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Strongly continuous semi-groups {Qt} of quasinormal
operators on Hubert space are characterized as follows:
there exist Hubert spaces Sf and -%% a strongly continuous
normal semi-group {Nt} on Ό? and a strongly continuous
self-adjoint semi-group {h(t)} on ^ such that {Qt} is unitarily
equivalent to {Nt}®{h(t)Lt} on ^®^{3T)9 where {LJ is the
forward translation semi-group on £f2(^f) and (h{t)f)(x)—
h(t)f(x) a.e. for each / in

1* Preliminaries* In this paper we characterize one parameter
strongly continuous semi-groups of quasinormal operators. The
major result, found in Theorem 6, bears a marked resemblance to
the characterization of quasinormal operators given by Brown in
[2]. He showed that an operator A is quasinormal (A commutes
with A*A) if and only if there exist Hubert spaces £f and SίΓ, a
normal operator N on £f and a positive operator P on 3ίΓ such
that A is unitarily equivalent to N@SP on ^ f φ / 2 ( X ) where S
is the unilateral shift on s\SΓ) and (Pa?)* = Pxk whenever {xk} e

We shall use the following notation and conventions. £έf is a
separable Hubert space and &{βl?} is the space of continuous linear
operators on ££*. /\£%f) is the Hubert space of all sequences {xn}
where xnz£έf and 2 Ί K | | 2 < <*>. In particular, / 2 = /2(<if), where
^ is the set of complex numbers. <̂ ?+ denotes the set of non-
negative real numbers. £?\3ίf) will stand for the Hubert space
of (equivalence classes) of weakly measurable functions from ^ +

into £έf such that

Γ||/(αO||2dte < <*>. In particular,
Jo

An operator A on έ%f is self-adjoint if A — A*, normal if
AA* — A*A, subnormal if A is the restriction of a normal operator
to an invariant subspace, an isometry if A*A = I where I is the
identity operator on £ίfy a partial isometry if (A*A)2 = A*A, and
unitary if A is a normal isometry.

We use [3] as a general reference on semi-groups of operators.
The set {St} = {St: t e ^?+} is a semi-group of elements of &(££*) if
S f+r = S tSr for all t and r in ^ + and So = J. We say that {SJ has
a certain property (for example, is quasinormal) if each of the
operators St has that property. A semi-group {St} is strongly con-
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tinuous if lim^0 \\Stf — / | | = 0 for each / in Sίf and uniformly
continuous if lim^o \\St — I\\ = 0. The generator of a strongly con-
tinuous semi-group {St} is the (not necessarily bounded) linear
transformation S defined by Sf = l im^ (Stf — /)/*, whenever this
limit exists in the strong topology.

One semi-group which will play a prominent part in the develop-
ment of ideas is the forward translation semi-group {Lt} on <£f\3ίf)
defined for each / in J^ 2(JT) by (LJ)(x) = /(&-«) if x ^ t and
zero otherwise. It is well-known that {Lt} is a strongly continuous
semi-group and the infinitesimal generator of {Lt} is defined by /->
—/' for all / in £f*{βίf) for which / is absolutely continuous, / ' e
£?\£ίf) and /(0) = 0. We shall denote this unbounded operator
by — D. The semi-group of adjoints {Lf} is the backward transla-
tion semi-group and for each / in £f\£ίf)y (Lff)(x) = f(x + t). The
generator of {L?} is defined by / - » / ' for all / in £f\2ίf) for
which / is absolutely continuous and f z£f\έ%f).

The isometric semi-groups (U*Ut = I) are obviously quasinormal.
In [5] Cooper characterizes them as follows: a strongly continuous
semi-group {Ut) is isometric if and only if there exist Hubert spaces
Jzf and J%~ and a unitary semi-group {Wt} on J?f such that {Ut} is
unitarily equivalent to {Wt}φ{Lt} on j S ^ φ ^ 2 ( j r ) . In §2 we
show that {Qt} can be factored into an isometric semi-group and a
self-adjoint semi-group, each of which is strongly continuous and
which commute with one another. This reduces the general problem
of characterizing quasinormal semi-groups to that of characterizing
those semi-groups of the form {HtLt} where {Ht} is a self-adjoint
semi-group commuting with {LJ. In § 3 we complete the character-
ization.

In § 4 we investigate the properties of the infinitesimal generator
of a quasinormal semi-group and give an explicit representation for
it in terms of the characterization of the semi-group.

2* Factoring semi-groups* Let φ be a continuous, almost every
where nonzero function from &+ into ^ and define (Stf)(x) =
(Φ(x)/Φ(x - t))f(x - t) if x^t a n d z e r o o t h e r w i s e f o r / i n £?\5ίΓ).
Under suitable boundedness conditions on φ, {St} is a strongly con-
tinuous semi-group in &(J*?2) [7, p. 334] and is called a weighted
translation semi-group. Such a semi-group is quasinormal exactly
when φ is a multiple of an exponential: φ(x) = Meax [7, p. 340-341].
A straightforward computation shows that {SfSt} is a semi-group
exactly when φ{x + t + s)φ(x) = φ(x + t)φ{x + s) for all x, t, s, or
equivalently, when φ is a multiple of an exponential. Therefore
{St} is quasinormal exactly when {S*St} is a semi-group. In Lemma
1 we show that this equivalence always occurs.
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LEMMA 1. Let {Qt} be a strongly continuous semi-group of
operators. {Qt} is quasinormal if and only if {QtQt} is a semi-
group. Moreover in this case {Q*Qt} is strongly continuous and Qτ

commutes with {Q*Qt} for each r and t.

Proof. Assume first that {Qt} is quasinormal. Every quasi-
normal operator is subnormal [9] and every strongly continuous
semi-group of subnormal operators has a normal extension as a
semi-group [10]. That is, there exists a strongly continuous normal
semi-group {Nt} of operators on a Hubert space S?"9 containing 3ίf,
with NJβέf = Qt. Since Qt is quasinormal, then <§έf is invariant
under N*Nt [4] and since {Nt} is a strongly continuous normal semi-
group, it follows that {N*Nt} is a strongly continuous semi-group
and Nr commutes with N*Nt for each r and t. Consequently,
{QΐQt} inherits the same properties.

On the other hand if we assume that {Q*Qt} is a semi-group,
then for each t and each nonnegative integer n, (Qt*)n(Qt)

n==Q*tQnt=
(Q*Qt)n> which is sufficient to imply that each Qt is quasinormal [6].

By the polar decomposition of an operator A we mean the
unique representation A — UP where P is the unique square root
of A* A and U is a partial isometry such that ker U=ker P=ker A.
A necessary and sufficient condition that A be quasinormal is that
U and P commute [2]. It is not difficult to show that when A is
quasinormal, the polar decomposition of An is UnPn. The continuous
analogues of these assertions are found in the following theorem.

THEOREM 2. For each t in &+ let UtPt be the polar decomposi-
tion of Qt. Then {Qt} is a strongly continuous quasinormal semi-
group if and only if

( i ) {Pt} is a strongly continuous self-adjoint semi-group,
(ii) {Ut} is a strongly continuous isometric semi-group, and
(in) Pr commutes with Ut for each r and t.

Proof. Obviously, if conditions (i), (ii), and (iii) are true, then
{Qt} is a quasinormal semi-group. Moreover, in this case {Qt} is the
product of strongly continuous semi-groups and is, itself, strongly
continuous.

Assume now that {Qt} is a strongly continuous quasinormal semi-
group. Pt is the positive square root of Q*Qt. Therefore since
Pi and PI commute, so do Pt and Pr for all t and r. This implies
that (Pt+rf = (PtPrf- Since the positive square roots are unique,
Pt+r = PtPr and {Pt} is a semi-group of self-adjoint operators. More-
over, since Pt — / = (Pt + I)~\P! — I) and {PI} is strongly continu-
ous by Lemma 1, then so is {Pt}. (We use here the fact that
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\\(Pt + J)-1!! ^ 1 since Pt is positive.)
To show that Ut is an isometry, we only need show that

ker P t = {0}. But if Ptf = 0, then P(1/2)*/ = 0 since Pt is positive.
Thus by induction there is a sequence tn —> 0 such that Pt%f = 0.
Using the strong continuity of {PJ we arrive at / = 0.

Since ker Pt — {0}, any operator commuting with Qt and Pt also
commutes with Ut. Also, Qr commutes with Pt for each r and t by
Lemma 1. Therefore since each of {PJ and {QJ is commutative,
Ur commutes with Pt and Ut for each r and t. Also UtU8Pt+8 =
UtPtU8P8 = Q A = Qί+S = ?7ί+sPt+β so that J7,ί7β = ί7ί+8 on the range
of P ί + S which is a dense subset of Sίf. We have shown that {Ut) is
an isometric semi-group.

To show that {Z7J is strongly continuous we argue as follows:
For / and g in

\<f - Utf, 0>| = | < / - Qtf, g) + (Ptf - f, Ut*g)\

and consequently

Strong continuity of {QJ and {PJ now implies strong continuity
of {Ut}.

REMARK 1. We note that {Qt} is normal if and only if {Z7J is
unitary. This follows from Theorem 2(ii) and the fact that a quasi-
normal operator is normal if and only if the partial isometry in the
polar decomposition of Q is normal.

In view of the nice behavior of the sets {E7J and {PJ when {QJ
is quasinormal, we shall write {Qt} = {Z7J{PJ and call {Z7J the iso-
metric factor of {Qt} and {PJ the positive factor.

3* A characterization of quasinormal semi-groups*

THEOREM 3. Let {Qt} be a strongly continuous quasinormal
semi-group. There exist Hilbert spaces £f and J%Γ, a strongly
continuous normal semi-group {Nt} on <£? and a strongly continu-
ous self-ad joint semi-group {Ht} on SZ&J?*) commuting with {LJ,
such that {Qt} is unitarily equivalent to {Nt} φ {HtLt} on £f φ
^f\J%^). Conversely, any semi-group constructed in this fashion is
a strongly continuous quasinormal semi-group.

Proof. The converse is immediate since {Nt} is trivially quasi-
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normal and {HtLt} is a strongly continuous quasinormal semi-group
by Theorem 2.

Assume that {Qt} is a strongly continuous quasinormal semi-
group. By Theorem 2 {Qt} = {Pt}{Ut} where {PJ is self-adjoint and
commutes with the isometric semi-group {Ut}. Cooper's theorem
[5] tells us that {Ϊ7J is unitarily equivalent to {Wt}@{Vt} where
{Wt} is unitary and defined on £f, and «2f is the range of the
projection l i m ^ UtU*. Moreover {Vt} is unitarily equivalent to
the forward translation semi-group {Lt} on £f\3ίΓ) for some Hubert
space 3ίΓ.

Since by Theorem 2 Pr commutes with Ut for each r and t, then
Sf reduces {PJ. Thus we have {PJ unitarily equivalent to {2£J®
{Ht} where {Kt} is self-ad joint and commutes with {Wt} on «Sf* and
{Ht} is self-ad joint and commutes with {Lt} on £f*{j%*). Thus {QJ
is unitarily equivalent to {JSΓf Wt} φ {l̂ Z/J on ^ © ^ ( X ) , and
{jKfWJ is normal since {Wt} is unitary and commutes with {Kt}.

The semi-group {-HjLJ is completely nonnormal in the sense
that there exists no subspace which reduces {HtLt} and on which
{HtLt} is normal. The last step in characterizing quasinormal semi-
groups is to characterize the self-adjoint semi-groups commuting
with {LJ on j ^ 2 ( ^ Γ ) .

Each h in &(3ίΓ) induces an operator h in &(£?\3ίΓ)) by
(hf)(x) — hf(x) a.e. whenever /e-Sf^JSΓ). Each such induced
operator h commutes with {Lt} and if {h(t)} is a (self-adjoint) semi-

group in ^C_%0, then {&(£)} is a (self-adjoint) semi-group in
^ ( ^ 2 ( X ) ) . (We shall show in Theorem 5 that the strong con-
tinuity of either implies strong continuity of the other.) All of
this leads to the following: {h(t)} is a strongly continuous self-
adjoint semi-group, commuting with {Lt} whenever {h(t)} is a strongly
continuous self-adjoint semi-group on J£T In Theorem 5 we shall
show that this is the only way to construct a positive factor for
a quasinormal semi-group with isometric factor {LJ. The key to
this result lies in the following lemma concerning the commutant
of {Lt}.

The commutant of a collection j ^ of operators on J%Γ is the
algebra j * " = {T: Te^(^T) and TA = AT for all A in

LEMMA 4. Let {Lt} be the forward translation semi-group on
Then {Lt}' f] {Lt}' = {h:h

Proof. We have already observed that each h is in {Lt}\ Since
(L*f)(x) — f(x + t), a quick check shows that each h is also in {I/?}'.

Now assume that H commutes with {Lt} and {Lt}. Without loss
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of generality we may assume that H is self-adjoint since each of
Re H and Im H commutes with {Lt} and {Lt}. Let {en: neA} be a
complete orthonormal basis of the separable Hubert space J?Γ and
identify j^2G_2T) with ί j ^ ) in the usual fashion [8, p. 32].
The coordinate functions of each element / of £f\3ίΓ) are defined
by /n($) = (f(p)f O and the matrix [Tnm] of an operator T on
&>\3ίΓ) is defined by TnrΛf = (T(feJ)n whenever fe^f\ (fem is
the element of £f2(^?~) whose value at x is f(x)em a.e.) Straight-
forward computations show the following:

(1) [(Lt)nm\ is diagonal and (Lt)nn = Lf\ the forward translation
by ί o n ^ 2 = J2^2(ίf);

(2) H*m = Hmn for each n and m since H is self-ad joint;
(3) Hnm commutes with Lf] for each n and m since H commutes

with Lt and the matrix of Lt is diagonal.
But the forward translation semi-group on Sf% is irreducible [1, p.
76]. Thus the self-ad joint operators on iSf2 commuting with {LT)
are the scalar multiples of the identity operator I on c^

7 2. It now
follows from (2) and (3) that Re Hnm, Im Hnm and consequently Hnm

are scalar multiples of /. Let Hnm = hnml. For each / in Jzf\3ίΓ)
and each n

( 1 ) (Hf)n = ΣmeJ Hnmfm = ΣmeJ hnmfm
Let k e 3ίΓ and define f(x) — k for x in [0,1] and 0 elsewhere. Then
(Hf)n(x) = Σimejhnmkm for x in [0, 1] and 0 elsewhere. Also | | / | | =

ll*|| and ΣtneAΣrneΛnM* = Σ*neλ)(Hf)M\2dx == \\Hf\\\ Thusthe
Jo

matrix [hnm] defines a (bounded) operator h on Stl Finally, we see
from equation (1) that for each / in J 2 ^ 2 ( J T ) , (Hf)(x) = hf(x) a.e.
so that H = h.

LEMMA 4 is the continuous analogue of the fact that {A}' Π {A*}' =
{mimeSr} when A is the unilateral shift on 2έf\5ίΓ) [8, §4].
The connection between the unilateral shift on 3$f\3ίΓ) and the
forward translation semi-group on £f\&+, 3ίΓ) is discussed in [11,
p. 29-31].

THEOREM 5. The strongly continuous self-adjoint semi-groups
on Sf\5ίΓ)> commuting {Lt}9 are induced by the strongly continuous
self-adjoint semi-groups on

Proof. First let {h(t)} be a strongly continuous self-ad joint
semi-group on ST. We have already noted that {h(t)} is a self-
adjoint semi-group on ^f\^f), commuting with {LJ. We need to
show that {h(t)} is strongly continuous. Let / be an element of

Then for each x, lim^ h(t)f(x) = f(x), since {h(t)} is
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strongly continuous on 3$Γ. Moreover {h(t)} is bounded on finite
intervals [3, p. 8]. Hence for t in [0,1] ||fc(ί)/(α?)|| <;Af||/(aO|| and
consequently by the Lebesgue Dominated Convergence Theorem,
\\h(t)f — f\\ —>0, showing that {h(t)} is strongly continuous.

Secondly, assume that {Ht} is a strongly continuous self-adjoint
semi-group, commuting with {Lt} on £έ*{3ίΓ). By Lemma 4, Ht =
hit) for some h(t) in &(3ίΓ)* To verify that {h(t)} has the desired
properties we proceed as follows: Let k e 3ίΓ and define / by f(x) =
k if xe[0, 1] and 0 otherwise. Then fe^f\SΓ) and

(1) h(t + s)k = (Ht+8f)(x) = (HtHJ)(x) - h{t){HJ){x) = Λ(ί)Λ(β)fc,

( 2 ) <£Γ#/, /> - Γ<Λ(*)/(αO, /(»)>dα? - <Λ(ί)fc, A?>,
Jo

(3) \\Htf-f ||2 = Γ||*(*)/(») - /(z) fdx = ||A(ί)A - k||2.
Jo

Thus {Λ(t)} is (1) a semi-group, (2) self-adjoint, and (3) strongly
continuous.

We combine the results of Theorems 3 and 5 to arrive at the
continuous analogue of Brown's characterization of quasinormal
operators.

THEOREM 6. {Qt} is a strongly continuous quasinormal semi-
group if and only if there exist Hilbert spaces Jzf and 3$Γy a strongly
continuous normal semi-group {Nt} on £f and a strongly continuous
self-adjoint semi-group {h(t)} on 3ίΓ such that {Qt} is unitarily
equivalent to {Nt} φ {W)Lt} on

COROLLARY 7. Let 3ίΓ and {h{t)} be as in Theorem 6. If
is finite n-dimensional, then there exist real numbers al9 , an such
that {h(t)Lt} is unitarily equivalent to eaitL[0) φ ••• @eantL?\ where
{Z40)} is the forward translation semi-group on S

Proof. Since 3ίΓ is finite dimensional, the generator h of {h(t)}
is bounded, and since h is self-adjoint, h is diagonal. Let {ek} be a
basis of J%Γ such that the matrix of h is diagonal with diagonal
elements alf •• ,αTO. Then {h(t)} is diagonal with diagonal elements
e' i, •••, e*β». Recall from the proof of Lemma 4 that [(Lt)nm\ is
diagonal and (Lt)kk — Lf\ Thus the matrix of h(t)Lt is diagonal
with (h(t)Lt)kk = (etaήL?\ as desired.

We see now that the quasinormal weighted translation semi-groups
introduced at the beginning of § 2 were quite typical. By Corollary
7 each quasinormal semi-group is a finite direct sum of quasinormal
weighted translation semi-groups whenever the auxiliary space 3fΓ
is finite dimensional. We can go a little farther: if {h(t)} is uniformly
continuous and if the infinitesimal generator of {h(t)} is a diagonal
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operator on 3ίί, then the proof of Corollary 7 is valid whether
is finite or infinite dimensional. Consequently we can conclude that
{h(t)Lt} is unitarily equivalent to a direct sum of quasinormal semi-
groups of the form {eatL?]}. However, if 3ίΓ is infinite dimensional
and we choose a self-adjoint operator h on 3ίΓ with no point spect-
rum, then the induced operator h on £f\J%Γ) also fails to have
point spectrum and consequently {ethLt} is not unitarily equivalent
to a direct sum of quasinormal weighted translation semi-groups.

4* The generator of a quasinormal semi-group* Recall that
the (infinitesimal) generator of a strongly continuous semi-group
{St} is the operator S (not necessarily bounded) defined by Sf —
lim^o (Stf — f)/t, whenever this limit exists in the strong topology.
We shall denote the domain of S by &(S). In general if {St} is
the product of two strongly continuous semi-groups {Rt} and {Tt},
the most one can show is that R + T c S in the sense that &(R) f]
&(T)a&(S) and t h a t R+T = S on &(R) Π &(T). However

quite a bit more can be said about the generators of a quasinormal
semi-group and its isometric and positive factors.

THEOREM 8. Let {Qt} = {Ut}{Pt} be a strongly continuous quasi-
normal semi-group and let Q, U, and P be the generators of {Qt},
{Ut} and {Pt}, respectively. Then

( i ) ^ ( Q ) c i ^ ( Q * )
(ii) &(Q) - &(P) n 3f{JJ)
(iii) Q = P + U and Q* = P - U on &(Q) and
(iv) Q*(^(Q2)) c 3f(Q) and QQ* = Q*Q on

Proof. Assertion (i) follows from the fact that || Qtf - / 1 | ^
ZII for all / and *. Moreover Q*f = lim^0 (Qtf - f)/t on

To prove (ii) and (iii) we first prove that 2f{ff)c2f(P) and
P = (1/2)(Q + Q*) on 3f(Q). For each / in Sίf and each t > 0, Ptf-
f=(PtΛ-I)~x[Qt{Qtf-f)Jr{Qtf-f)l But as t-0, (Pt + I)"1

converges strongly to (1/2)1, Qt converges strongly to J, and if fe
^(QX (Qtf - f)/t converges to Qf and (Qtf - f)/t converges to
Q*f. Therefore limt_0 (Ptf - /)/* = (1/2)(Q/ + Q*f), so that / e &(P)
and Pf=(V2)(Qf + Q*f).

Now observe that for each / and t
(2) Qtf - f = Ut(Ptf - f) + (Utf - f).

Equation (2) immediately implies that 3f(P) Π &(U) c ^ ( Q ) and
Γi &(P) a &(U). We have already shown
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These three set inclusions yield &{Q) = &(P)Γ\£?(U). Therefore,
equation (2) can be used to conclude that Qf = Pf+ Uf for all /
in &(Q). Finally since Pf = (1/2)(Q/ + Q*f) for all / in &(Q), we
also have Q*/= Pjf- Uf for all / in 3f(Q).

Note now that if / e ^ ( Q 2 ) , then by definition feSfiff) and
Qfe &{Q). But then fe &(P) and Qfe &(P) by (ii). Consequently
(Ptf - /)/*-> P/ and since P# commutes with Q, Q(Ptf-f)/t-*PQf.
Every generator is closed [3, p. 10] so that Pfe&(Q) and QPf =
PQf. Similarly Vfe&(Q) and QVf= VQf. Finally, since Q*f =
Pf- Vf, we know that Q*fe&{Q). Moreover QQ*f=Q(Pf-Vf) =
PQf- VQf= Q*Q/ by (iii) since Qf

The fourth conclusion in Theorem 3 indicates that the generator
Q behaves very much like a normal operator. In general it is not
true that Q*(&(Q)) c 3f{ff) (for example, if Q = -Z>, the generator
of the forward translation semi-group on .S*2). Thus the assertion
QQ* == Q*Q on ^ ( Q ) is not meaningful. We also note that the
first conclusion of Theorem 3 cannot in general be strengthened.

Although we have not been able to verify it we conjecture that
if Q is the generator of a strongly continuous semi-group {Qt} and
Q satisfies conditions (i)-(iv) of Theorem 8, then {Qt} is quasinormal.

REMARK 2. Since a generator is closed and densely defined [3,
p. 10], it is bounded if and only if it is everywhere defined. It
follows now from Theorem 8(ii) that Q is bounded if and only if
both U and P are bounded. But this is equivalent to {Qt} being
uniformly continuous [3, p. 13] and normal, the normality resulting
from each of the quasinormal operators Qt being invertible (and
hence normal) when Q is bounded.

It is well-known that the generator of a normal semi-group
{Nt} is normal. Applying Theorem 8 we note that the generator of
{Nt} is the sum of the generators of the unitary factor {Wt} and
the positive factor {Kt} of {Nt}. The generator of {Wt} is iT, where
T is self-adjoint [8, p. 93] and the generator of {Kt} is self-adjoint.
To complete our analysis of the generator of a quasinormal semi-
group we need to determine the generator of {h(t)Lt}, the completely
nonnormal part of {Qt}.

COROLLARY 9. Let {h(t)} be a strongly continuous self-adjoint

semi-group on ^έΓ with generator h. The generator of {h{t)Lt} is
h + (-D), where —D is the generator of {Lt} on ^ 2 ( J Γ ) and h is
defined by (kf)(x) = hf(x) for all f in £?\ST) such that f(x)e&(h)
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a.e. and

Proof. By Theorem 8 we know that the generator of {h(t)Lt}
is H + (-D), where H is the generator of {h(t)}. We need to show
that &(H) = &(h) and if fe&(H), then (Hf)(x) = hf(x) a.e.

First let fe&(h). Then l im^ (h(t)f(x) - f(x))/t = fc/(a?) a.e.
and A/(.) eJ5f\3T). But ||(A(t)/(a?)-/(α))/ί|| ̂  s u i w | | Λ ( ί ) | | ||λ/(»)||
[3, p. 88] for all t in [0, 1] and once again the Lebesgue Dominated
Convergence Theorem applies. The result is that (h(t)f — f)/t —> hf
in the £?\3ίΓ) norm. Consequently fe&(H) and Hf = hf.

Now let fe&(H). By [3, p. 10] h(t)f-f= [hζ^Hfds. Con-

S ί JO

h(s)(Hf)(x)ds. But since
S o

h(s)kds = λ(0)fc = fc for all &
in ^ r : Therefore limt_0 (h(t)f(x) - f(x))/t = (fΓ/)(a?) for almost all x.
But then f(x)e&(h) a.e. and Λ/(α?) = (Hf)(x). Thus fe&(h) and
Λ/ = if/, completing the proof.

Using Corollary 9 it is now easy to construct a quasinormal
semi-group such that neither the isometric nor the positive factor
is uniformly continuous. We let {Lt} on £f\s2) be the isometric
factor. The Hille-Yosida theorem [3, p. 36] guarantees that the
unbounded diagonal operator with diagonal ( — 1, —2, •••, —n, •••)
is the generator of a strongly continuous semi-group {h(t)} on J?f2.
The induced semi-group {h(t)} on Jif2(s2) is self-ad joint and strongly,
but not uniformly, continuous. Thus neither factor of {h(t)Lt} is
uniformly continuous.
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