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If S is a commutative, separative semigroup with
identity, and E is a commutative ring with unit such that
R[S] is arithmetical, then a local-global principle for verify-
ing algebraic equations in R[S] is established. This is then
used to show that if S is not a union of torsion groups, then
RI[S] is an elementary divisor ring.

1. Introduction and notation. The arithmetic of commutative
semigroup rings has been studied in a number of papers in recent
years. Gilmer and Parker [3] were able to determine when such a
ring over a torsion-free cancellative semigroup is Prufer, and from
their work it is easy to conclude that such a ring is also an ele-
mentary divisor ring. Hardy and Shores [4] determined necessary
and sufficient conditions for the semigroup ring of a cancellative
commutative semigroup to be arithmetical, and in that case if the
semigroup is not a torsion group, again the ring is an elementary
divisor ring. In a subsequent paper by Hardy, Shores, and this
author [1], it was completely determined when the semigroup ring
of a commutative separative semigroup is arithmetical.

The purpose of this paper is to show that if S is a commutative,
separative semigroup which is not a union of torsion groups, then
R[S] is arithmetical iff it is an elementary divisor ring. This also
completes the determination of when R[S] is Bezout or Hermite if
S is as above. This result substantially generalizes the well-known
result that R[X] is an elementary divisor ring if R is a field ([5],
§12).

Our notation generally agrees with that in [1]. All rings will
be commutative with unit 1 == 0, and regular will mean von Neumann
regular. If R is a ring and S is a semigroup, then R[S] is the
semigroup ring of S with coefficients in R; however, we reserve
R[X] for the ring of polynomials in E. All semigroups will be
commutative, separative, and unless noted otherwise, written multi-
plicatively; furthermore, we shall assume all semigroups have an
identity element, although we shall not require this of subsemi-
groups. All homomorphisms of rings or semigroups are unit
preserving. If S is a semigroup, since it is separative it can be
written as a semilattice of cancellative archimedean subsemigroups
([2], Theorems 4.13 and 4.16); that is, S = Uuey S. where Y is a
semilattice and the S, are disjoint cancellative archimedean subsemi-
groups of S such that S,S; < S,.;. Note each S, is either a group
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or is nonpotent (idempotent free). We call each S, a component of
S, and Y the semilattice of S; we shall say S = U,er S. is the de-
composition of S. If a, 8eY, we write ag for a A 3, and we say
a=pif ag=p. We always use 0 for the index of component of
the identity element of S, and if S has a zero element distinet from
the identity, then by abuse of notation we use z for both that
element and for the index of its component.

With S as above, the multiplication on S is determined by the
S,’s and suitable group maps ¢, tot(S,) — tot(S;) defined for all
a = B, where tot(S,) indicates the total quotient group of the
cancellative semigroup S, ([2], Theorems 4.17 and 4.11). We say S
is a union of groups if each S, is a group.

By a filter . on the semilattice Y we mean a nonempty sub-
semilattice of Y such that if ae.&, geY, and B = a, then ge 7.
If S is a semigroup with decomposition ..y S, and each S, has
torsion-free rank < 1, then for any filter % on Y we can define
the local reduction S - of S at % as in §3 of [1]. Recall that if
R[S] is arithmetical for some ring R, then the rank condition must
hold (4.1 and 4.3 of [1]), and the local reductions exist. Our argu-
ments will assume a knowledge of the construction and properties
of local reductions given in [1].

If R[S] is a semigroup ring and S has decomposition U,y S.,
then R[S]= @..y R[S.] as R-modules. If xeR[S], then A can be
uniquely written as >,y N, with )\, € R[S,] and all but finitely many
equal to 0; we then define supp (\) = {a € Y|, # 0}. We also define
M= e Ngy M= S N, and S = Jss. S; for any a€Y; note
that the last is a subsemigroup of S. If U is a matrix with entries
in R[S], we can likewise write U = 3},.y U, and speak of U, U4,
and supp (U).

Recall that a ring R is Hermite if for every row vector [a b]
of length 2 over R, there exists a 2 X 2 matrix W over R such
that det (W) =1 and [a b]W =[d 0] for some de R. Such a ring
is automatically Bezout, and thus also arithmetical. R is called an
elementary divisor ring (denoted EDR) if it is Hermite and for
every 2 X 2 matrix M over R, there exist 2 X 2 matrices U, W
over R such that det (U) = det (W) =1 and UMW is diagonal [5].
Using the Hermite assumption to factor out the god of the entries
of M, we may assume that these entries generate the unit ideal in

L0
R, and that UMW = [0 dob( M)].

In §2 we shall develop some further facts about local reductions,
and prove a local-global theorem for verifying equations in arithme-
tical semigroup rings, which reduces the problem to checking a finite
number of local reductions. In §3, it is shown that if S is not a
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union of torsion groups and R[S] is arithmetical, then it is Hermite.
The proof requires a series of technical lemmas, and for most readers
only the proof of Proposition 3.1 and the statement of Theorem 3.4
from this section should be read at first. In §4, the much simpler
proof that the above implies that R[S] is an EDR is sketched.

The author wishes to thank Thomas Shores for reading a first
draft of this paper and recommending certain clarifications.

2. Local reductions revisited. Let S be a semigroup with
decomposition [,.y S, such that the torsion-free rank of each S,
is<1, and let % be a filter on Y. Let S.. have decomposition
U.cr S, and let 7,: S — S, be the natural map. Then the follow-
ing facts can be proved from the construction of local reductions
and the results in [1].

(i) If BeY, define Y¥P ={aeY|a= g} if S; is potent, and
Y® ={ae Y|a =B and g, is reduced trivial} otherwise. Then Y@
is a filter on Y, and is in fact the smallest filter on & such that
7,(Ss) # 8., with S, the component of the zero element of S., if
one exists distinct from the identity. Moreover, 7.(S,) = S, iff for
all ye#, Y¥ < &. Note also that if « = g and S, is potent,
then a€ Y®, ‘

(ii) If R[S] is arithmetical and S, is a nonpotent component
of S, then for & = Y® we have S-= S, US;US, with S, = inj.
lim. {S,|a € Y®} necessarily a torsion group and S, either ¢ or {2},
with 2z a zero element distinet from the identity. Also, if v =g
but v ¢ Y@, then for some a€ Y*® we have va = g, while if v £ 3,
7]&—(ST) = Sz'

(iii) Let £ - be the natural map from R[S] to R[S.-]/(z), where
(z) is the ideal of R[S.] generated by S, (so (z) = 0if S, = ¢). Since
S, is of special type (see §5 in [1]), it follows that 2# =
{ae Y|9.(S,) # S.} is also a filter on Y. Let acR[S] and let V be
a finite subsemilattice of Y containing supp (¢), and suppose B is
the minimal element of 5~ NV. Suppose S = S¥, and let 7, by
abuse of notation denote both the natural map S — Sy,®» and the
induced map R[S]— R[S;»]. Now R[S;®] is just the localization of
R[S] at Ueer® S, (note that for this case, step (i) in the definition
of the local reduction in [1], §3, is trivial). Since Y® C &, we
have a natural map &, _.: R[Sy®]— R[S.-]/(z) such that &, o7, =
ko1, where i: R[S] — R[S] is the inclusion. But x.(a) = £.-(a'),
so we get the following local-global principle.

PROPOSITION 2.1. Let S be a separative semigroup with decom-
081t10n Uaey S,y and let R be a ring such that R[S] is arithmetical.
Suppose a,, - -+, a, € R[S], and V is a finite subsemilattice of Y con-
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taining {0} U U ., supp (a;). Let Pz, ---, x,) be an equation of poly-
nomials in x,, - -, x, with coefficients in R. Then P(a, ---, a,) holds

in R[S} iff for every ge V, P (alf), - - -, N5(a?) holds in R[SV,].

Proof. Since the inclusion map R[S"] — R[S] has a left inverse,

namely a — a'¥, if P(a,, ---, a,) holds in R[S], then P(al?, ---, alf)
holds in R[S™"], so P(7 p(a[“) -, 7(al?))) holds in R[SY}] by applymg
7,. Conversely, since P can be tested locally, to show P(a,, ---, a,)

holds in R[S] it suffices by the proof of Corollary 3.4 of [1] to show
that for any filter % on Y, P(k.-(a,), - -, £~(a,)) holds in R[S.-1/(z).
However, this follows by applying «; .- to P@y(al), ---, 75(af?)) for
the appropriate ge V.

REMARK 2.2. Obviously, the result can be extended to systems
of equations, and the assumption that V is finite can be dropped,
as long as the number of variables remains finite. Note that the
result actually applies to any statement P about a finite set of
elements in a commutative R-algebra whose truth is preserved by
R-algebra homomorphisms and which can be tested locally.

REMARK 2.3. If B, 8.€Y, B, = B, and F = Y then we can

construct a WX R[S[ff}g]l,]—>R[S§'?§]2)] such that k.- = K;, oK, and
Ks,,5,°Ts, = 9,01, where 1’ is the inclusion from R[S!"] to R[SU],

further factoring the maps above.

REMARK 2.4. In some respects, the proposition above is re-
miniscent of a basic result on Pierce sheaves ([6], Proposition 3.4).
It would certainly be interesting if there were a sheaf for
arithmetical semigroup rings which implied the result above.

3. Hermite semigroup rings. Observe that if S is a union of
groups S,, then Proposition 6.7 of [1] implies that R[S] is Hermite
(or Bezout, or an EDR) iff each R[S,] is likewise. In fact, Corollary
6.9 in the same paper implies that if S is a union of groups, at least
one of which is not a torsion group, then R[S] is an EDR iff it is
arithmetical (so these conditions are also then equivalent to Bezout
and to Hermite). If we continue to restrict ourselves to separative
semigroups, there are two directions in which to explore: when is
R[G] Hermite (or Bezout, or an EDR) for G a torsion group, or
when is R[S] Hermite (etec.) for S separative but not a union of
groups? We will deal with the latter question. We first show that
R[S] is Bezout if it is arithmetrical.

PROPOSITION 3.1. Let S be a separative semigroup with decom-



HERMITE SEMIGROUP RINGS 29

position U,cr S. wWhich s not a union of torsion groups, and let R
be a ring such that R[S] is arithmetical, and let a, b R[S] not both
0. If V, is the subsemilattice of Y generated by supp (a) U supp (b),
then there exists d € R[S] such that supp (d) S V, and (a, D)R[S] =
dR[S]. In particular, R[S] is Bezout.

Proof. We define d, by induction, for all a € V,, assuming d'®
has already been defined so that if 8 > a, g€ V, then

(75(a®), 75O NR[SSE] = 75(dP)R[SFL] -

Consider the composite R[S,] — R[S'] — R[S!%},], where the first map
is the inclusion (and is not in general unit preserving) and the
second is 77,. If S, is a potent component of S, then this composite
is an isomorphism of rings, by the construction of R[S!%}]; if S, is
nonpotent, then by item (ii) in §2, R[S,]= R[S,U S,]= R[S,]D
R[S.] as R-modules, where S, is a torsion group, and the above
composite is just the injection of the R[S,] factor in the coproduct.
Now by the proof of Corollary 6.9 in [1], in either case R[S!?)] is
an EDR, and thus Bezout.
Let d € R[S},] be such that

dR[SI%] = (™), 7O NRISEL] -

If S, is potent, it follows from the above that there exists a d,e
R[S,] such that 7,(d,) = d — 7,(d"®), so that 7,(d) = 7,(d® +d,) = d.
If S, is nonpotent, let ¥ be the minimal element of V,N Y™ (if this
is empty, let v = 0). Also, for any x¢€ R[S[7,)], let x, be the com-
ponent of x in R[S,] and let x, be the R[S,] component of x, so & =
%, + %,. By Theorems 4.4 and 5.1 of [1], R[S,] is regular, and by
projection onto R[S,], d,R[S,] = (7.(a'),, 7,(b1))R[S,]. But 7.(al), =
r,(77(at)) and likewise for b and d. Thus d,B[S,] = £7,.(T:(d"™)R[S,],
so by regularity, d,u :ler’a(ﬁr(dm)) for some unit ue R[S,]. Let d =
dueR[S¥,). Then (d — 7,(d®)), =0, so there exists a d,eR[S,]
such that 7,(d,)=d —7,(d“). Now 7,(d')=d=du, so 7,(d)R[S,]=
(7@, 7, R[SI,] as desired. Since V, is finite, by induction
d is completely defined with supp (d) £ V,. However, since equality
of ideals generated by given elements can be tested locally and is
preserved by ring homomorphisms, by Remark 2.2, (a, b)R[S] = dR[S].
(Note the testing is done on V, U {0}.)

Now let @, b, and d be as above, and let V, = V,U{0}. V, is
itself a finite subsemilattice of Y. We want next to establish that
at each R[S!,], with a e V, there are suitable matrices to be the
images of a matrix U such that [¢ b]JU =[d 0]. Note first that
if @, Be Y correspond to distinet nonpotent components of S, then
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Y @Y gince otherwise Sy« would not be of special type (Theorem
5.1 in [1] and item (i) in §2). Also, by definition if S, and S, are
distinct potent components then Y@ == Y®. But if S, is potent
and S; nonpotent, then Y = Y iff a is minimal in Y, so in
particular a > 3.

LEMMA 8.2. LetR, S, a, b, and d be as in Proposition 3.1, and
let V,={0}UV, Then there exists a set of 2 X 2 matrices
{(Uwnlae V), with U, defined over R[S\%,], such that

(i) det(U,) =1 and

[f]“a(a[a]) 7_]_17:(1)[“])] U(a) = [ﬁa(d[a]) 0]

Jor all eV,
(ii) Ifa<geV,and Y9 = Y®, then

k5, Uis) = (U)o -

Proof. If there does not exist a ¥ < «a such that ve V, and
Y = Y, simply choose Uy, over R[SL%,] to satisfy (i), using the
previously noted fact that R[S!%,] is an EDR, and thus Hermite,
and the first remark in §4 of [5]. If there is a v e V, such that
Yy<a and Y@ = Y then by the above comments S, is potent
and R[S,] = R[S%%,]. But by construction of SU},, we must have
that 7, restricts to an isomorphism from R[S,US;] to R[SV,
(Proposition 6.4 of [1]). Thus, since U,, is defined so that
[7:a') 70Uy, = [7,(d7) 0], we have by taking the component of
the identity in R[SY},] that [7(a™), 7;(")J(Um)e = [7:(d"), 0] and
det (Uyy)) = 1. By the maps above, however, 7,(a'"), = k,,(7,(a')),
with like results for b and d, and for some U, defined over R[S!%,],
ke(Uw) = (Up),, satisfying (ii). By the isomorphism of R[SI,] and
R[(8Y})),] and the comments preceding the lemma, U, satisfies (i)
and is uniquely defined.

We next need a strange-looking technical lemma.

LemMA 3.3. Let S be a separative semigroup with decomposition
U.er S., and suppose for some ring R, R[S] is arithmetical. Suppose
B, B2 € Y with Sy, and Sy, distinet nonpotent components of S. Then
there exists an integer n =2, and Yy +*+, 7V By ***, Ba€ Y such
that

@) "z 1=,

b)) YBia=Bum forall 21 n —1,

(e) 7€YY for all 251 2 n,

(d) either V8.1 = B OF $s,_,1.8,_, 18 Teduced trivial, or S,
8 a group,

nPn—1
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Proof. Define .&#; for all nonnegative integers 7 by induction
as follows:

(1) F={0},
(2) If 7 is even, Fipy = Uper, Y, and if 4 is odd, 77, =
Uses, Yo,

It is easy to prove by induection that each ., is a filter on Y.
We wish to show that #;, < &#,,, for all 1 = 0. Suppose o, €.,
say for example ¢ is odd and for some a, € #,,, aeY'#, If S, ,
is potent, then a, = @,8,€ #; and «a,€ Y'**’, so since a = a,, @€
Yt ... So suppose S,;, is nonpotent. Then by item (ii) in
§2, there must be some a;€ Y such that o = a; and ¢,,, is
reduced trivial. Also a;e€.F;, so Y O F ., but 6,48 = Gugass, ©
$a.ay 18 Teduced trivial, so ae Y C &, as desired. Thus #; <
Fimand F = U, F; is a filter on Y. Note that it also follows
above that if B,¢.%#;, then either ae Y*" or g, e Y=/ C &,
since either ¢, s Or @,s .5, must be reduced trivial. There are now
two cases.

Case 1. B, B.¢.#. It is clear from the construction that if
vye &, then Y% and Y'*? are subsets of #. It follows by item
@) in §2 that S; and S;, map to nonpotent components of S.-; how-
ever, S. has at most one nonpotent component by Theorem 5.1 of
[1]. Thus for some ve.#, v8, = ¥B.. Let us choose ¢ and 7 so
that v e &, and 4 is minimal with respect to containing such a 7.
Since B, # B:, t # 0; by induction, there exist v, ---, 7, Vi =7
such that 7;e #;_ and if 2 < j < 7, then 7j,, € Y% where 6(j) = 1
if j is even and 6(j) = 2 if j is odd. Now define v; = 7,v; - - - 7; for
all 277+ 1, and By = ViBi—1 = VB for 2= 5 =<14. Then
(a)-(d) of the lemma are easily verified with n =1 + 1.

Case 2. Either 8, or B, is in #. Let 4 be chosen to be minimal
with respect to having B, or 8, in .#,,,. Say for instance, 8, € F;,..
Then there is a 7 e .#; such that g, e Y7%u+r, Now if 4 = 0, there
exists v,€ Y% such that g, > 7, and ¢;,, is reduced trivial, and
the lemma holds with » = 2. If 7 =1, then as before there exist
Vs, +++, Vin="7 such that vje #;_, and if 2<5<1 then 7}, € Y7o,
Again define v; =7 ---7; for 2=< 5 =<14. If Bsu4y Or 7Viy is in
Y traritibsiir) | choose Vi ="+ Vi, likewise. For Bausn € Y(Tﬁé+1ﬁ«7(i+1))‘
let » =14 + 1 and define g;, -« -, B:1: as before, and it is again easy
to see that (a)-(d) hold. If not, then since g, € Y'fsurn) QY ri+ibscitn),
we must have (¢ + 1) = 2, and since 8, ¢ Y"i+1#, S, . is nonpotent.
Thus if v, =77, € Y'7r1# g0 is v,,,8;, sothere exists a v, € Yrend
such that 8.7, = 7. and ¢, ,r,,, 18 reduced trivial, by item (ii)

in §2. Again defining B; = 7;..8;1 = V;_Bs; for all 3< 5 <1 + 2,
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we can verify that n =4 + 2,7, <+, Yips, B, - - -, Bis. satisfy (a)-(d)
of thelemma.

Thus we are reduced to the case where neither v,v;,, nor g, is
in Y7aenf) o But then 771,68, = 7i..6: by induction, and ¢4, 7., 5,
is reduced nontrivial. Also, if 8, € Y7# then B, €.#; contradicting
the minimality of 7, so S;;, is nonpotent, and furthermore v, € Y 7
by our remark after the proof that &, < .#;.,. By hypothesis
Vi =YYWl C YrihY g0 7Y, € Y and there is some 7, €
Y7 such that 7:7i, = %, and ¢, r,, is reduced trivial. But
then ¢r, r,,.5, is reduced trivial, so since @, 1.5, iS reduced
nontrivial, ... 5,75, and thus g, ;. . are reduced trivial. Now
again it is straightforward to show that n=14+1, v, -+, Vi,
Bs, *++, Bis1, With the 7’s as above and the g’s defined by condition
(b), satisfy the lemma. Similar arguments for g,e.#;,, complete

the proof.

THEOREM 3.4. Let S be a separative semigroup which s not a
union of torsion groups, and let R be a ring such that R[S] is
arithmetical. Then R[S] is Hermite.

Proof. Let a, be R[S], and adopt the notation of Proposition 3.1
and Lemma 3.2. We wish to find a 2 x 2 matrix U over E[S]such
that [¢ b]JU =[d 0] and det (U) =1. Note that if U is defined
and V is a subsemilattice of Y containing supp (U) U V,, then it
suffices to know that [7,(a!) 7,07, (U™) = [7,(d) 0] and
det (7,(U™)) =1 for all @€ V, by Proposition 2.1 and Remark 2.2.

For each ge V,, we next wish to choose an element 4(R)eY
that is in some sense “sufficiently small” among the elements of
Y®,  If S, is potent, let 4(8) = B, and if S, is nonpotent but for
some Y€V, with S; potent, Y# = Y, let 4(8) = . Otherwise,
let @ be the minimal element of V,NY*, and recall R[S¥}]=
R[S, U S;] = R[S,1® R[S;] where S, is a torsion group, as in the
proof of Proposition 3.1, and if xze R[S})], let x, and xz; be the
respective components of x under the direct sum. Now again for
any y € R[S] with supp (y)S V., we must have (7,(y™)),= Ka,s(7o(y™)).
Thus 75([a b]®)kes(Uw) = Kas(Talla 8]“NUw) = (7:([d 0]¥)), =
(Tala BN Uip)o = Talla b1 Ups)sy and det (Ui)y) = det (e, s(Ui)) =
1, so det (£,,5(Uy) ™ (Upy)o) = 1 and &, ,(U,)*(Uy,), acts as the identity
on (7,([d 0]™)), = [7,d"), 0] Since R[S,] is regular, £, (U) (U
can be written as a product of elementary matrices over R[S,]
(triangular matrices with 1’s on the diagonal) chosen so that all
above diagonal elements annihilate 7,(d*)),, This follows since the
standard Pierce sheaf of a regular ring has fields as its stalks, and
over a field this can be done while keeping a bound on the number
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of elementary matrices needed (using [6], Proposition 3.4 generalized
to systems of equations). But R[S,] = inj. lim. {R[t0ot(S)]|7 € Y**},
so there exists a 4(8) € Y® such that 4(8) < a, all the off-diagonal
elements of the elementary matrices are in 7 ,(R[t0t(Ssp)]) =
Vo(R[Ss5]), and the elements which map to the above-diagonal ele-
ments can be chosen so as to annihilate k, 44,(7.(d")).

Next, we choose our finite subsemilattice V of Y by taking the
semilattice generated by V., for each ge V, a 4(B) as chosen above,
and for every pair 8, 8;€ V, such that S; and S;, are distinct non-
potent components of S, a sequence 7,, ---, ¥, which (together with
the B’s defined by condition (b) of the lemma) satisfy Lemma 3.3.
If eV, such that S; is nonpotent, let us define the clan of 3 to
be the set of all ne V such that » < B, S; is nonpotent, ¢, is
reduced nontrivial, and if ve V; with » = ), then v = 8. Note that
not all elements of V belong to clans.

LemMMA 3.5. (a) If a,0,eV such that o, and «, belong to
different clans, then Y NV =Y nNV. (b) If a,cV belongs to
a clan, and a is the minimal element of Y'P NV, then a does not
belong to a clan.

Proof. (a) Suppose S, B, € V, such that a, belongs to the clan
of B, and «a, belongs to the clan of B8,. Let v, ---, 7, be the ele-
ments of V chosen to satisfy Lemma 3.8 for this 8, and B,. Suppose
YNV =Y2nV. Thenv,e Y@ NVCY*NV,s0let2=<1=Zn
be maximal such that 7, e Y« NV. If 1< n and < is odd, then (in
the notation of Lemma 3.3), 7,8, = B = @, and 7,,, € Y#) NV C
Y@ NV, a contradiction. Likewise if ¢ <n and ¢ is even. So
suppose ¢ = n, and say for example that again ¢ is odd. Then
YalBaos = YufBe Z A If 7,8, = B,, then 8, = B, = a,, 80 @, = BB,
and also 7,8, =8, a,, so a, = 5,8, However, 3, is the minimal
element of V, over «a,, and likewise for g8, and «,, and since 8, # 3,
and 8.8,€V,, we have a contradiction. If instead, ¢; .4, , is
reduced trivial, then so is ¢, ., since it factors through the former
map, again a contradiction. If finally S, ,  is a groups, then again
to avoid a contradiction ¢, , . must be reduced nontrivial, but
then S,, must be a group (since it is closed under multiplication by
G106, 1.a(S15,_,)), yet another contradiction. Thus all three options
in (d) of Lemma 3.3 are impossible.

(b) Suppose a, is the minimal element of V N Y and «a, belongs
to a clan. Let g, B, be as in part (a). Note B, # B, since g, .,
factors through g,,. and is thus reduced trivial, while ¢, is not.
Since B, = o, and B, is minimal in V, over a,, 8, > B;. Again let

Y ¢, 7. be the elements of V which satisfy 3.3. In this case we
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must have B8, =B, = +++ = Bonn and since g, , must be reduced
trivial, B, B, ***, Bim a0 Vo, Vs, =+, Y, are all in Y0 (where n = 2m
or 2m + 1). It follows from 3.3 (d) that » is odd and either ¢, ,,
is reduced trivial or S, , is a group (since 7,8, = 7.8). But
7.8.€ YNV, so 7,8, = a,. This means either g, . is reduced
trivial or S,, is a group, both contradicting the assumption that a,
belongs to the clan of g,.

Returning to the proof of the theorem, we are now ready to
define U so that supp(U)< V, [a bJU =[d 0], and det (U) = 1.
In order to state our induction hypotheses, we will divide V into
three subeclasses: (1) elements minimal in Y NV for a an element
of some clan; (2) elements which either belong to a clan or correspond
to potent components and do not belong to class (1); and (3) all
others. We again define U by induction on a € V, assuming U is
already defined.

Induction Hypotheses. If e V such that U™ is defined, then
(i) det (7, (U™)) =1 and

Tolla b]N7(U™) = [7,(d™) 0] .

(ii) If ais in class (1), v is in the clan of B and « is minimal
in Y NV, then

P(U™) = £5,:(Uigy)o) -

(iii) If « is in class (2), and B is the minimal element of V,
which is = a, then

77«( ue) = Kp,o U(ﬁ)) .

(iv) If a is in class (8) and B is the minimal element of
YNV, then 7,(U™) = k;,,(7,(U™)).

So suppose we are trying to define U, so that U™ satisfies these
hypotheses, assuming that U™ does for all a, > a. First suppose
a is in class (3), and B is as in (iv). Note S, is nonpotent so B8 > a.
Let e, be the identity element of £0t(S,), and recall from [1] that
if y=a but v¢ Y, then ¢,S; £ S,. Define U, = (U#® — UW)e,
and then (iv) clearly holds. But (i) holds since [a b]*! = [a¢ b]' and
d*l = d'¥), and we may apply £, to (i) applied to g.

Next suppose a is in class (2), and g is as in (iii). If S, is
potent, then since 7, induces an isomorphism from R[S,] to R[S!%,],
there exists a unique U, over R[S,] such that 7,(U,) = k5,.(U,) —
NU). If instead a belongs to the clan of B, and 7 is the
minimal element of Y@ N V, then it follows from (ii) that x,.(U,,) —
7 (U”) sits inside the summand of R[S!%),] which is isomorphic
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under 7, to R[S,]. Again there exists a unique matrix U, over
R[S,] such that 7,(U,) = £3,.(Uy) — 7.(U), so in either case (iii)
holds. However, (i) now follows since 7 ([a dIF)U,, = [7,(d*) 0]
and det (U,,) = 1, and (i) follows by applying «;,,..

Finally, suppose that « is in class (1). Let {v, ---,v,} be the
set of all elements ¢ of V which belong to clans and are such that
« is the minimal element of Y N V. By Lemma 8.5, 7, ---, 7, all
belong to the clan of the same B¢ V,, and «a does not belong to a
clan. Let K = N, ker (gar,: Sp — tot(S;,)). It follows readily from
Theorem 5.1 of [1] and Theorem 3.6 of [4] that S,/K is a torsion
group and R[S,/K] is regular. Note that if 4(Q) is the element of
V chosen earlier, then 4(g8) = a. Also if g, is the minimal element
of V;NnY“, then it is also the minimal element of V,Nn Y4,
There are two cases.

Case 1. S, potent. Our choice of 4(3) guarantees the existence
of a 2 x 2 matrix M, over R[SL{{),] such that 7,4, (e b]")M, =
[746(@d®) 01, £45),5(Ms) = (U)o, and det (M) = 1. So choose U, so
that 7,(U.) = Ka6),e(Ms) — Do W), and thus 7,(U™) = £44),.(M;). We
have (i) by applying £,,,. to the corresponding equations above, and
(ii) holds since

ﬁri(U[al) = Ea,T,;(ﬁa( U)) = /CA(ﬁ),ri(Mﬂ
= Kp,r,(Uig))o) -

Case 2. S, nonpotent. Let 3, be the minimal element of
Y“NV (note B, = B). Let SIF}, have decomposition S,US,. We
wish to show that there exist elementary matrices E,, ---, E; over
R[SY,], with off-diagonal elements from the R[S,}-summand and
above-diagonal elements which annihilate [7,(d"%) 0] = 7,([a b]#! U¥2),
such that k., (DUPE, --- E;) = k37:,(Uy),) foralll £4 < n. For
if so, N (U"NE, ..- E;, — 7,(U®) is in the R[S,]-summand, so there
is a choice of U, so that 7,(U") = 7,(U¥NE, --- E;. In that case,
by induction on j, det 7,(U™) = 1 and 7,(a b]*N)7,(U™) = [7.(d) 0],
while condition (ii) will hold by definition of the E..

Two show E, ---, E; exist as desired, we first show that we
can find E, ---, E; over R[S7,] satisfying all requirements except
that the off-diagonal elements come from the R[S,]-summand. These
are defined in two stages. Since supp (d) Usupp (e b)) S V,,

[7.(d2) 0] = [7,(d™) 0] = 7,([a ] UD)
= 7 ([a b Uy .

Thus 7,(U¥)'n,(UY) acts as the identity on 7,(d 0]¥#), and since

these lie in the R[S,]-summand of R[S%))], which is again regular,
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there exist E!, ---, K, elementary matrices over R[S,] whose above-
diagonal elements annihilate 7,(d*") such that 7,(UY)HE, ... E] =
7, (U™). Now by our choice of 4(3), there exist F,, --., F, ele-
mentary matrices over R[SLf},] whose above-diagonal elements
annihilate 7,.,,(d") such that

(U(ﬁ))o == Kd(ﬁ)lﬁ(lcﬁlvd(ﬁ)(U(ﬁl))Fl “en Fm)
= E1p),6(K5,,20) (0 s (UP)F, - - F,) .

Let j=1+m, and let E,; = k44,.{F;) for all 1 <¢<m. Then
E, ---, E; behave as desired.

Now let ke K = N, ker (.7, Se — t0t(S;,)), and define E; = I +
(B; — D)k for all 1 <4< j (I the identity matrix), i.e., let E; be
obtained by multiplying the off-diagonal element of E; by k. Then
E,---, E; still have above-diagonal elements which annihilate 77,(dt).
However, all off-diagonal elements are in the R[S,] summand of
R[SF, ], and for all 1S9 <, 1S 1S, £,0,(E)) = £,7,(E), so our other
conditions are maintained. As stated above, if we now choose U, so
that 7,(U,) = 7, (U¥NHE, --- E; — 7,(U'®), then (i) and (ii) hold and
our induction is complete. By Proposition 2.1, the theorem is proved.

4. The elementary divisor ring case.

THEOREM 4.1. Let S be a separative semigroup which is mot a
unton of torsion groups, and R a ring. The following are equivalent:

(1) R[S] is arithmetical

(2) R[S] ts Bezout

(38) R[S] is Hermite

(4) R[S] is an elementary divisor ring.

Proof. For any ring, (4) = (3) = (2) = (1). In light of Theorem

3.4 and our comments in §1, it suffices to show that if M = [g 3]

is a matrix over R[S] such that (a, b, ¢, d)R[S] = R[S], then there
exist 2 X 2 matrices U, W over R[S] such that UMW = [3 ad g bc]
and det (U) = det (W) = 1. Again let S have decomposition U,y S,.
This time, let V be the finite subsemilattice of Y generated by
supp (M) (note this contains 0 Y). We shall choose U and W to
have support in V, again defining them by induction on acV,
assuming U and W are defined. Our induction assumption to
be maintained is that det (7 (U™) = det (7 (W) =1 and
0

v al\ry al\yy o 1
N UMY (M) (W) = [0 Tal(ad — bc)[“])]'

If S, is potent, we know that R[S!%,] = R[S,] is an EDR, so
there exist matrices U,, W, over R[S%),] such that det (U) =
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det (W,) =1 and U, 7,(M“)W, has the desired form. Since 7,
restricts to an isomorphism from R[S,] to R[SE,"‘(L)] in this situation,
we may choose U, and W, so that 7,(U,) =U,— 7,(U") and 7,(W,) =
W, —7,(W®). The induction hypothesis is then clearly maintained.

To handle the case where S, is nonpotent, we need the following
lemma.

LEMMA 4.2. Let R, be a regular ring, M(X) a 2 X 2 matriz of
elements of the polynomial ring R[X]| whose elements generate the

unit ideal, and U,, W, 2 X 2 matrices over R, such that det (U, =

det (W) =1 and UMO)W, = [(1) det ((J)II(O))—J‘ Then there exist 2X 2

matrices U(X), W(X) over R|[X] such that U0) = U, W(0) = W,
det (T(X)) = det (W(X)) = 1, and UX)MX)W(X) = [o dot (1?4()())]

Proof. An application of the basic theorem on Pierce sheaves
([6], Proposition 3.4) reduces the lemma to the case where R, is
a field. In that case R[X] is an EDR, so there exist matrices
U(X), W(X) over R[X], with det(U(X)) = det(W(X)) =1 and
T(X)M(X)W(X) as desired, so by replacing M(X) by [o det ]?,_,( X))],
U, by U, 00, and W, by W)W, we may assume M(X) already
has the desired form, and U,M(0) W, = M(0). Let f(X) = det(M(X)).
Once again, we have two cases.

Case 1. f(0) = 0. We show that there exist matrices U(X),
W(X) over R[X] such that U(0) = U, det (U(X)) = det (W(X)) =1
and UX)MX)W(X) = M(X). It then will follow that W) = W, =
M(0)~*U(0)"*M(0), so we may choose W(X) = W(X).

To prove this simpler statement, since U, can be written as a
product of elementary matrices, by induction we may assume U, is
an elementary matrix. The verification that U(X) and W(X) can be
chosen in this situation is left to the reader.

Case 2. f(0) = 0. In this case we must have for some a,b ceR,
a b . 0
that U, = [ _l] and W, = [ ] Then U(X) = [ . f il —be fﬂ

and W(X) = [a (10— bef) af :] satisfy the lemma.

To apply the lemma to the proof of the theorem, let R[S\%,] =
R[S,]® R[S.] be the usual decomposition and let K = ker ($,.: S, —
tot(S)), where &,, is the structure map for S, Then as in
Theorem 4.4 of [1], we have a semigroup (S,/K) U S,, and a natural
surjection o: R[Si,] — R[(S//K) U S,]. Observe that R[(S,/K) U S,] =
R[S,/K]® R[S.] as R[S,/K]-modules, and the induced map on the
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R[S,] summands is the identity. As in the proof of Corollary 4.5
of [1], any finite subset of (S,/K) U S, is contained in a subsemigroup
isomorphic to (S,/K) x Z*, where Z* is the nonnegative integers
under addition. Pick such a subsemigroup containing all elements
which occur in p(%,(M')). Now R[(S/K) x Z*] = (R[S,/K][X] and
again R[S,/K] is regular. Apply the lemma to find U,, W, in
R[(SO/K) U S,] such that det (T,) = det (W,) =1, U, 0{ (M)W, =

0 det (o(7, ?thl)))]’ and (U,),= 0 (U"), (Wo)y=0T W), where

of course (U,), and (W,), are the components of U, and W, in the
R[S,/K] summand. Thus U, — p(7,(U®)) is in the R[ .] summand,
go there is a (unique) U, such that p(n,,(Ua)) = U, — 0((U"™)).
Likewise we have W, such that o(9,(W,)) = - p(7]a( wW@)), Now
calculating the values in each component of R[ 1], one can see
that det (7,(U™)) = det (7,(W™)) = 1, and m(U[“])m(M L7 W) is
also as desired. The theorem is proved.

REMARK 4.3. It can be shown in like manner that in any situa-
tion where we have a statement of the form P(x, -+, 2., ¥, ***, ¥a)
satisfying the conditions of Remark 2.2 and the analogue of Lemma
4.2, and R[S] is arithmetical with S separative and not a union of
torsion groups, then we can prove a theorem analogous to the
standard result for Pierce sheaves (Proposition 3.4 of [6]). Specifi-
cally, suppose that whenever K is a field and «,, ---, 2, € K[X, X™'],
there exist v, -+, ¥, € K[X, X™'] such that P(x,, «--, %, Yy, -+, Y,) IS
true, and further that if f(X), ---, fu.(X) e K[X], ¢, -+, ¢, € K with
P(£,(0), - -+, fu(0), ¢, ---, ¢c,) true in K, then the ¢,’s are the constant
terms of polynomials ¢,(X)e K[X] such that P(f, -, fn, 91, ***, On)
is true in K[X]. Then for any =z, ---,z,cR[S], there exist
Yy, **, Y. € B[X] such that P(x, -+, m, ¥y, *+**, ¥.) 18 true in R[S].
Also, the y,’s can be chosen to have support contained in the sub-
semilattice generated by U™, supp (z;) U {0}. The reason for the
difficulties encountered in §3 is precisely that the condition about
extending solutions from K to K[X] fails for the equations de-
seribing the Hermite condition.

REFERENCES

1. L. G. Chouinard, B. R. Hardy, and T. S. Shores, Arithmetical and semihereditary
semigroup vings, Commun. Alg., (1980), 1593-1652.

2. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 1. 2nd
edition. Amer. Math. Soc., Providence, R. 1., 1964.

3. R. Gilmer and T. Parker, Semigroup rings as Priifer rings, Duke Math. J., 41 (1974),
219-230.

4. B. R. Hardy and T. S. Shores, Arithmelical semigroup rings, preprint.

5. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949),



HERMITE SEMIGROUP RINGS 39

464-491.
6. R. S. Pierce, Modules over commutative regular rings, Memoirs Amer. Math. Soc.,

70 (1967).
Received June 5, 1980.

UniversiTY ofF NEBrAskA-LINCOLN
Lincown, NE 68588






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DoONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
HUGgo ROSSI Los Angeles, California 90007
University of Utah R. FINN and J. MILGRAM
Salt Lake City, UT 84112 Stanford University

C. C. MOORE and ARTHUR AGUS Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARNES E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 101, No. 1 November, 1982

Natalia Bebiano, On the evaluation of permanents .......................... 1
David Borwein and Bruce Brigham Watson, Tauberian theorems between

the logarithmic and Abel-type summability methods .................... 11
Leo George Chouinard, II, Hermite semigroup rings ...................... 25
Kun-Jen Chung, Remarks on nonlinear contractions ....................... 41
Lawrence Jay Corwin, Representations of division algebras over local

fields. I ..o 49
Mahlon M. Day, Left thick to left lumpy—a guided tour ................... 71
M. Edelstein and Mo Tak Kiang, On ultimately nonexpansive

1] 101 401001 93
Mary Rodriguez Embry, Semigroups of quasinormal operators ........... 103
William Goldman and Morris William Hirsch, Polynomial forms on

affine manifolds ....... ... ... 115
S. Janakiraman and T. Soundararajan, Totally bounded group topologies

and closed subgroups .......... . 123
John Rowlay Martin, Lex Gerard Oversteegen and Edward D.

Tymchatyn, Fixed point set of products and cones .................... 133
Jan van Mill, A homogeneous Eberlein compact space which is not

metrizable . ... 141

Steven Paul Plotnick, Embedding homology 3-spheres in
Norbert Riedel, Classification of the C*-algebras associa
TOLALIONS et ettt ettt e
Benedict Seifert, Combinatorial and geometric properties
of irreducible finite-dimensional representations of si
algebras over fields of O characteristic ..............
James E. Simpson, Dilations on locally convex spaces ..
Paolo M. Soardi, Schauder bases and fixed points of non
MAPPINGS « e ettt et e
Yoshio Tanaka, Point-countable k-systems and products
Fausto A. Toranzos, The points of local nonconvexity of
Lorenzo Traldi, The determinantal ideals of link modules
P. C. Trombi, Invariant harmonic analysis on split rank o
applications ...ttt
Shinji Yamashita, Nonnormal Blaschke quotients ......



http://dx.doi.org/10.2140/pjm.1982.101.1
http://dx.doi.org/10.2140/pjm.1982.101.11
http://dx.doi.org/10.2140/pjm.1982.101.11
http://dx.doi.org/10.2140/pjm.1982.101.41
http://dx.doi.org/10.2140/pjm.1982.101.49
http://dx.doi.org/10.2140/pjm.1982.101.49
http://dx.doi.org/10.2140/pjm.1982.101.71
http://dx.doi.org/10.2140/pjm.1982.101.93
http://dx.doi.org/10.2140/pjm.1982.101.93
http://dx.doi.org/10.2140/pjm.1982.101.103
http://dx.doi.org/10.2140/pjm.1982.101.115
http://dx.doi.org/10.2140/pjm.1982.101.115
http://dx.doi.org/10.2140/pjm.1982.101.123
http://dx.doi.org/10.2140/pjm.1982.101.123
http://dx.doi.org/10.2140/pjm.1982.101.133
http://dx.doi.org/10.2140/pjm.1982.101.141
http://dx.doi.org/10.2140/pjm.1982.101.141
http://dx.doi.org/10.2140/pjm.1982.101.147
http://dx.doi.org/10.2140/pjm.1982.101.153
http://dx.doi.org/10.2140/pjm.1982.101.153
http://dx.doi.org/10.2140/pjm.1982.101.163
http://dx.doi.org/10.2140/pjm.1982.101.163
http://dx.doi.org/10.2140/pjm.1982.101.163
http://dx.doi.org/10.2140/pjm.1982.101.185
http://dx.doi.org/10.2140/pjm.1982.101.193
http://dx.doi.org/10.2140/pjm.1982.101.193
http://dx.doi.org/10.2140/pjm.1982.101.199
http://dx.doi.org/10.2140/pjm.1982.101.209
http://dx.doi.org/10.2140/pjm.1982.101.215
http://dx.doi.org/10.2140/pjm.1982.101.223
http://dx.doi.org/10.2140/pjm.1982.101.223
http://dx.doi.org/10.2140/pjm.1982.101.247

	
	
	

