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The simultaneous dilation of a group of contractions on
a Hilbert space by a group of isometries is generalized
here to operators on locally convex spaces. The basic con-
struction, using a quotient of a large direct sum, is found
in the Hilbert space treatment. The particular difficulties
to be overcome and innovations introduced here relate to
the definition of contraction and isometry for operators on
a locally convex space, and to the handling of various topo-
logies on the operators under scrutiny. With these defini-
tions the traditional dilation of a contraction by an isometry
is recovered. Finally we have a variation of the basic dila-
tion theorem particularly suited to semi-groups of operators
on locally convex spaces and to spectral operators.

The subject of dilations of operators appears as far back as the
work of Neumark [5] and Halmos [1]. For operators on a Hilbert
space, very significant results are due to Sz.-Nagy [9]. Dilations
of operators on a Banach space are treated by Ionescu Tulcea [2],
who finds dilations which are spectral operators of scalar type in
the sense of Dunford. The present author proved variations and
extensions of some of these results to operators on locally convex
spaces in his thesis [7], utilizing Ionescu Tulcea’s definition of spectral
operators on such spaces in [3]. For operators on Banach spaces
Ionescu Tulcea’s results have been expanded and developed by
Stroescu [8]. The content of this note is a recasting of the results
just cited to apply to operators on locally convex spaces. The
general idea of constructing a simultaneous dilation of a group of
operators found in [8] and, in a special case, in [2], is carried for-
ward here. The author believes the concepts of contraction and
isometry introduced here for operators on a locally convex space to
be new, though a similar idea for inner-product seminorms appears
in [10]. Schaefer’s work [6] is also quite relevant.

2. The principal theorem. We begin by assuming that E is
a locally convex topological vector space, with the topology gener-
ated by a family I of seminorms, L(E) the algebra of continuous
linear functions from E to E. I is assumed to be closed under
multiplication by any a > 0. We define an equivalence relation~on
I' by: p~ g if there exist positive real numbers M, and M, such
that Mp(x) < qx) < M,p(x) for every xc E. Let I', be the set of
equivalence classes generated by~. By a section of I we will mean
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a subset s(I”) that contains at least one representative of each
element of I,. Next, for each T'€ L(¥) and each pair p, ¢ of ele-
ments of I” we define ||T|],, = sup {p(Tx): g(x) < 1}. Continuity of
T guarantees that for every p there is a ¢ such that ||T]|,, < 1.

DeFINITION 2.1. Given a section s(I") of I', we will say that
T e L(F) is an s(I")-contraction if for every pes(l") there is a ge
s(I") such that ||T'|,,<1. We say that T is an s(I)-isometry if
I Tl,, =1 for every pes(l).

It is clear that when E is a Banach space and |T| <1, then
T is a contraction in the sense just defined, with s(I") = {||-||}.
However for some T such that ||T|| > 1 for the given norm there
may be an equivalent norm on E relative to which ||T|| £1. Such
a T will be a contraction as defined above. If the topology of F
is normable then it is not immediate that a given T has the pro-
perty ||T||£1 for some norm that generates the topology of E.
(The referee has pointed out that if (%, ||-]]) is a Banach space,
then the norm ||z, = sup {||T"x|:n =0, 1, 2---} will do, iff {T™: n=
0,1,2 ---} is pointwise bounded.) See Moore [4] for other applica-
tions of these ideas.

Throughout this section G is a group with identity ¢, and K a
function from G to the positive reals such that K(e)=1 and K(gh)<
K(g)K(h) for all g, he@G.

THEOREM 2.2. Let ¢: G — L(E) be a function with the property
that for some section s(I'), for every pes(l’) there is qes(I") such
that ||8,]l... < K(g) for all geG. Then there is (i) a locally convex
space E containing (a homeomorphic copy of) E, (ii) a matching
p— P of I' with o family I’ of seminorms generating the topology
of E such that s(I") = {p: pes(I")} is a section of I', (iii) @ projection
P of E onto E such that P is an s(I')-contraction and (iv) a repre-
sentation ¢ of G in L(E) as a group of operators such that (v)§,=
I, (vi) 18,155 = K(g) for every geG and every pel’, (vii) Pg,|, =
¢, for every geG, and (viii) E is the closure of the vector space
spanned by {$,2: g€ G, xec E}. Moreover, if every ¢, is a s(I')-con-
traction, then every ¢, is anm s(I)-isometry.

Proof. Let ¢: G — L(E) be a function with the property that
for some section s(I"), ||4,ll,., = K(g9) as hypothesized. Let Y = {y:
y maps G into E, and for each pes(l”) there is M = M,, such
that »(y(9)) < M-K(g) for all geG}. For each pel let p(y) =
sup,.s {K(g)"'p(¥(9))}. Then I’ = {p: pe I'} generates a locally convex
Hausdorff topology on Y. Also, Y is complete if E is. Finally
s(l') = (p: pes(I')} is a section of I, since p ~ g iff $ ~ §.
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Next let @..q E* be the direct sum of the spaces E? where each
Et=FE. A typical element z = (z,) has only finitely many nonzero
components. For each 2, let 02 map G into E by 02(9)=3, ¢,.(2,).
(Generally we will use s and ¢ as summation indices over G, and f,
¢ and h as dummy variables in G.) For each pwes(I"), p(0z(g)=
2 0(6,(2,)). For a suitably chosen ges(I”), the inequality may be
continued, with p(0z(g)) £ 3., K(gt)q(z,) < K(g)>,; K(t)q(z,). Thus 6z ¢
Yand : PE!— Y. Let E be the range of 6 in Y, E the closure
of £ in Y. To embed E in Y, we identify each zcE with v,
defined by y.(9) = ¢,(x), g€ G. Let E, = {y,: € E}. Then «: E,—E,
defined by +(y.) = y.(e) = «, is bijective. The inequalities p(y(y.))=
p(y.(e)) = sup, {K(9)"'p(¥.(9))}= H(y.) and H(y,)=sup, {K(9)™'p(s,(x))} =
q(x) show that 4 is a homeomorphism. Indeed, E, is contained in
E, since y, = 6z if z = (z,) is defined by z, = 0,.2. That is, z is
that element of PE* for which 2z, = x and all other 2, = 0. In this
case 02(9) = ¢,.(2.) = ¥.(9)-

Let Q: £ — E be defined by Q(y) = y(e). Clearly Q agrees with
o on K, so that P = 4'Q: K — E, is surjective, and P> = P. Also
p(Qy) = p(y(e)) £ p(y), so @ is continuous. In fact, we see that P
is a contraction, for s() is a §ection of I' and pel implies
Py 7RW)) = ¢(Qy) = §(y) with §el’, so that || Pl = 1.

Next we define ¢ on E. To do this first define 7, on PE?,
for each h e @, as the translation T,(z) = w iff w,, = 2, for all . As
t runs over G, so does ht. Thus for each ge @G, 0T:(2)(g) = Ow(g)=
2 Gao(We) = 2t $one(Wae) = 2l b1e(2:)=02(gh). Hence 0T, (2)=0 if fz=
0. Consequently we may define ¢,: E—E by é,0 = 6T,, for each
heG. With w = T,(2) as before, since gh runs over G as g does, we
have $($,(62)) = p(6w) = sup, {K(g)'p(6w(g))} = sup, {K(g)'p(6z(gh))} =
sup, {K(9)"0 (S 4 (@)} = sup, (K (gh)™p (S done(2)) K (0)> K (gh)} <
K(h) sup, {K(gh)'p; ¢o1e(2:))} = K(h)P(02). It follows that each ¢,
is continuous, and extends by continuity to an element ¢, ¢ L(E).
Also [|4ll,., = E(h). A

We verify ¢,, = ¢;6, by first examining ¢. With w = T,,(z) so
that wy,, = 2z, for all ¢, we have ¢,,(0z) = 6w. Similarly, ¢,(62)=0u
if u, =z, for all t£. Hence ¢,4,(02) = 6v if v;, = u,. Thus v, =
Uy =% v=w, and @;, = ¢,4,. The extension to ¢ is immediate.
That ¢, = I, the identity on E, is also obvious.

Next, p(62) = p(3s-16,02) S K(h™)B($:62). Thus K(g™)7'<|[d[5,=
K(g) for all geG,pel’. Also, ¢(y.)(9) = 3. 6,(2) = ¢u(%) Where
0z=y, as described above. Hence Q¢,(¥.,)=¢..(x)=¢:,(x), so Py,(y,) =
Yspm- Thus Pz = Pl = ¥ ¢4y, which is (viii), if we consider
< as identifying £ and E,. Finally, the hypothesis that every ¢,
is an s(I")-contraction allows us to choose K so that K(g) =1 for
all g, so that &4, is an s([)-isometry. This completes the proof.
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We remark that the Banach space analogue of this theorem [8]
is an immediate consequence of the above theorem obtained by
taking I = {a]| - |]: @« > 0} and s(I") = || - ||. Consequently, the various
corollaries given by Stroescu also follow. There is one point of
delicacy here. The final conclusion of the Banach space theorem in
[8] seems to the present writer to be a little stronger than the
proof will justify. We propose a weaker theorem from which the
one corollary that relies on this idea (Corollary 1 in [8]) will follow.

COROLLARY 2.3. With E,G, K and ¢ as hypothesized in the
theorem, we assume jfurther that G is a topological group, that K
1s bounded so that for some M < «, and some mneighborhood V of
zero in G, K(g) = M for all gV, and that g — ¢,(x) is left uni-
formly continuous for each xe€E. Then the mapping g — ¢,(x) is
continuous for each x ¢ K.

Proof. As in [8] the density of E, ={3,y:9¢€G,ycE} in E
combined with the uniform bound on K(g) reduces the problem to
that of showing g — ¢,,(y) is continuous for each he G, yc E,. But
this follows from continuity of multiplication in G and the left
uniform continuity assumed.

The point of modifying the hypotheses in [8] is that it seems
impossible to pass in general from E, to E without some kind of
uniform boundedness or equicontinuity or category conditions. With
the corollary and the theorem it is now an easy matter to recover
the theorems and corollaries expounded by Ionescu Tulcea [2].

3. Application in locally convex spaces. One basic way of
approaching the idea of operator valued measures in locally convex
spaces is treated by Walsh [10], where the concept of an equiconti-
nuous spectral measure triple is exploited. We repeat this definition,
in which S is a o-algebra of subsets of X,

DEFINITION 3.1. A spectral measure triple in L(E), E locally
convex, is a triple (X, .5 1) where g is a set function from & to
L(E) which is countably additive in the weak operator topology
and satisfies

(1) MX)=1elL(E)

(2) for D, and D, in &5 p(D, N D,) = p(D)- p(D,).

The triple is equicontinuous if {¢(D): D e S°} is equicontinuous.

Since multiplicativity of the measure is the difficult part of
most applications we present here a dilation theorem suited to this
situation.
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THEOREM 3.2. Let (X, .52 pn) be a triple for which ¢ is an
L(E)-valued set function that is weakly countably additive, for which
X)) =1 and {#(D): De .S’} is equicontinuous. Then there is an
equicontinuous spectral measure triple (X, .S fi) taking values in
LE) and a projection Pe L(E) from E onto E satisfying PE(D)x=
u(D)x for every De.S” and every xc K.

Proof. As pointed out in [10, p. 300] the function ¢ may be
used to define a linear continuous function ¢: f —>§fd;z = ¢, from

B*(X, .&”), the algebra of p-bounded complex-valued .&”-measurable
functions from X to E with g-essential uniform norm, into L(E)
with the strong operator topology. Moreover, ¢ is countably addi-
tive in the strong operator topology. In particular, if [[f,]. is

bounded for f,€ B>, and lim f,(x)=0 for each z ¢ X, then 3 gf.dpx =

Bgr, () — 0 for each wx, uniformly for |g|l. < 1. All that is missing
is multiplicativity of the integral. To achieve this we perform a
construction for the algebra of bounded measurable functions that
generalizes that of the previous section for groups. We take G =
B>(X, &) and K(g) = ||g|l~, the p-essential uniform norm, so that
G is now a Banach space. For each xe¢ E, &' ¢ E’, the mapping f—
<S fdyx, x’> = {¢sx, 2') defines a bounded measure g, . on . satis-
fying S fap, . = {¢;x, «'y for all fe B(X,.&”). Moreover the mapp-
ing (x, 2') > tt,,,, of E X E' > MY (X, &) is &-hypocontinuous, &
being the family of equicontinuous subsets of E’, and M' the space
of bounded measures on .&” with total variation norm. For each
Ac &, welet Wy={xcE:||p,.|| =1 for all o' c 4}.

As in the main theorem of the previous section we consider
first the space @ E*, with each Et = FE for te B*(X, S). This time
we let 6: PE*— IIE' with the same definition: (0z), = >}, ¢,,,(z,,)
with E denoting the range of 6. To obtain a topology in E, we
define for each 4 ¢ & the seminorm ¢, by

q4(0z) = sup | §.<(0z)g, Loy |

the supremum being taken over all elements of PE'* satisfying
(i) {x,:2;+0}< A and
(ii) Zgesosllgllall o]l =1 for every xe W,.
Clearly such elements exist, for if any 2’ ¢ E’ is chosen and (z;) is
defined by «; = d,,«" then (x;) satisfies (i) and (ii) for every A which
contains «’. The only difficulty with ¢, is in verifying that q.(62)
is always finite. To see this we observe that

q4(fz) = sup | %. S bal2), ) |



190 JAMES E. SIMPSON

= sup

Egl ; Sgtd#zt,xé
= sup 3 [l[2 ]l 35 g el ey 1T -

By (), if p, is the gauge function of the polar of A and p,(z,) =0
then || t,,.;|| =0, while if p,(2,) = 0 then z,/p.(2,)e€ W,. Hence by

(ii),
¢4(02) =< sup 3. [[|2 [|=p.(2.) Z I eoll erspgieprnay 1]
= Zt “tprA(zt) < oo,

since the last expression contains only finitely many nonzero terms.
The family Q = {¢,: Ae &} is directed by the inclusion relation on
% and generates a locally convex separated topology on E. We
denote by E the completion of E.

As in the previous section we may now embed E in E by
identifying F with E, = {y,: x € E}, where y, = 6z and 2z, = §,,x as
before. Then g,(y,) = sup |35, {3,%, €;) | < sup 3, || g ||l oo || = Du(),
proving continuity of the mapping +*: 2 —y,. For the converse,
choose 2’ € A and let x;, = §,,2’. We have remarked above that set
{x;} defined in this way satisfies (i) and (ii). For such a set

> (02),, xy = <z, «’>. Hence
Pa(@) = sup|<x, a’) | = sup |3 (62);, 2o | = 0uWa) -

This shows that +r is also continuous and identifies £ with E,.

We may now define @ and P in algebraically the same way as
before, so that Q(fz) = (62), and P = 7'Q. From p,Q(02) =
Sup,:. 4 1<(62),, 'y | < q.(6z), by the same argument just used on 4,
we see that Q is continuous, and so is P. Extend P to E by con-
tinuity.

Turning next to &,: £ — E, we define $,(02) for z = (z,) as
before. That is, its E’-component is ($,(02)), = 3 #ou:(2:). We have
seen in the previous section that &, is well defined (because T,
leaves ker () invariant) and the mapping % — ¢, is linear. Also
P3,(y,) = 0(gy(x)), so that P@,|; = ¢,. To show that §, is continu-
ous, fix Ae® and he B~ with ||k|. < 1. First assume % is never
0 on x, so that f= g implies fh %= gh. For (x;) e @ E'’ satisfying
(i) and (ii), define (y,) by letting s, = «; whenever fheB., y, =0
otherwise. Then (y,)e@ E’ also satisfies (i) and (ii), since
S gl eyl < S AFN | o]l S 11B £ 1 for all we W,. There may
be other sets (y,) also satisfying (i) and (ii). Thus

0.($:02) = sup | 23 done(20), @) |
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= Sup !; <Zt'. ¢0ht(zt); y;h>|
< sup l; (X 8520, Y| = q.(02) .

Second, suppose h e B> satisfies ||A]l. <1 and B = {xe X: h(x) = 0}.
For each ¢ >0 let g, = (1 + &)*(h + ¢Xz). By what has just been
done g,(3,(02) < q.(02). This reduces to q.((f, + £6,,)(02) =
(1 + €)qu(02), or qu(3.(62)) < qu(62) + €[g.(62) + qu($,,(62))]. Since e is
arbitrary, ¢,(0.,(02)) < q.(6z) whenever ||h|l. < 1. It follows that ¢,
is continuous, that it extends to &, on E, and that ¢,($,(62) <
|7]|.q.602) so that & is strongly continuous from B> into L(E).
Also {¢,: |h|l. = 1} is equicontinuous. That &, = g,¢, follows as in
Theorem 1. It is straightforward to obtain # by #WD) = ¢,, for
each De.&”~ The only point still unconfirmed is that # is countably
additive. This is a consequence of showing that if || f,||. is bounded
and converges pointwise to zero then lim, g, z = 0. Since {g,} is
equicontinuous it is enough to show this for ze E, that is, to show
lim, ggf%(ﬁz) =0 for each ze¢@PE*. In fact, it is enough to show
this for 6z = y,c E,. This is because {¢,(y.): h € B*, x ¢ E} spans E,.
To see this, suppose z = (z,) has nonzero components z, = x; for
1<i<%k Then 6z=3%,¢,(y,), since the E’ component of 3, (y.,)
is Pt (22), and >, bge, () = (62),. Returning to 95.1’.,,,(?/:) for e H,
we fix Ae &. Then

9.4(35,(y.)) = sup DIROIPIRCNEN
< sup 2 [{Bos,(2), 25> |
To simplify the notation, let u = u(g, n, ) = ¢,, (). Then
qA(é;fﬂ(ya:)) = sup gl l<u: x;>;
= sup % [P/l glle) 1| 1l | /D a(w), 25> 1]

= sup 3 [P/l g 1)l g lle Il Zurp year,25]
(sup p.4(w/lg [l)Eup 3 |11l | arp 4w,s5l1)

A

A

sup p,(u/l g l..)

SUD Pa($s40111511+(%))

sup |19l = 1p4(8,s,(®)) .

geB=,||gllo=1

AN

The last expression goes to zero by virtue of the strong countable
additivity of ¢ remarked on earlier. Thus &, (x) — 0, completing
the proof.
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