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1. Introduction. Let X, X,, ---, be independent, identically
distributed random variables. Suppose the X, are integer-valued and
have span one:

(1.1) gedfj—Fk:j,keS>0=1, where je¢Siff P{X,=4}>0.
Suppose too

(1.2) E(X}) < e .

Let

(1.3) ©=EX), o= Var X, , u = El(X, — w)'].

Let S, =X, + --- + X,. Take k independent copies of S,, and let
N,; be the number of these sums which are equal to 5. Up to
scaling, the counts N,; correspond to the empirical histogram for
the % sums.

Of course,

E(N,;) = kp,;, where p,, = P(S, =7).
In a previous paper [2] we studied the behavior of
(1.4) max; (N,; — kp,;) ,

corresponding to the maximum deviation between the empirical
histogram and its expected value. In this paper we will study the
maximum deviation between the empirical histogram and an approxi-
mation to the expected value, based on the normal curve.

In more detail, the probabilities p,; can be well approximated by

(1.5) Py = ——se exp (—2t3;)
where
ty = (§ — n)/(0V n) .
The asymptotic behavior of the maximum deviation
(1.6) max; (N,; — kP.;)
is the topic of this paper.
359
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Our main results give the asymptotic distribution of the location
and size of this maximum deviation. When the number of repeti-
tions k is “small”’, sampling error dominates and the maximum
deviation is asymptotically the same as the maximum in (1.4). When
the number of repetitions %k is “large”, the bias term enters. In
both cases the maximum deviation is taken on at a unique location
with probability approaching one. The location and size of the
maximum are asymptotically independent; and suitably normalized
the location has a limiting normal distribution while the size has a
limiting extreme value distribution. The results are more carefully
described in §2.

Of course, the empirical histogram could be approximated by the
normal curve directly. In this case too, the asymptotic behavior of
the maximum deviation can be analyzed by methods very similar to
the ones presented here, but we do not pursue the details. Similar
remarks apply to the frequency polygon derived from the empirical
histogram, and to Edgeworth expansions for p,;.

2. The normal approximation. Clearly,
(21) Nn:i - kﬁn] = (Nna - kpng) + k(pnj - ﬁ'ng) .

The first term on the right represents sampling error; the second,
basis. Suppose that

(2.2) k/[n'*(log n)) ] —— = as n—> oo .

This condition insures that the histogram converges uniformly to
the expected histogram p,;. See [3] for further discussion. Suppose
too

2.3) ts = E[(X, — )]0, where p= E(X).

The results of this section can be summarized as follows.

If & < »**, bias is negligible, so max;(N,; —kP,;) shows the same
asymptotic behavior as max; (N,; — kp,;). This maximum has been
carefully analyzed in [2].

If k>n**logn, sampling error is negligible. The maximum is
analyzed in §3.

If k is between #** and %»**log n in order of magnitude, sampling
error and bias both contribute to max; (N,; — k9,;). The asymptotic
behavior of max; (N,; — kP,;) will be described in this section.

If p, =0, the critical rates for % change: we do not pursue
this. Likewise, if (2.2) fails, the asymptotics change: large deviation
corrections become relevant. We do not pursue this either. Finally,
if the fourth-moment condition is dropped, new behavior is possible:
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see §5 of [2] for a related discussion. We begin with case k =
O(n**log ), and use Theorem (1.24) of [4].

The following notation will be helpful, although it seems tedious
indeed. In view of (1.1-1.2), we have from the Edgeworth expansion

2.4  0V2IN (Du; — Duj) = l/"-ﬁHs(tM-) exp (—%ﬁw) + 0(’3{)

where

b = (5 — n)/(6V )
Hyt) = t* — 8¢

c= %)"‘3/0'3
¢ =HEX), o' =Var X,, U= E[(X, — ).

The. “0” is uniform in j. Let

2.5) /= \/—(;-1/’“2—7[_” .

Then

(2.6) (Nos = kPup)l4 = @niZn; + Bajl21og (6V )]
where

@ Zn; = Ny — op, )|V Eepo;

(2.8) a,; = (6V'2nn p,;)"*

(2.9) Bai = [2log (V' 0)] 72+ 2 0V 27N (Do; — Bay) -
By (2.4), B,; can be approximated as

(2.10) Bri = VaBtas) + OV )

where

(2.11) ¥, = [2log (6V n)] 2wt k2
2.12) B(t) = o=¥(2m)VicH,(2) exp (—%t?) .

Let

(2.13) a(t) = exp (—%ﬁ)

(2.14) w,(x) = (logn — 2loglog # + x + log 406%)"*

(2.15) o) = 2= exp(—Fu')du.
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The main result of this section is (2.17), which disposes of the
case k= O(n*logn). We next give the precise conditions for this
result to hold.

Condition for (2.16). Suppose (1.1-1.3) and (2.2). Do not assume
(2.3). Define v, by (2.11). Suppose 7, — v finite as n — . Note
that v = 0 is allowed. Suppose, as will be the case for most s,
that the function a 4+ v8 has a unique global maximum, say at %.;
and that a”(t.) + 78" (t.) < 0. Abbreviate

(2.16) 0 = —[a"(t.) + 78" (t)]/a(t.) > 0 .

As is easily seen, for » sufficiently large, a + v,8 has a unique
global maximum, say at ¢,; and ¢, — t..

(2.17) PROPOSITION. Suppose the conditions given above: in
particular,

n*(log n)’ <k = O(n**log n) .

With probability approaching one, M, = max; (N,; — kP,;) is assumed
at a untque index L,. Furthermore, the chance that

o2 log (6V ' n)]2- [?1177(Ln — ny) — t,,:l <y

and
M,/ < a(t)w.(x) + a,B(t.)[2log (v n)]”
converges to

D(y) exp {———é%e“m} .

Proof. Let I be a long (but finite) closed interval, which contains
t. as an interior point. If the j in max; (N,; — kP,;) is restricted
so that ¢,; € I, the conclusions of the proposition follow from Theorem
(1.24) of [4], taking ¢, =1/(6V'n) and ¢, =ny¢ and a,=a and
Bn = 7.8, 80 B.. = vB. Conditions (1.1-23) of [4] are satisfied by our
assumptions and the Edgeworth expansion (2.4).

It only remains to show that if I is long enough, the j’s with
t.; ¢ I make essentially no contribution to the maximum: compare
(2.34) of [4]. Indeed, the maximum over I has been proved to be
of order

p-lat.) + 78] Viegn .
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Now t., is the location of the global maximum of a(-) + vB(-), which
is necessarily positive, for a(0) + v8(0) > 0. By (4.1-3) of [2], for [
long enough, the maximum of N,; — kp,; over j with ¢,;¢ I is, with
probability near one, only a small multiple of -1V 1logn. Likewise,
by (2.4) of the present paper, the maximum of k(p,; — D.;) over j
with t,; ¢ I is bounded above by

cn‘“zﬂ[sup,“ H,(t) exp (—%ﬁ)] + O(n~'7?) .

In the remainder term, n7'/* = o[/(logn)”*]. In the lead term,
w2 = O]s- (log n)*?], and the sup is small for I long. It was at
this point that the growth condition % = O(®**logn) became
critical. |

(2.18) COROLLARY. Suppose (1.1-2). Suppose kin"*(log n)® — oo
as n— oo, but k/n**— 0. Then, the asymptotic joint distribution
of the location L, and size M, of max;(N,; — kD,;) coincides with
that of max; (N,; — kp,;), as determined in [2].

Proof. Clearly, a has its maximum of 1 at ¢, = 0, where it is
locally quadratic:

a(t)zl—%tzﬁ—O(t“) as t——0.

Furthermore,
Bt) =bt+ O as t—0,

where b depends on ¢ and p; it may vanish. Recall that ¢, is the
location of the maximum of « + v,3. Recall v, from (2.11) and
verify that v, — 0.

Some easy calculus shows that

t, = O(v,) = o[(log 0V n)™"]

so t, may be dropped from the normalization of L, in (2.11). Like-
wise,

7.8(t,) = O(73) = o(1/log n)
so the term
7.8()[2 log (61 n)]” = o[(log n)™]

can be dropped from the normalization of M,. Finally,
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at,) =1 — 0(5)

so a(t,) can be dropped from the normalization. |

3. The bias term. We now consider the case k/[#n**log n] — oo,
when the bias term in (2.1) dominates. Assumption (2.3) is back in
force. Recall B from (2.12). Note that ¢ = p,/{60°]50; without real
loss of generality, suppose ¢ > 0.

The graph of g is sketched in FIGURE 1 below. This function
is anti-symmetric about 0, where it vanishes. Likewise, it vanishes
at +oco. It has four critical points, at the roots of 2* — 62> + 3 = 0.
The global max occurs at

(3.1) t*=—-B8—-1V6)"?r=—0.74.

The second derivative of & does not vanish at any of the four critical
points.

Ficure 1. The graph of §

(8.2) PROPOSITION. Suppose (1.1-2), and k>n**logn. Suppose
t; > 0, the case pt, < 0 being symmetric. Then

V' n max; (N,; — kB,;)/8E*)* — ¢ (2m)*

in probability. Furthermore, for amy 6 positive, with probability
approaching one, the max is taken on only for j's with

[t — %] < 6.

Proof. Refer back to (2.1). As Theorem (1.8) of [2] demonstrates,
the sampling error term in (2.1) is of order 7-(logn)”*. On the
other hand, the Edgeworth expansion (2.4) shows the bias term to
be of order

(3.3) n 22T B (L) + O(nTR) .

If ¢,; is close to t*, then 8(¢,;) is close to g8* > 0, and »™*#* dominates
the sampling-error order /- (log n)¥®. Plainly, n " also dominates
the remainder % '~%. If on the other hand ¢,; is bounded away



ON THE DIFFERENCE BETWEEN THE EMPIRICAL HISTOGRAM 365

from ¢*, then B(f.;) is bounded below by B(t*), so (3.3) is too small

to influence the max. O
Suppose

(3.4) ., >0 and #»n*logn €k L #n*/logn .

Then the asymptotic distribution of max; (N,; — kD,;) can still be
deduced from [4, (1.24)], as we show next. The case p, <0 is
symmetric, but g, = 0 is different. If %&£ is of order «»**logu or
larger, more terms in the Edgeworth expansion (2.4) for p,; become
relevant. If k is of order #™* or larger, the assymptotic distribution
becomes degenerate. We do not pursue these issues here: See §3
of [1] for a related discussion.

Before stating Proposition (8.19) formally, we indicate the
heuristics. Proposition (3.2) suggests that

maX (Nni - kﬁn])//

is essentially
o 22Tt )V = v,8(t*)[2log (6V n)]> .

We consider the difference. The idea is to use [4, (1.24)] again, but
on a new scale and with new functions @ and 5. The starting point
is (2.6). In particular,

(8.5) /Ny — kB,y) — 7.80M)[21og (6V 0)"* = aiZ; + Vs
where
(3.6) Vi = [Bng — 728192 log (61 )] .

Now g is locally quadratic at ¢*, and in effect we expand v,; around
t*. Informally, by (2.9-11),

Bai = TuB(t,5)
SO
Yoi = 18t — BE]- 7, - [2 log (61 0)]"
= %B"(t*)(tw’ — t*) . kR

:% Bu(t*)g—z(j — Ny — 0-]/_,)'7,_ 1‘5*)2 . kl/g/%7/4 .

Parenthetically, this heuristic can be made rigorous if % > n**(log n)°,
but is a bit too aggresive with smaller %’s.
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The center ¢, called for in [4, (1.23)] is now defined as follows:
(3.7) ¢, =npt+ oV m t*.

The scale factor ¢, should satisfy

e y21og L = .
872

We set
(3.8) m = n"*k" and e, = mY(2logm) .

Thus,

Vi = %,e”(t*)o”ﬁi,j \/2 log sin

where we write
(39) enj = sn(J - cn) .

This is to avoid confusion with the t,; = (j — n/)/(61 n) used earlier.
More formally, to make contact with [4] we view k& and hence m as
functions of n. We make the definitions (3.6-3.9). Let I be a long
(finite) closed interval with 0 as an interior point. Let

~ -1/2
(3.10) Bus = us| 2108 —j—] .

We propose to study the maximum of
¢ (Noj — kPng) — 7.8@%)[2log (61 n)}

~ 1 1/2
= Cth'Zvnj + Ian ° [2 IOg _1
€n

(3.11)

over j’s with 0,; € I, using [4]. For the function «, of [4, (1.4)] we
take

(3.12) a,0) = alt* + 07'6,0)

where « was defined in (2.13) and

(3.13) ot = k™'n¥*2log m) .

Thus, «a, is defined over the whole real line. Clearly,
(3.14) tay = t* + 078,0,; -

So @,4,;) = a(t,;). Note, however, that ¢,; is centered at t* while
6,.; is centered at 0. Further, §, — 0 because k> #**logn by (3.4).
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Thus, ¢,; — 0 uniformly over j with 64,;¢I.
For the function g3, in [4, (1.5)] we take

(3.15)  £.(0) = (log mflog =)+ 078t + 76,0) — 6(t*)]

n

where 8 was defined in (2.12).
Before proceeding, it is helpful to note

(3.16) —g-logn <logm < —-g-logn and Iog—l— ~ logm

by the growth condition (3.4). We claim
3.17) ,; = a,(0,;) + o(1/log m)

as n — oo, uniformly in j with ¢,; confined to a compact interval.
This is routine to verify, estimating a,; from (2.8) and the Edgeworth
expansion (2.4), the 7,; having been defined in (1.5). More explicitly,

;= oV 2rn p,;
= alt,) + OV ) .

Now af(t,;) cannot run away to zero, and

a,; = a(t,;) + 01V n)
= a,(0,;) + o(1/log m) ,

because V' > log n = 8/7log m by (8.16). This completes the proof
of (8.17). If 4,; is confined to I, then ¢,; = t* + 0(3,), and 6, — 0
because k> n**logn. So (3.17) establishes condition [4, (1.4)].

Condition [4, (1.5)] can be verified by tedious algebra: this is
where the growth condition %k € n**/log n comes in. We need a little
more:

(3.18) Bui = Ball.;) + o(l/log m) ,
as n — o , uniformly in 5.

Indeed,
0y = s [210g LT
Bri = Yaj [2 log en] by (8.8)
= [tog v mog L [ (5., — 7.5t") by 3.9

=7, [log v/ Wflog L[ [8t.) — 8" + 0wV W) by (2.10)

= n-] 2 log .elj 8t — BEY) + 0V m)] by (2.11)
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= n-3/4k1/2[2 log sl]"” [B(ts;) — BEN] + o(L/log m)
because &k € #n**/log n and log m ~ logn

—3/ 1 —12 —
—n %1/253{2 log ?] 5218t — BEN] + o(1/log )

- I:log m/log el]ma;zm(tn,.) — B(N] + o(1/log m) by (2.31)
= B.(0,;) + o(l/log m) by (2.32-2.33) .

This completes the argument for (2.36), i.e., condition [4, (1.5)].
Condition [4, (1.6)] is clear. For [4, (1.T)], let a..(8) = a(t*) for
all 4, so a, — «., because a is continuous and 6, — 0. Likewise, let

Bm(ﬂ) — ‘_;_Bll(t*)a.—202 .

That 8, — B. can be verified by expanding 8 in a Taylor series
around t*, the location of its maximum; g'(t*) = 0 and B”(t*) < 0.
Condition [3, (1.8)] is clear, at least for large n. We write 6, for
the location of the maximum of «, + 8,, and note that 4. = 0. By
caleulus, 4, = 0(6,), and 6, —0. The remaining conditions for [4,
(1.24)] are all verified easily. In conformity with [4, (1.15)], let

0 = —[aZ(0) + 82(0)]/a(0)
= —g"t*)/[at*)o’] .
(3.19) PROPOSITION. Assume (1.1-2) and (3.4). In the notation

given above, with probability approaching one, M, = max; (N,; — kD,;)
18 assumed at a unique index L,. Furthermore, the chance that

(3.20) Fy2iog LieuL, — ) 01 <v

and
/M, — 7,8t*)[2log (6V n)]?

1 1 1/2 1 1/2
< anwn)[z log L — 2log log = + x] + 5,,(0,3[2 log __]
I

n n n

(3.21)

converges to

D(y) - exp {—E%e—lm} )

Proof. If the max is taken only over j witn 4,;€ I, the con-
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clusion is immediate from [4, (1.24)]. The right side of (3.21) is
essentially

1 1/2
[0, (0.) + u(60,)]-| 2 log |

n

and a,(6,) + B.(0.) > a,0) + B.(0) = a(t*) > 0.
Consider the j’s with

We have to argue that such j’s do not matter, i.e., the max over
such j’s is of smaller order than a(t*)-[2log1/e,]"*. Apply [4, (3.1)]
to the Z,;, but use the original scaling, i.e., take the ¢, in [4, (3.1)]
to be 1/(6v" n). With overwhelming probability

max Z,; < 2[2log (aV n)]*

1 1/2
< 4[2 log ——]
>

n

by (3.16). Hence

~ 1 e
max {a,”-ZM- + an[z log ——J }
i €,

< [2 log %le -[4 max a,; + max §,;]
7 M

n

=[210g 1 [" (4 maxa,0,) + max ,0.) + o(1/log m)]

n

by (3.17-3.18), where the max is taken over the j’s satisfying (3.12).
Now « <1 by its definition (2.13), so the definition (2.30) of «, shows

max «,(@,;) = 1.
J

Next, ¢t* is the location of the global maximum of 3 and g is locally
quadratic at ¢*, so for é small, for 0 < ¢’ < 4,
max {8{t* + u):0' < u =< 6} = BE* + &)

max {3(t* —u): 8’ = u = o} = BEt* — o).
Let I =[—6,0,). Then, by (3.15),
mja'X Bn(6n1> é max [Bn(g())’ Bn(_go)] M
So
lim sup max 8.(0,,) = =6"(¢)570;
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Recall 5”(t*) < 0; choose 6, so large that

N= 4+ é—ﬂ”(t*)a"zﬁﬁ <0.
With overwhelming probability,

- 1 e 1 e
max {an,-ZM- + ,8,,9-[2 log ——} } < 7\,[2 log s—jl + o(1)
J n

n

where A < 0 and the max is taken over j’s satisfying (3.22). Such
j’s do not matter. Finally, j’s with |t,; — ¢t*| = 6 do not matter,
by (3.2). O

Note. v, — o by its definition (2.11) and the growth condition
k> n?logn, and B(t*) >0, so the term subtracted from ~M, on
the left side of (3.21) is of order

7.B(*)(log n)"*
with v, — . The terms on the right side are of order
a(t*)(2 log m)"*

and log m ~ logn. Thus, the term on the left dominates, in agree-
ment with (3.2).

(3.23) COROLLARY. Suppose (3.4), and in addition k> n**(logn).
Then the scaling in (3.19) can be simplified: the chance that

p2log m)*m (L, — npt — oV n t*) < y
and
/M, — 7,82 log (61 n)]
< oz(t*)[2 log m — -g-log log m + —i— log 2 + x]m

converges to

&(y) - exp {—_21_‘56—1/290} )

Proof. Recall that 6, is the location of the maximum of
o, + B., so 0, = 0(5,) as defined in (3.13). With our new condition
on k, we have 4, = o[1/(log m)"*]. So 6, can be dropped in (3.20).
Likewise, in (3.21),

a,(0,) = a(t*) + o[1/(log m)"*]
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and

Ba(0.) = o[1/(log m)] . O
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