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Let G be a real connected noncompact semisimple Lie
group with finite center; we shall denote the algebras of
Lie groups L by the corresponding lower case German letter,
[. We assume that if G, is the simply connected complex
analytic Lie group with Lie algebra g. (here for any vector
space V defined over R we denote its complexification by
V.; in particular g, is the complexification of g) then GCG..
Fix a maximal compact subgroup K of G. Assume further
that r%(G/K)=1. This paper has two principal sections. In
§I we characterize the invariant transforms of functions
in €2G: F)(FCK, |[F|<c); §1I deals with the characteri-
zation of the orbital integrals of such functions.

Let H be a #-stable Cartan subgroup of G which is maximally
split; in the case 7rk(G) = rk(K) let B in a Cartan subgroup of G
contained in K. It is known that Bc <2, < b*, and to each Ae
<4, the regular elements of %, there corresponds w(4)eG* (we
denote by G? the equivalence classes of those representations whose
K-finite matrix coefficients are &? functions on G). Fix 7,e w(4)
for each A€ &%, If H= H A(Hy = HNK, A a vector group) X c Hy
(the prime denoting the regular elements of Hy) v ca* then we can
define w,,, a principal series representation of G.

We denote by G (resp. @) the set of all infinitesimal equivalence
classes of irreducible admissible (resp. unitary) representations of G.
If = is an admissible representation we denote its global character
by 6.. It is known that 4. is a distribution which is given by a
function which is (real) analytic on the regular set of G; we again
denote this function by 4.. If x, v are equivalent irreducible admis-
sible representations then 6, = 4,. Hence to each weG there cor-
responds a character 4,; characters of the class w = w(A)(4e€.F)
will be denoted 6, or 4, and characters of the class [x,,] will be
denoted 4,,. In §I we introduce the transform

foy = | s.@ s = 0,£) (@ed).

We refer to this as the invariant Fourier transform of f. Let
Sflw(4)) =f(/1) and f(X: v) =f([77:z,,]). Then we show that there exists
a list of properties involving; (a) holomorphy and growth properties
of f(X) as a function on a strip F#,(2/p — 1); (b) relations between
F4) and f(X: y) which reflect the fact that for A¢ <5 such that
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w(d) ¢ /G\” then 7, is embedded in 7, , (for suitable X and v € #,(2/p—1));
which characterize the image of #?(G: F) under the map f—7f.
We denote this space of functions by &*(C(G): F). The most diffi-
cult part of the proof that &?(C(G): F') is the image of &*(G: F)
is the question of surjectivity. We shall now detail the major
steps in the proof of surjectivity.

Let Le&?(C(G@): F) and let us form the wave packets (here let
L(4) = L(w(4)), LX:v) = L([x,,.])

- 1 . ¥
¢ (%) = m”ébd(‘@ dim (527, r) L(A4)6" (%)

+ D(G/A) 3 d(X) dim (%"F)Si L(L: )65 (@)L v)dy

reHy

where if we @G, 67 denotes the sum of the K-Fourier coefficients of
8, corresponding to de€F, d(4) equals the formal degree of =,
D(G/A) and p(X:v) are defined in [8]. Then it is known (cf. [8])
that ¢, € @%G: F) and §,(X: v) = LX: v)(X € Hy, v e ia*), ,(4) = L(4)
(4€ ). In fact more can be said. In the definition of ¢, let the
sum over &% (resp. the integral over ia*) be denoted by ¢% (resp.
7). It can be shown that ¢f ¢7ec&*G: F). Of course even
if L satisfies the requisite properties ¢%, ¢7 will not in general
belong to &?G:F). This follows since if ScC &, érs=
S1es A4 dim (525, ) L(N)GE, F5,={A e F: w(d) e G}, Ft,={de F:
4¢ %,p}’ P10 = Pr.wBps PL» = ¢L,.¥§’p, then ¢f = $ro + SL.0 and PrL.»
is perpendicular to ¢:, in the L’-inner product. In fact we can
write '{5‘,2(G: F) = ?P(G: F) + &*G: F)* (orthogonal direct sum).
Hence if ¢%, ¢% e @*(G: F) then gt,c @ G: F)n &*G: F)* = {0}.
One would hope then to be able to show that ¢% + ¢t ,e &*G: F).
This is not in general possible. Instead we proceed as follows.

We produce given L an auxillary function g,e€C(G: F) such
that (B8.)"(4) = LA)X(4de L) and ¢f_;,,)" € &%(G: F). Hence if we
denote by ¢7, the wave packet formed with the modified function
L, where Ly4) =0 if A€ <55, and Ly(4) = L(A) (4 € 5%,) and set
(here we use the notation of [8])

fL = ¢§—(ﬁL)A + (BL)A + ¢(L19L)A.z: + ¢€0
then we have by [8] that

Frev) = (B p~) A v) + ((Br)a)(X: )
= L(X:v) — (B) (X: v) + (B (X: v)
= LX:v) .

By the orthogonatily relations for the diserete series characters we
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have for A€ <%,
(f) () = (¢ )" (4D) = (BL)(4) = L(4)
and for 4e &%, we have
(f)°(4) = ($2,)(4) = Ly(4) = L(4) .

In §II we introduce the invariant orbital integrals, F; we
denote the restriction of this funection to the regular points of B
(resp. H) by F} (resp. F/). The functions Ff?, Ff are L' on B
and H respectively. Hence we can take their Fourier transforms.
It is known (cf. [19]) that FZ has a simple relation with Fu and
F3(4) a complicated relation with f,. Nevertheless we are able to
transcribe our conditions defining Z?(C(G): F') over onto FF and
F# which then allows us to characterize these functions.

One remark is in order which is explicated in more detail in
§II. The Fourier transforms of F? and F# are defined for all
Ade <%, and X e H, (not just the regular elements). We were then
forced to extend our definition of the invariant transform to include
the singular elements of 4e <% and X e H,.

The importance of these characterizations is, apart from their
natural place in the harmonic analysis of G, that they occur in the
study of the Selberg trace formula. In fact if I' is a discrete
compact subgroup of G, L denotes the left regular representation
of G on L¥G/I') then it is known that

L=3 mw
wel

(i.e., L is discretely decomposable into a direct sum of irreducible
unitary representations with finite multiplicities). A natural problem
is to determine the integers m,.

For fe @€%@) the operator L(f) is of trace class and we have

tr L(f) = 3, m.f(o) .

On the other hand, we can write

tr L(f) = 5 mG/T) | fWdGIG @)

where {y} runs through the conjugacy classes in I", G, = Cent; (),
r,=rngaG, and u(G,/I',) is the volume of G,/T,.

In order to obtain information about the m, (for instance
obtaining limit formulas (cf [4])) one can attempt to express the
right hand side of the last equation above in terms of invariant
transforms for functions f on G whose Fourier transform can be
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explicitly computed; the easiest way to do this is to start on the
Fourier transform side and inverse transform back to the group.
This of course requires the above characterizations.

For other papers on this subject see also [19].

Notation. We retain the notation of the introduction and all
other notation not explained below is as in [15].

Let M be a differentiable manifold, W (resp. (W, 7)) be a finite
dimensional vector space (resp. a finite dimensional double unitary
K-module). The space of infinitely differentiable functions on M
taking values in W and those of compact support (resp. the -
spherical infinitely differentiable functions and those of compact
support) will be denoted by C(M: W) and C>(M: W) (resp. C(M: W: ),
C>(M: W:7)) when W =C we suppress the W in the notations
C=(M: W) and C>(M: W).

If A is an arbitrary set B< A we denote by [B] the compli-
ment of B in A. Further if B is a finite subset of A then we
denote the number of elements in B by the notation |Bj|.

If V is a vector space over B we shall denote by V, its com-
plexification; i.e., V, = V@ zC. Let V* (resp. V;*) denote the real
(resp. complex) dual of V (resp. V).

For an arbitrary Lie group L let us denote by L the set of
equivalence classes of irreducible unitary representations of L.

Suppose now that M is as above and there exists a topological
action of K on M both on the right and left. If geKT let X, denote
the character of ¢ and p,, p, denote the left and right actions of
K on M. We shall write for FC K, | F|<co, C=(M: F') and C;°(M: F)
for the subspaces of C~(M) and C>(M) respectively of those func-
tions f which satisfy the following:

a(@)| coni 1)/ (o Akym)dl = d()| _f(mp,(6) coni Xu(k)dk = F(m)

where d(2) denotes the degree of ¢&. If AcCC>(M) then we shall
write A(F') for the corresponding subspace of C~(M: F).

Let g =f + 8 be a Cartan decomposition of g, # the correspond-
ing Cartan involution of g (we also use ¢ for the involution of G).
Let § be a 0 stable Cartan subalgebra of g with maximal vector
part. Put a =9 N8 and assume dima = 1. If rank (G) = rank (K)
let B be a Cartan subgroup G contained in K.

For any Cartan subalgebra I cg let 4(g,!,) denote the nonzero
roots of the pair (g.,l.). We denote by W(g., ) the group gener-
ated by the reflections s (a € 4(g,, I.)). When ! is understood we shall
simply write W; we refer to W as the Weyl group of the pair (g, I.).
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If we have an action of A on B we denote by B“ the set of
A-invariants in B.

Let M = Cent, (a), M’ = Normy (a). The M and M’ are com-
pact groups, and W(4) = M'/M is a finite group. If XelM, (V, o)
is an M-module in the class X, vea* and we M’ then we shall write
wo and wy for the following

wo(m) = o(wmw) (meM)
wy(H) = v(w'Hw) (Hea).

Obviously if ¢’ is also of class X then wo’ and wo are again of
the same class, i.e., M’ acts on M. Note also that the action of
M’ on o and v depends only on the residue class of w in W(4). If
se€ W(A) we shall have occasion to write so;sX and sy which then
have their obvious meaning.

Let P(A) denote the set of all parabolic subgroups of G whose
split component is A. Fix Q¢ P(4), and let @ = MAN, be its
Langlands decomposition (note that M is as above). We put m, =
m + a and note that Hcm, and is a Cartan subalgebra of the
reductive algebra m,. Let W= W(g,Y,), W, = W(m,, 5,). Then in
a natural way we may consider W, as a subgroup of W.

To each 6-stable Cartan subgroup of G we shall associate a
series of representations as follows. Let @ be as above, @ = MAN.
Let XeM, ocecX vea® and put =,, = 7,,, = Indd(c ®¢&) where
&(a) = e*'°¢» (as the exponential map restricted to 3 is a diffeomor-
phism then if 2 = exp X we write X = log ), and ¢ & ¢, is extended
to @ by making it trivial on N. We shall assume that z,, acts by
right translation and it represents G on 5%, = 5%,,,, in the compact
picture (i.e., functions defined on K), or on &7, = 2%5,,., in the
noncompact picture (i.e., functions defined on G)).

Let mo(v) = <», a)(v eal) where a denotes the unique simple root
of 4(g, a), (-, -> denotes the killing form on a*. Let & =(—1)"a*,
Fo=af and &, =a*. We shall say that ve.&, is regular if
To(v) # 0. We denote the set of regular elements of &, #,, and
F, by F', Z,, and &, respectively.

It is known (cf. [11], Lemma 13.3) that x,, is irreducible for
all ye #'. Moreover w,, is unitarily equivalent to =, for all
ve F ', sc W(A). Hence there exists an isometry .97, 274, —
S, Such that

7 gio(8: Xe V)T, () = T0pp, 0 (X) G 10(8: X2 ) (2€G).

Moreover, for @, s, and X fixed, the function v — .97 (s: X: v) has a
meromorphic extension to ...
Let 6,, denote the global character of x,, It follows from
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the above that 6,,, = 6,, for all Xe M, ve F, sc W(A).

Suppose that rk(G) = rk(K) and B is as before a Cartan sub-
group of G contained in K. Then there exists a lattice &5 C b
such that &% is isomorphic to B. Let W(G/B) denote the finite
group Norm, (B)/B. Then W(G/B) acts on & (the regular elements
of &7). Let &5 be a fundamental domain for this action. To
each Ae_%, Harish-Chandra has associated a representation w(A)
whose matrix elements are L* functions on G (hereafter let us
write G* and more generally G* for the equivalence classes of irre-
ducible unitary representations of G whose K-finite matrix coeffici-
ents are L® summable on G). It is known that if 4,, 4,€ <% then
w(4,) is equivalent to w(4,) if and only if 4, = s4, for some se
W(G/B). In particular, <% uniquely parameterizes the class of
representations corresponding to B. We shall denote by 5%, the
representation space of w(4).

Let us now fix FcK, |F| < . If L is a Lie group, N a
compact subgroup of L, = a representation of L which when restricted
to N is unitary, then we shall write for 6 e N, [z: 6]y for the mul-
tiplicity of & in the direct sum decomposition of 7 restricted to N.
With this notation let us put

M(F) = {Xe M:[0:X]y = 1 for some de F},
G*(F) = {w e G: [w: 8], = 1 for some & ¢ F}

then |M(F)| < o, and I@”(F)I < o, and we have by the Frobenius
reciprocity theorem that [z, ,: 6] # 0 for some dc F if and only if
X e M(F).

Let © be a representation of G on a Hilbert space & If d¢
K let us write 57 for the isotypic component of 57 corresponding
to 8. Further, if Fc K and |F| < o let us put

Fr = ‘,Z; s -
Let
d(m) = do(m) = (det Ad,,,,l,Q)”2 (me MA)
and
o(H) = po(H) = %tr (ady,,) (Hea).
Let

A = A%(Q) = {a e A: 159 > 1)

where a = a, is the unique simple root in 4(g, a).
We shall denote the enveloping algebra of g, by &; if [ is a
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subalgebra of g we shall denote the subalgebra of & generated by
I, and 1 by I. The symmetric algebra of g, will be denoted by
S(g,); elements of .”(g.) will be treated as directional derivatives
of function on g..

L.1. Some properties of representations. Let 0 < p < 2,a€¢®
and re R. For feC~(G) let

ve.(f) = sup £ + o) |af] .
Put
EG) ={feC~(G):v2.(f) < « for all ae®, reR}.

Note that we use only one sided derivatives but we shall now
restrict to a K-finite subspace of Z?(G) on which the two-sided-
derivative seminorms and the one sided induce the same topology.

Fix FC K, |F| < . For §eF let X, denote the character of
0 and set & = d(d) conjX;. Set

TG F) = {f e &7(@): SKEF(Mf(k”x)dk - S 86 fa)dk = f(@)} -

The following is material which we will need in order to form
the auxillary function mentioned in the introduction. The following
results can be found in [10]; all unexplained notations are as in
that paper.

Let © be an admissible representation of finite length. Set
Fr={p=v+ive F:v(H) L0 for all Hea(Q)} where if «a is the
unique simple root of the pair 4(o, a) then a~(A)={Hea: a(H) < 0}.
Also set

I(7) = {ve F: Hom x\(7: 7,,y,,) # {0} for some X eM}.
We denote by &J(w) the set of leading exponents of 7 along Q.

LemmaA 1. (Milicic). Let T be an admissible representation of
finite length. Then the set £ (w) equals the set of minimal ex-
ponents in Iy(w).

REMARK. The ordering in Lemma 2 is as follows. Let L be
the lattice generated by 4(q, a), L* the cone of sums of positive
roots. We write v > p(\, pe #,) if x — pe L™ .

Suppose that 7%(G) = rk(K), b = LA(B). Put @ = 4(g, b) and for
ac® set

ka) = 143, (@, ©)] -

LEMMA 2. (Milicic [10]). Let £ > 0. Then for every AeLj
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the following are equivalent:
(1) |4, a)] = kk(x) for all noncompact x €@
(2) every leading exponent of m, along @ lies in kKo, + F ~.

LemmA 3. ([10], [17]) (i) A necessary and sufficient condi-
tion that w,eG? is that |(4, a)] > 2/p — Dk(a) for all noncompact a.

(ii) If 7,eG? and c(®) is a K-finite matriz coeflicient of m,
then there exists a comnstant D > 0 such that

le(x)| = DEYPteo(x)

Jor some €, > 0.
LEMMA 4. Let e G and 0 < p < 2. Then
2
Lz nF (2 -1) =9
if and only if we Gz/@”.

Proof. It is a surprising fact (although in the rank one case
it is more or less obvious) that one can deduce global estimates
from leading exponents. That is, if for all x e &(x), Ren — Y0, =
0 (on a=(Q))Y > 0, then for any K-finite matrix coeflicient ¢, there
exists a constant D >0 such that |e(x)| < DE"(x). Hence from
Lemmas 2 and 3 above it is easy to deduce that &J(x,) N F.(2/p—1)+
¢ if and only if @ e G¥/G?. The lemma then follows from Lemma 1
above.

From the estimates of [15] it is easy to deduce that if Xe M,
ve #,(2/p — 1) then a — 6, () is a continuous linear functional on
&?(F). The following lemma is also a simple consequence of these
estimates.

LEMMA 5. Let XeM, vez#,2/p—1). If 6,,=6,+ -+ + 0,
where each 8; is an irreducible character then a — 0, (a) is a continu-~
ous linear functional on E*@G).

If XeM, ve &, and G(X:v:x) = 67 (x) then for each Xe M,
G(z) is analytic on &, X G. Let us denote by 67, , the distribution
given by the function G(X: v; o*(v): ).

Fix 0 <p < 2. Let U, denote the union of the sets (1), (2),
and (3) specified in §7 of [15] intersected with #,(2/p — 1). Set
V, = U, U (U I(w)N.F2/p—1). For every XellF), te W),
eV, we GF)\G(F) we can write 6f,. as a sum of irreducible
characters. Let &, denote the set of F-Fourier components of all
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these characters union with the distributions 65.. ., t,  as above
and 0 <k <0,0) —1 (cf. [15])). Recall that 4, € &, (@ € G(F)\G*(F)).
Let <%, be a basis for the linear space spanned by &, chosen
as follows. To the characters 6.(weGF)\G*(F)) adjoint linearly
independent elements from the characters in the set &,. Next
adjoin to this set linearly independent elements from the set
{002 X € MI(F), te W(A), Le Vo 12k =00 —1}. For X,¢,(, k as
usual let us define constants C,(6]..,.: 6)(0 € <&,) by the equation

(1) e = 2, Cp(aitc.k: 6)6 .
0eﬁp
Further for any 6’ e &, let C,(¢": ) be defined by
(2) 6 =3, C0:6) .
0ea'p

For 0<p; <2, p; sufficiently small (j=1,2) U, =1U, and
Vo; 2 Usedrmninr Io(®). Let us fix such a p and replace the nota-
tions V,, &,, &Z,, and C, by V, &, <&, and C.

Fix an open neighborhood V, of 1e G with compact closure. By
their linear independence and analyticity on the regular elements
of G, we can choose for each 0¢c.Z, a;cC>(G: F) such that
suppa, & V, and if

(3) (@, 0) = | a0 @da,

then (ay, 6') =0 if 0'c <, 0’ + 0, and (ay, 6) = 1. Further let us
require that (ay, 6,) = 0(w e G®?). This last condition is permissible
by Lemma 4. The functions a, are by no means uniquely deter-
mined. However, we do have the following result. Define (a, 67, ;)
as in (3).

PropPOSITION 1. With the above motation,
(g, 0%.c,1) = C(OF 1,12 0) .
More generally for any a€C/(G: F),
(a, 07.cc1) = ,,%,C(aitc'k‘ e, 6) .

Proof. (1) is obvious from (1) above. (2) follows from the
bilinearity of the symbol (-, -).

1.2. Definition and properties of the invariant transform.
Let C(G) denote the space of characters of quasi-simple admissible
representations of G which are of finite length. For 6 e€C(G) and
acC2(G: F) let us write
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&) = (a, 6) = L'a(a:"l)ﬁ(x)dx .

Here we use the fact that such characters are given by (analytic)
functions on the regular set G’ of G. For 0 = 0,,, X € M, ve . F we
shall sometimes write &(X:v) in place of &(4,,) and for weG* we
shall frequently write a(w) in place of &(6,). We shall refer to &
as the invariant Fourier transform of .

If G is a complex valued function with domain D < M x &,
such that M(F) x .# C D then set

(1) sollid) = | 05.@G0L it vy (@e )

and
(2)  6s(@) = DGJA) X d)d(X)¢s(X: z) (sum over X e M),

where d(X) = dim &7 .
Let X € M(F') and denote by ,(X) the orthogonal projection of
&%, onto 5727, p.

LEMMA 1. Let acC3(G: F). Then @(X:-) is an entire function
on ., of exponential type. Further,

(1) Q(sX:sv) = @X:v) (se W(A), Xe M, ve .7;)

(2) @:v) =0 if X ¢ M(F).

(8) &w) =0 if weG(F)

(4) defining ¢, as in (2) above we have

(3) FH:v) = A v) AeM(F), ve 7).

Proof. The holomorphy and growth properties of @X:v) (as a
function on .#,) follow easily from the corresponding properties of
Fu(a) (cf. [15]).

(1) follows from the identity 6,, = 6,,,. Statements (2) and (3)
are obvious. To prove (4) let us call the left side of (8) g(X:v).
Then

9o vo) = D(G/A) 3, dX)dr(X)7 (Bl Oxne) -

XeM(F)

By Theorem 2.1 of [8] we have (with W(X,) = {s€ W(A): sX, = X,})
9y v) = D@GIA) >, A(sXo)d #(8Xo)"H$5(8X0), Org0ne)

where the sum over W/W(X,) means over a complete set of repre-
sentatives. Again applying Theorem 22.1 of [8] we have
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gXo: vo) = D(G/A) 3. (Zo)d(sxo)dp(sxo)”rczd(sxo)“ ¥ zperp(l)
X 3 a&(sX,: tsy,) .

tew (slo)

By (38) of Lemma 9.1 of [8] we have the above
=W > > asX,: tsyy)

BEW W (Xg) teW (W (sky)

=|W[™ 3, a(sk sv) | W(sko)|

seWiw{Xpy

= | W[ WX, - [W: W(Xo)]&(xoz V) -

The last lines of equalities follow from (1) above and the obvious
fact that W(sX,) = sW(X,)s™".

In the preceding section we defined the sets & and <& and
the constants C(f,,.,,: §). For any scalar valued function L defined
on the space C(G) such that for each X e M, v — L(X:v) is C* let us
put

(4) Bu(®@) = 3, LO)a(x) (xe@)

where if 6 = 6,,,;,, with & > 0 then by L(6) we intend L(X: t{; 0*(v)).
As | Z| < « then B,eCr(G: F).

PROPOSITION 1. Let a€Co(G: F). Then,
(1) Bak: 4 () = &(X: tG; 04(»))

for all Xe M(F), te W(A), (eV, 0=k =<0,)—1.
(2) Bu) =a) (@eG).

Proof. By Proposition 1.1.1 we have
Ba(k: t; 04v) = 3, 8(0) (@, O vc.x)
=3 a0) 3, C(6%,.: 0')cxs, 0')
fez 6'em

= 3, Cl05 e 0)A0) = AX: tC; 34(v))

Recalling that 6,¢ <# for all ® € G* we obviously have (2), i.e.,
Ba(0,) = 3 a(6)as, 0.) = &(O.) -

PROPOSITION 2. Let acCy(G: F), and a, = a — 5. Then ¢4 €

C(G: F) and hence ¢ = g1, + B2 €C(G: F). Furthermore, Sz v) =
aX:v) for all Xe M, ve Z..

Proof. The proof that ¢;, € C°(G: F') follows from the observa-
tion that for all Xe M, te W(A), LeV, 0=k =<0, —1 we have
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by (1) of Proposition 1 that,
ay(X: tZ; 0% () = 0 .

By Johnson’s theorem (cf. [15]) ¢3,(a) (for a(loga) > 0) can be ex-
pressed in terms of the residues of

O(v: a)Cqg:(1: tv) - tG(X: g, n(1:1:1) (€ W(A)) .

Arguing as in the corollary to Proposition 7.2 of [15] leads to the
compactness of the support of ¢z .
For the last part we note that by (3) we have

Bz v) = ga,(X:v) 4 Ba(d: v) = & v) + Ba:v) = &X: v) .

1.3. The characterization of the invariant transform. Let
notation be as in the preceding sections. For L:C(G) - C such
that L(X:v) = L(6,,) is a C>-function of v for all X e I let us define
for ue (F,), acR,

Vi,o(L) = sup (1 + [v[)*| &£ (X: »; u)|

where the sup is taken over M x Int #2/p — 1).
Let

CHG) = {%r Le M, yelnt .o, (% - 1)} Uit weC) U, .

DEFINITION 1. Let &?(C(G): F'), denote the linear space of all
complex valued functions defined on C?(G) having the following
properties:

(1) for each XeM the function L(X) is holomorphic on
Int Z(2/p — 1)

(2) L(sX:sv) = L(X:v) (s W(4))

(3) L(X:v)=0 if L¢M(F)

(4) L{w) =0 if w¢GYF)

(5) v (L)<  for all ue F(F), acR.

Note that by the uniform continuity of v — L(X: v; w), L(X: v; u)
can be extended to a continuous function on &,(2/p — 1) which we
again denote by L(X:v; u).

DEFINITION 2. Let &?(C(G): F') denote the subspace of functions
Le&*(C(@): F), which satisfy the additional condition,

L(t: t59°0) = | 3 C,0sc0: OLO)

for all XeM, te W(A), (e V, (cf. the remark preceding the defini-



INVARIANT HARMONIC ANALYSIS ON SPLIT RANK 235

tion), and 0 <k < 0.8 — 1. Here if 0 = 8,00 €F, With ¥ > 0
then by L(6) we intend the k'th derivative of v — L(6,,,) evaluated
at v = ¢,

We give &?(C(G): F) the topology generated by the following
seminorms; let L e &?(C(G): F) and let ue S#(F.), ac R and set

pan(L) = Vi (L) + ( 2 [L(@)[)" .

weG2

PROPOSITION 1. The map a—& 1is a continuous map of
&G: F) into *(C(G): F).

Proof. The fact that & is defined on M x Int &, 2/p — 1) and
on 6,(w € G*) together with the holomorphy of &X) on Int .7 (2/p—1)
all follow from the corresponding properties of the transform a —
F (@) (cf. [15]) and the fact that &(X:v) = tr Fx(a)(X:v). Property
(5) follows from the preceding remark together with the observation
that the trace map is obviously continuous and a — F4(a) is con-
tinuous (cf. [15]). This latter comment shows moreover that given
u e S (F,), a € R, there exists 7, a continuous seminorm on &*(G: F),
such that »2 (8) < 7(8) (8 ¥*G: F)). The condition of Definition
2 is obvious from (i) of §I.1.

Finally, the continuity follows on noting that properties (2)
through (4) are obvious for & (a € *(G: F)) and hence as |GXF)|<
oo there exists 7’ a continuous seminorm on & ?(G: F') such that

| 3 (@@ = 7'(a) (aez?(G: F)) .

weG2?

The continuity is now obvious from the first part of the proof.
THEOREM 1. The map a — & is surjective.

Proof. Let LeZ?(C(@): F) and define (cf. §I1.2)
Bu®) = 3, L(B)ao(®) -

én easy computation using Proposition 1 of §I.1 shows that
Br(X: tC; 0*(v)) = L(X: tC; 0*(v)) and B (w) = L(w) (w € G*\G*). In parti-
cular if we put

Ly=L- ‘/B\L
and set (cf. (2) of §1.2 for the definitions of ¢,)
V(%) = 61,(®) + 2 d(@)dr(@)™ Lo(w)f5(x)

weG?
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then reasoning as in [15] we see that +, € Z°%(G: F'). Hence
Pr(®) = P () + B(x) eFNG: F) .

But then

X ) = § (X: v) + Bo(X:v)
= L(X: )

and if weGYG?
F2(®) = B(®) = L(w) .
Whereas if € G? then as B, (w) = 0 (i.e., (ay, 6,) = 0 if we G
V@) = J1(0) = 3 d@)dx(w) L@ )65, 62) -

' eG2
Again using the faet that ,@L(a)) =0 (we G?) and the orthogonality
properties of discrete series we obtain (¢f. Lemma 1, pg. 93 of [5])

Vi(w) = dw)d(w)" L(w) (65, 65) = L(w) .

I1.1. Characterization of F;. We shall make in this section
some further assumptions on G; further in the case of equal rank
we shall pick a compact Cartan subgroup Bc K, and from it con-
struet H. This construction will give us an explicit Cayley trans-
form of b, onto §,. We shall then show how to change the domain
of f from C*®) to L,UH, x a¥U<%,. This change actually extends
the domains of these functions as well as we now explain. It is
known that M = fI,}/ W, where W, = W(m,, §,.)(m = cent, (a)) whereas
in §1, =8, + a, A = expa, (LA(Hg) = §,), Hi denotes the set of
regular elements of H, (we shall make exact definitions below)
and H}/W, denotes the equivalence classes of H) under W,. Also
it was pointed out in §I that G* = <5/W; hence with these new
definitions f will be defined for both singular and regular elements
of <% and Hj respectively. This is necessitated because one must
use all the characters of B and H, in order to expand functions
on B and H,.

Let us assume that we have a group of equal rank; let B be a
compact Cartan subgroup, b its Lie algebra. Fix a singular imagi-
nary root B of the pair (g, b) and a2 point I"eb such that 3 are
the only roots of the pair (g, b) which vanish at I". Let g=Cent ("),
and c,, I, the center and derived algebra respectively of g.

I is isomorphic over R to s/(2, R), and we may select a basis
H* X* Y* for | (over R) such that [H* X*] = 2X* [H*, Y*]=—
2Y* [X*,Y*] = H*. Then b= R(X* — Y*)+ 1, and ) = RH* + ¢,
form a complete set of nonconjugate Cartan subalgebras of g. Put
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pt = exp [V —1(n/4)(X* + Y*)]€G,. Then bt =), if @ = 8*, we have
a(H*) =2 and «a vanishes identically on ¢,; we shall thus again
denote by « the restriction of @« to a = RH*. Order the space of
real linear functionals » on RH* 4 v —1c¢, by requiring that A > 0
whenever MH*) > 0. We then obtain a set of positive roots for
the pair (g, b) by requiring that the pg-transform of such a root be
positive when considered as a root of (g, 9).

Let H be the Cartan subgroup of G associated with b, and let
H° be the identity component of H. Then, setting H, = HN K,
H) =H°NKand A = {expt H*: tc R}, we have H= H A, and H'=
HA. Put Z(A) = KNnexp{iRH*}. Then Z(A) ={1,7} is a group
of order two with 7 =exp[n(X* — Y*)] = exp(imnH*) = 1. We
have H, = Z(A)Hg.

Set b, =¢, b, =RX*—Y*) and let B, B, be the analytic
subgroups of B corresponding to b, and b, respectively. B, and B,
are compact and B, N B,C Z(A4). Since Hy = B, U 7B, (B, = HY), it
follows that H, has one or two connected components according to
whether v lies in B, N B, or not. If M = Cent, (4), M° its identity
component, then M = M°U vM".

If no simple factor of G is isomorphic to SL(2, R), it follows
from the classification of real rank one groups that M is connected,
or equivalently that B,NB,={1,7}. In this case B, =H, is a
maximal torus in M. As in [11] we shall now assume that M is
connected.

Choose a normalized invariant measure dg (%) as in [19] v. II.
If we choose a Haar measure dyb) on B normalized so that the
volume of B is one, then a Haar measure dx on G is fixed by the
formula

[ oo = | rebdvdon@) (reci@.
G G/BJB

Let d,(h) be the Haar measure on A which is the transport via
the exponential map of the canonical Haar measure on the Lie
algebra a associated with the Euclidean structure derived from the
Killing form of g. Since A = {expt H*:tc R} we have d,(h) = c.dt
where ¢, is a positive constant and d¢ is normalized Lebesgue
measure on R. Normalize Haar measure dy (k) on H. so that the
volume of H; is one. Now a Haar measure d (k) on H is fixed
by the formula dy(h) = dy (h)d(h)(h = .k, b € Hy, hy€A). A
G-invariant measure dg (&) on G/H is then determined by the
formula

[J@ds = | rahdidon (feC@).
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If x¢G write b° = zba~* (be B), where & denotes the image of

« under the canonical map of G onto G/B; similarly let A* = zha™
(he H) where now # is the image of 2 under the canonical map of
G onto G/H. If b, h are as above, feC>(G) let

FF®) = 4,0, 76)dos(@)
FF() = duWei®) | 70,

(for definitions of 4, 44, and ¢% one may refer to [19]). By Weyl’s
integration formula we have

[ f@da
= | WG/B)I| TBFFOLD) + | WEIH) | TR WFF0du(h) .

For feC2(G) the invariant integrals have the following pro-
perties;

(1) FP(wd) = det (w)FE(b) (we W(G/B),beB’)

(2) Ff(hhy) = Ff(h') (hy€ Hg, h, € A)

(38) FF(wh) = det (w)FFh) (he H', we W(M/Hy)).
Further, it is known that F? € C=(B’) (here G’ denotes the set of
regular elements of G and for any subset L of G, L' = LN G') and
in general F'7? does not extend to a C~ function on all of B. The
function FfeC~(H’) and extends to a compactly supported C~
function on all of H since (g, §) has no singular imaginary roots.

Recall that B = <%,. The Weyl group Wi(g, b) acts on &% and
hence on B by the preseription

wAH) = Aw™H), wgsh) = os(h) (Heb, de &%)

(here £ (exp H) = '),

We say that de &5 is regular if wd=+ 4 for all w=1 in
W(a., b.); otherwise we say A is singular. The set of regular 4
will be denoted by &% and the set of singular 4 by &%. The
character &, is called regular or singular accordingly.

To each 4e. &5, there is associated a central eigendistribution
0, on G characterized uniquely by certain properties (cf. [19]). 4,
is locally summable on G and analytic on G’. We have

04b) = AB(b)_lwe%‘é,m det (w)&,4(b), be B’ .

If Ac <5 and if 4 is fixed by a nontrivial element of W(G/B), then
8,=0on B'.
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For Ae .5, put s =1/2dim (G/K) and &(4) = sgn{lscp, (4, B)}
where P, denotes a set of positive roots of (g, b). Then

04 = (—1)e(A4)4,

is a character of a representation w(4) in the discrete series for G
and all discrete series characters are obtained in this way.

For xeﬁx, the unitary character group of H,, denote by
log » the linear function on b, = §, defined by

Mexp H) = ¢80 (Heb) .

Let P; be the set of positive imaginary roots of the pair (g, b),
and W, be the subgroup of W{g, b.) = W which is generated by
the Weyl reflections associated with elements of P;. W, may be
identified with the Weyl group of W(m, %..). An element )€ Hj
is called regular if wx == )\ for all w %= 1 in W, and singular other-
wise. If e Hy is singular put e(A) = 1, and if A\ is regular put

s(v) = sgn{ II (logx, )} .
aePI

The unitary character group A of A is isomorphic to R and,
for ve R, we define the corresponding unitary character on A by

h* = e*(log h) (heA).
If ¢ C(A) define its Fourier transform by

d0v ) = @] | MR (h)AuR) (e B v e R) .

If ) is singular it follows from (3) that #(\:v») = 0. We have the
following inversion formula for all ¢ as above;

*) Bk = CEx)™ 3 A)|__etsg(n: v)dv
leHp e
where dv is normalized Lebesgue measure on R.

The following now gives the relation between the Fourier
transform of the invariant integral F'¥ and the invariant transform
of f with respect to principal series characters. Suppose ne Hy is
a regular character, veA, and r, = |P;7|. Then the distribution,

(4) 0:,(f) = @a)*(—1y1e(0FAN: v) (f e C2(G))

is the character of a principal series representation which we denote
by 7,,,- We have then in the notation of §1 that

(5) 6,, = 0,m., (Vregular ) in Hy).
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If A is singular define 6,, by the right hand side of (4). Of course
8,, = 0 for singular An. It follows from the general theory of finite
dimensional representations of semisimple Lie groups that

( 6) 031,; = 01,14 (S € m)

where if MH) = ¢#'°5 then sn(H) is defined to be e‘#*1®,
Note also that from (2) we have

(7) 03,,:01,_, (NGFIK,DGR).
If ¢ L'(B) define
d) = | £®p®)ID (4eLy).

We shall now need the following result.

THEOREM 1. ([11] Theorem 3.19.). Suppose that b,e B’. For
w e W(G/B), we write w™'b, = b,(w)b.{w) where b,(w)e B, and b,(w) =
exp (0,(X* — Y*)eB,. Then, if f€C>(G) we have

FIb) = (=17 3 040)E®) + Lb)

where
If (bo)
= S (VW DI 5 det () 3 e
x (BTN |__00 P2 00 + XTEGON| 03,1 0.}
where

7,(v: 6,) = sinh (@, F m))/sinh (v7)
Ny(v: 8,,) = sinh (v8,,)/sinh (v7) .

Here in the definition of 7, we choose the minus sign if 0 <4, <7
for all we W(G/B) and the plus sign otherwise.
Now for fe&?(G: F) (cf. §I) let us put for 4 &, ne He,veR

Fay = 6,06, Fuiv) = 6,,(5)

Henceforth we shall assume that the invariant transform is defined
on Z, =% UHe x F42/p — 1)U %, (0<p<2). Using the iso-
morphisms G* = %/ W(G/B) and M = H}/W, it is not hard to give
the following characterization of the invariant transform of
&?G: F). First we need one fact; by [1] there exists for each
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Ade <% a distribution S, living on < U H: X # such that
04F) = SA(f)) (feZd(@)).

That is, the values of f on &% are determined by its values on the
characters of the tempered representations of G. It follows from
this that if fe & ?G: F') then

(*) ) = Si(F) .

Let now &?(C(G): F') be defined as those functions L: &, —C
satisfying properties of Definitions 1 and 2 of §I1.8 subject to the
changes that X e M is to be replaced by neHy, @ by A e &5, and
M(F), GZ(F) are to be replaced by the sets Hi(F) and %(F') which
have their obvious meaning. We must then add two further condi-
tions reflecting (*) which we number conditions 6 and 7.

(6) L(wr:vy) = L) we W), L(wd) = L(4) (w € W(G/B))

(7) L(4) = S(L) (Ae%).

We shall now designate the normalized orbital integrals of fe
& (@) by F;; the argument of F, will make it clear whether we
are considering F/” or F/?. Similarly when we take the Fourier
transform of F'; the arguments again will make it clear whether
we are transforming on H or B.

PROPOSITION 1. For all fe %P(Gv: Fy(0<p»p<2
(1) Fy(niv) = @r)yv(—1)ye(W)(f) (v v) (e Hy, ve F,(2/p—1))
(ii) Let
‘Fy(b) = Fs(b) — I;() (beB’)
then

CF) = (1Y) (des) .

Proof. (i) is just a reformulation of (4); (ii) follows from
Theorem 1 and Fourier inversion on B.

Let 0 < » <2 and for ¢: BBUH—C, ¢ of class C*, uc 9, veB,
neZ, and set

Dipwn() = Sup e®P70008 (1 + 6(hy))" | $(haha; w)| + sUD [$(D; V)] .
HKXA ;
Let # be the character of a quasi-simple representation of G.
Set é(a) = f(a) (x e C(@)) and,

2 = [W(G/B)]"" 4,0, 6% =[W(G/B)] 56
On = [WGIH) " dyg-e"-0, 0% = [W(G/H)"Ty-c5-6 .

Then for all fe &(G) we have
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o) = | 0sOFO0) + | 0,0 F)dah)

=, BOFOLE) + | 030FmdLw
= (03, Fy) + (6%, Fy .
The second line follows from; |d,(k)[* = |4dx(h™), |45(0)|* = |4x(071)P.

PROPOSITION 2. Let fe&?(G: F) (0 < p < 2).

(a) F‘,(?\,) 1s a holomorphic function on Int (. (2/p — 1)) for
all ve Hy.

(b) F(n) =0 if n¢ He(F). X

() Fy(sh: sv)=e(sh)/e(W)F (M) (s € W(A), ne Hg, ve F,(2[p—1)).

(d) F;(\: 285 05) = @2r) ™ (— 1) 7e(N) Ssew, Co(Or,ucit 0)(03, Fr)+
(0%, Fy)) for all te W(A), LeV,, 0=5k=<0,() — 1.

(€) °Fyd) =0 if A¢ Z(F).

(£) 72, (F7) < oo for all ue9,veB, neZ.

Proof. Statements (a) through (e) all follow from (Ai) of Pro-
position 1 together with the corresponding properties of f.
For (f) we note that

Fy(hh) = Cri@m)™(—1)1 S, s(WMRy) S"_"we-mmw( o vy .

Hence, if w9 then we can WArite u =&, where £ € 9, and 7, € .
From this and the fact that f(x:v) = 0 for \ ¢ H(F) we have,

F f (hth; ’Ll/)
= const 3 3, s(VzTlog )|~ e oy (—in)() (v v)dy

o
Jj AeHp(F —oo

Using the holomorphy on Int (%,(2/p — 1)) and continuity on .7, (2/p
—1) we have on letting o, = (2/p — 1) that

F (oo )
= const 3, 3% (M, (Tog MM(hye 0743

xgle—“mhzwyj(— 0, — N —p, — i) .

On can easily deduce from Lemma 8.1 of [15] that the function
Yy —( f)A(x: —p0, — V) belongs to the Schwartz space of R for all
e H (F) and that there exists for every n e N (here we are com-
bining the fact that the map f— f is continuous with Lemma 8.1
ibid.) a continuous seminorm v on Z?(G: F') such that

1+ o) >

J

Smwe——iu(loghz)vj(_pp —_ @p)(j\'/)’\()\, ——‘Op — ’l:l))dl) é V(f) .
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As iﬁK(F)I < oo then it is clear that there exists a continuous
seminorm v, on & ?(G: F') such that
sup 7001+ o(hy))"| Fylhuhss w)| S 2(F) -

HgxA

Let ve®B. Then from Theorem 11 of [18] it follows that vF
has finite jump discontinuities on B — B’; moreover, the jumps can
be bounded by derivatives of F(|,. Given the continuity of the
map f— F;, as a map of &*(G: F') into C~(B’) (cf. [18] § 12.2), and
the continuity of the map f— F; as a map of &?(G: F') into C~(H)
we see that there exists a continuous seminorm v, on Z?G: F')
such that

| F5(b; v)| = v(f) -
Hence (f) follows.
DEFINITION 1. Let D= B'UH and for every 0 < p <2 let
I?(D: F') denote the space of all functions ¢: D — C such that 4|, €
C>(H), 6|z € C*(B"), ¢(h;hy)=¢(h;h;*) (hy € Hy, h, € A), g(wh)=det (w)s(h)

(heH,weW,), ¢(wdb) = det (w)g(b)(we W(G/B),beB’), and if beB’
and,

(9) L) = (¢/2)| W(g., B ™ det (w) X, (2m)" .

weW(GIB refiy
[F@@D - go vm: 0.dy + XT8N | Jou: vmv: 0.dv |

(9, . defined in Theorem 1), and
(10) °p(b) = ¢(b) — Iy(b)
then

(1) =0 if e H(F).

Further we require that ¢ satisfy properties (a) through (d) and
property (f) of Proposition 2 (with ¢ replacing FY).

We topologize I?(D: F') using the seminorms %Z,,. As a result
of Proposition 2 and its proof we have the following.

COROLLARY. The map f— F; is a continuous map of *(G: F)
into I*(D: F') (0 < p < 2).

We now come to the principal result of §II.

THEOREM 2. The map f— F; is a continuous surjection of
#?G: F) onto I°(D: F).
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Proof. All that remains to be shown is the surjectivity. Let
s I?(D: F) and put
L\ v) = @u)(—1)1e(\d(h:v)  (ne Hy, ve F(2/p — 1))
L(6) = (03, ¢) + (0%, ¢) (6eB,)
L(4) = (—1)¢(4) (de )

here °¢ is defined as in (10).

As ¢(h,h,) is of exponential type in h, for each A, € Hy it follows
from the classical Paley-Wiener theorem applied to the vector group
A that for each ne H, v — L(X: v) extends to a holomorphic function
on Int (&#,(2/p — 1)) and that for each u e S (F,), a€R

sup | L(v: v; w) [(1 + [p])* < o0

where the sup is taken over ()\,,Av) e H, x Int (Z.2/p — 1)). Further,
since e(wh) = e(\) (we W, ne€ Hy) it follows from property (¢) of
Proposition 2 that,

L{wx: v) = LOw:v) and  L(sk: sy) = L(\: )
Lvv)=0 We¢ Hy(F)) and L(4) =0 (d¢ F(F)) .

We have for te W(A), LeV,, neHg, 0 <k <0, — 1 that
L(X: 185 04(v)) = (2m)"*(—1)"7e(M)g(\: €55 0*(v))
= 0% Cp(gl,tc,k: 0)((0§, ¢) + (02” ¢))
= 3] Cp(ex,tc,k: 6)L(6) .
05@1,
It follows from Theorem 1 oi;f § 1.3 that as Le&?(C(G): F') there
exists fe &*G: F') such that f = L. Hence by Proposition 1,
Fy(niv) = 2r)2(—1)16(\F (0 v) = d(n: v) .
Therefore
Fy(h) = ¢(h) (ke H).
We also have
Fy(4) = (—1yf(4) = °4(4) .
It follows that
‘Fy(b) = °¢(b) (beB’).
Hence,
Fy(b) = °Fy(b) + I;(b) = °¢(b) + Iy(d) = ¢(b)  (beB’).

The last line of equalities following directly from the first part of
the proof and (9) and (10).
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