
Pacific Journal of
Mathematics

BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE
JACOBI POLYNOMIALS

H. C. MADHEKAR AND N. K. THAKARE

Vol. 100, No. 2 October 1982



PACIFIC JOURNAL OF MATHEMATICS
Vol. 100, No. 2, 1982

BIORTHOGONAL POLYNOMIALS SUGGESTED
BY THE JACOBI POLYNOMIALS

H. C. MADHEKAR AND N. K. THAKARE

In this paper we introduce and study a pair of biortho-
gonal polynomials that are suggested by the classical Jacobi
polynomials. Let a> — l,β>—l and «/"„(«, β, k; x) and Kn{a, β,
k; x), n=0,1, 2, be respectively the polynomials of degree
n in xk and x, where x is real, k is a positive integer such
that these two polynomial sets satisfy biorthogonality condi-
tions with respect to the weight function (1—x)a(l+x)β,
namely

Γ (l-x)°(l+x)fijn(a,βt k;x)xidx is
J - l

^ [0 for ί = 0 , l , •••, w - 1 ;

(not 0 for i — n

and

Γ {l-x)"(l+x)*Kn(a, β,k;x)(l-x)kidx is
J - l

( 2 )κ } (0 for i = 0 , l , •• , π - l ;

(not 0 for i—n .

It follows from (1) and (2) that

Γ (l-xHl+x)tJn(a, β, k; x)Km(a, 8, k; x)dx is
J - l

( 8 ^ 0 for m, n=0,1, ~-;mφn
not 0 for m = n

and conversely.
For k=l both these sets are reduced to the Jacobi poly-

nomial sets. We obtain generating functions, recurrence
relations for both these sets and explicitly show that they
satisfy biorthogonality conditions.

1* Introduction* The notion of orthogonal polynomials has
been extended by Konhauser [7] to two sets of polynomials that

satisfy the following biorthogonality relation which happens to be

an extension of the usual orthogonality condition:

(4) \bp(x)Rm(x)Sn(x)dx is
Ja

0 for m, n = 0, 1, m Φ n

not 0 for m — n .

Here p(x) is an admissible weight function over an interval (α, b)

and Rm(x) and Sn(x) are polynomials of degree m and n respectively
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in the basic polynomials r(x) and s(x) both of which are polynomials
in x.

Above condition (4) is known to be equivalent to the following
two conditions.

fθ for ί = 0, 1, , n - 1
p(x)[r(x)YSn(x)dx is

(not 0 for % = n

and

s | n ;
(not 0 for % = m .

Using his basic results of the general theory of biorthogonal poly-
nomials, Konhauser [8] introduced the following pair of biorthogonal
polynomials Z£(x; k) and Y£(x; k) that are suggested by the Laguerre
polynomials:

(5) Z~(χ- k)( 5 ) ZΛ(x,k)- t (
see [8, p. 304]

(6) ΓΛίB;A;) = - i Γ Σ f l Σ ( - l
nl r=o r ! s=o

see [2, p. 427] .

These two sets are biorthogonal with respect to the weight
function x"e~*f (a > — 1) over the interval (0, oo) and have been
extensively studied.

There is a classical result due to Feldheim [5] which connects
the classical Jacobi polynomials P£atβ)(x) with the Laguerre poly-
nomials Ll{x) in the following manner.

a + β + n)P<a β)(x) =

This result has made it possible for us to introduce, the first set from
the pair of biorthogonal polynomials Jn(a, β, k; x) and Kn{a, β, k; x)
that are suggested by the Jacobi polynomials.

Let us define the first set Jn(af β,k\x) by

Γ(l + a + β + n)Jn(a, β, k; x)

(8) = V°t*+β+ne-tZa ( 1 - χ t ; k ) d t , α + θ > - l , n = 0 , 1 , 2 , •••.
Jo \ 2 /

Using (5) one obtains by routine calculations
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9 ) Ua, β, k; x) = ϋ ± f k . ± ( -
2

In fact Jn(α, /3, fc; x) has the following hypergeometric form

(10)

1 + α + β + n);

, 1 + α);

where J(m, δ) stands for the sequence of m parameters

δ + 1 δ + m-0

m i

m m
-, m ^ 1 .

The polynomials {Jn(α, β, k; x)} were first introduced by Chai [4]
and Carlitz [3] published the proof of their biorthogonality to x*
(i.e., of type (1)) with respect to xa(l — x)β on (0, 1). Chai's proposal
was on (0, 1) instead of our ( —1, 1). This also reminds one of the
transition of the classical Jacobi polynomials first denoted by
Fn(af β\ x) and orthogonal with respect to the weight function
xa(l — x)β on (0, 1) to that of Szegδ's standardized Jacobi polynomials
Pia>β)(x) which are orthogonal with respect to the weight function
(1 — x)a(l + x)β over the interval ( — 1,1).

We introduce the second set Kn(a, β, k x) in the form of the
following explicit series representation

β, k; x)

(11) =

nlrl k 2 /

For k — 1, both Kn(a, β, k; x) and Jn(α, βf k; x) get reduced to
the Jacobi polynomials P^tβ)(x).

It is easy to observe that

(12)

lim Jn(a, β,k;l- = Z;(x; k)

lim Kn(a, β,k;l-**-)= YZ(x; k) .
^ \ β I

For k = 1, each of (12) gives well known connection relation between
the Jacobi polynomials and the Laguerre polynomials; see [12].

2* Biorthogonality* Employing the explicit formulas (9) and
(11) we shall show that the pair of polynomials Kn(a, β, k\ x) and
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Jfiί, β, k; x) satisfies the biorthogonality condition (3).
In fact, we have

J — =
x)βJ»(a> β> k;

_ Γ(l + a + kn)Γ(l + β + TO) f , i γ ί n\Γ(l+a+β+n+kj)
2mnlm\Γ(l + a + β + n) & \j ) 2kΨ(l+a+kj)

= oι
n\ m! Γ(l+a+β + [j Jr(2+a+β+m+kj)

Recall the following result of Carlitz [2, p. 429]:

Using this, we have

r _ + « + A!W)Γ(1 + β + TO)
TO! Γ ( l + α + β + n)

α + kn)Γ(l + β + m)
n\ Γ(l + a + β + n)

m

x Σ (~ + a + β)m+k3 +1

- β + m)
nl Γ{1 + a + β + ri) \m

1 + a + ^ ^ +

i /(I
a m)

nl Γ(l + a -\- β + n) \m

n—m IM —

X Z J (

\ 3

n+a+βΓ(l + a + kn)Γ{l + β + m) / ̂

w! Γ(l + α + β + w) \m
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which is 0 for n Φ m and nonzero for n — m. In particular,

T = 91+«+i3 Γ(l + a + kn)Γ(l + β + n)
n\ Γ(l + a + β + n)(l + a + β + n + kri)

3* Generating functions and recurrence relations* From the
explicit representation (9) we can obtain by usual series techniques
the following generating functions

- (1 - ί ) " 1 " " " '

(13) \Δ(k + 1, 1 + a + β);

w /(ft + 1)(1 - x)\γ-(ft + l)t\
k+1 k \ 2ft A ( l - ί ) f e + 1 /

./((ft, 1 + a);

^ Jn(af β — nf ft; x) ,„,
X i v

(14)

J(ft, 1 + α); j

For ft = 1, (14) reduces to a generating function for Jacobi polynomials
which is due to Feldheim [5].

Differentiating (9) with respect to x, we can obtain the follow-
ing recurrence relation.

(15) DJ«(a> β> k; x^
= ft2-/c(l - x)k~\l + a + β + n)kJn^{a + ft, /3 + 1, ft; x) .

By using the result (6) of Konhauser [8], the result on page
638 of Karande and Thakare [6] involving Z^(x; ft) we can obtain
in view of the definition (8) the following recurrence relations

(x - ΐ)DJn(a,β,k;x)
(lb)

= nkJn(a, β, ft; x) — k(kn — ft + a + l)kJn^(a, β + 1, ft; x) ,

(x - l)DJn(a, β, ft; x)
/7--~ ' a)Jn(a — 1, /3 + 1, ft; x) — ctJn(a, β, ft; x) .

Alternatively the results (15) and (16) can be obtained by direct
computation by adopting the technique given by Konhauser [8] for
evaluating the recurrence relations for Z£(x; ft).
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Since Jn(a, β, k; x) are essentially k+1Fk-type generalized hyper-
geometric polynomials, we can obtain the following differential
equation

[(x - l)D((x - 1)D + a - k + 1), - 2-*(l - x)\(x - 1)D - nk)

x ((a? - 1)D + a + β + n + 1)»]/„(«, /3, fc; a?) = 0 .

From (11), we have after routine computation

Σ ^»(«, β-n,k; x)(2w)n/(x + 1)TO

0

This readily yields the formula

(18) Xm(a, β-n,k;x)=Jj

In (18) replace α by α + vw, /9 by β + w + δw and apply to the
resulting expression the Lagrange's expansion formula [9, p. 146] to
obtain the generating function in the form

, β + δw, fc; x)ur i - fc

a? - δ)w(x

where

u =

With the substitution w — 1 — (1 + £)~\ the above generating relation
can be put in the form

Σ Kn(a + vn, β + δn, &; x)un - Λ(ί + l)α (l + x ~
o 05 + 1

+ iy -
t + 1 α? + 1 + (a? -

where u = 2(α + l)'[(ί + 1)* - l](ί + l ) - ^ * ^ + 1 + «ί - ί)" ( 1 + a ). The
special cases with v = 0, δ = — 1 and v — —k, δ = — 1 yield quite
compact forms and they reduce for & — 1 to the generating func-
tions for Jacobi polynomials due to Feldheim [5]; see also Carlitz
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4* Concluding remarks* ( i) Spencer and Fano [11] utilized
biorthogonality of polynomials in x and polynomials in x1 with
respect to the weight function xne~x (α, nonnegative integer) over
the interval (0, ©o), in carrying out calculations involving the pene-
tration of gamma rays through matter. We are also optimistic that
the particular cases of pair of biorthogonal polynomials considered
here would, certainly, be of use in physical problems.

(ii) It is needless to say that these polynomials will yield for
a = β — 0, a pair of biorthogonal polynomials suggested by Legendre
polynomials, for a = β — ±1/2 a pair of biorthogonal polynomials
related to Chebychev polynomials of the second kind and first kind
respectively and when a = β we would have a pair of biorthogonal
polynomials suggested by ultraspherical polynomials.

(iii) Prabhakar and Kashyap [10] have discussed the polynomials
(which are just constant multiples of Jn(a, 0, k; x))9

\ k) = 1 jh (-n)ίβ + a + 3\ /Ij
(l/k)n i=o j

and showed that they form a pair of biorthogonal polynomials over
( — 1, 1) with respect to the weight function ((1 — x)/2)cc. It is to
be noted that these two sets are related to each other by the
following

V:(x; k) =
nl \ V 2

and as such are not independent of each other.
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