the max is taken over j's satisfying (3.22). Such
j9s do not matter. Finally, j's with \tni — t*\ ^ δ do not matter,
by (3.2). •

Note. Ίn —
> °° by its definition (2.11) and the growth condition

k > nm log n, and β(t*) > 0, so the term subtracted from /~xMn on
the left side of (3.21) is of order

with Yn -» oo. The terms on the right side are of order

α(£*)(21ogm)1/2

and logm ^ log^. Thus, the term on the left dominates, in agree-
ment with (3.2).

(3.23) COROLLARY. Suppose (3.4), and in addition k > w3/2(log n)\
Then the scaling in (3.19) can be simplified: the chance that

β(2 log m)mm-\Ln - nμ - σVn ί*) < y

and

S~ιMn - 7n/9(ί*)[2 log (σi/^Γ)]1/2

< α(ί*)Γ2 logm - — log logm + — log 2 + a??'2

converges to

Proo/. Recall that #n is the location of the maximum of
oίn + βnt so ffn = O(δn) as defined in (3.13). With our new condition
on k, we have dn = o[l/(logm)1/2]. So 5n can be dropped in (3.20).
Likewise, in (3.21),

an(θn) = a(tη + o[l/(logm)m]
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