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A HAUSDORFF-YOUNG INEQUALITY FOR
B-CONVEX BANACH SPACES

J. BOURGAIN

A vector valued analogue of the classical Hausdorff-
Young inequalities for characters of groups is obtained.

Introduction. For Banach space notions and terminology not
explained here, we refer the reader to [5], [6] and the several papers
which are mentioned further on. Let us start by recalling the defini-
tion of type and cotype of normed spaces. We say that a normed
space X, || || has type p (resp. cotype @) if there is a constant M < <
(resp. 0 > 0) such that for every integer m and every choice of vectors
(®)isssm in X

(1) 1z ecmipar} ™ = s oy
respectively
(2) 1= s@mlras}” 2 s ol

holds, where (¢;) denotes the sequence of Rademacker functions. Take
further py the supremum of all types 1 <p <2 of X and ¢, the
infimum of all cotypes 2 < ¢ < «. The space X is said to have type
(resp. cotype) provided p, > 1 (resp. gy < ).

The numbers p, and ¢, have a geometrical interpretation. As
shown in [7], if X is an infinite dimensional Banach space, then /?x
and 7% are both finitely representable in X (see also [8]). In par-
ticular, X has type (resp. cotype) if and only if #*' (resp. #*) is not
finitely representable in X. The first of those properties is also
called B-convexity, a notion which was introduced in [4]. Very
recently, see [12], it was proved that if X is B-convex, then p, and
gy~ are conjugate exponents, i.e., (Py)™ + (@)™ = 1.

One may ask for an analogue of (1), (2) if the Rademacker fune-
tions (¢;) are replaced by distinet Walsh functions wy = I];c5¢; on
the Cantor group {1, —1}" or, more generally, by characters of an
arbitrary compact abelian group (integrating with respect to the
Haar measure). In this spirit, we will prove

THEOREM 1. If X is a B-convex Banach space, there exist some
7>1 and § < o and constants M < c, 6 > 0, such that

1/2 o
(3) 1z am@ira}” = s )
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and
1/2 .
(4) 1z am@ira” 2 o o

whenever {X,}r.r 18 a finitely supported sequence of elements of X and
I’ the spectrum of a compact abelian group.

Theorem 1 is a Hausdorff-Young theorem for B-convex spaces
and gives a new characterization of B-convexity. In [1], Th. 1 was
established for the circle group, under the strong hypothesis that
X is super reflexive. Again, we may introduce 7, as the spremum
of the » and q, as the infimum of the §. A standard duality
argument shows then that 7, and §,. are conjugate. Obviously
Pr = Ty and ¢y < @y and there is not necessarily equality. If we
take indeed for X the space L* with 2 < a < o, then p, = 2 and
Px = af(a — 1).

I wish to thank V. D. Milman and G. Pisier for some valuable
discussions concerning the content of this paper.

Preliminary results. This section deals with certain facts which
are needed for the proof of Theorem 1. The first result concerns
an extremal representation of uniformly bounded orthogonal systems
of real functions. It seems to be important in the proof of Theorem
1 except in the case of the group {1, —1}* for which it is not needed.
Assume (2, P) a diffuse probability space and fix a positive integer
n. Consider the Banach space B = @, L*(P) obtained by taking direct
sum of »n copies of the real L*(P)-space. Let & be the subset of B
consisting of the n-tuples & = (&, - - -, £&,), where the &, are uniformly
bounded by 1, of mean zero and mutually orthogonal. Obviously &
is norm closed in B.

We agree to call extreme point of a set in a vector space any
point of the set which is not midpoint of two different points of
the set.

The next fact is elementary. We omit its proof since it is
essentially contained in [2] (see Lemma 2.3).

PROPOSITION 1. The set & of extreme points of & consists of
the £ = (&, -+, &) tn & such that each function &, 1s *l-valued.

Our aim is to obtain each member of ~ as barycenter of a
measure supported by &. Remark that since ¢ is not weakly compact
in B one can not use simply Choquet’s integral representation theorem
(cf. [9]). However, we can apply here a more general result due to
G. Edgar (see [3]), in order to obtain the following
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PROPOSITION 2. Forall & = (&, * -+, &,) in & there exists a Borel
probability measure tt on & for which

&=\ mptdn) for k=1,

It is important here to notice that the measure P may be taken
separable. The space B is then a separable Banach space with the
so called Radon-Nikodym property in which frame Edger’s theorem
applies. Actually, the result as stated in [3] requires also the con-
vexity of the norm-closed set but in fact this additional hypothesis
is never used in the proof which is based on a martingale technique.
Let us point out that the measure p obtained by Edgar’s argument
also satisfies for k=1, ---, n

£(0) = Sm(t)/z(dn) for almost all teQ.

If A is a finite set, denote #A4 its cardinality. For positive
integers d, let D, be the set {1, —1}*. The next fact which we need
is the following probabilistic lemma.

PROPOSITION 3. Let £ = (&, ---, &,) be a fixed member of & and
fix a positive integer d. For each ee€D,; and ¢, -+, t; in £, define

Ay, -t =1k =1, -, m &) =¢, -+, &) = &} .
For gk > 0, consider the following subset of 2°
Q4= {{t, -, ts) € 2% |$AE;, -+, t0) — 27| £ kn for all € D,} .
Then the product-measure of 2, in 2° is at least

A — @+ V' 2)e)2m)" .

Proof. For fixed ecD;, we estimate the measure of the set
C.={{ty, -, t) € 2% |$Ay, -+, td) — 27| > £n} .
Define the following funections on £2°
fo = constant function »

and for j=1,.--,d

Filty -+t = ST + et -
Clearly

falty, <=, ta) = 2%A(y, <+, t2) .



258 J. BOURGAIN

Hence

2 (A, 0 - 2mian - dta = {1n = AIS ] 150 - 51
Now

Jimn — fi = & % ﬁ [1 + e&al®l&n(tss0)

i=1

and thus, by orthogonality of &, .-, &,
[1fs = 2 S | {1550 = St} ats - at,
= 2jS {Ek_‘, }jl [1 + 5«;51:@1:)]} dt1 e dti

= 2/ .
Therefore,

(s -nlsSveve s X,

which shows that C. has measure less than (1 + 1/2)/k(2'n)"*, by
Chebychef’s inequality. The statement of the proposition is now
immediate.

Assume X a normed space. Let » be a type of X* and denote
C the type constant (ef. [1]).

PROPOSITION 4. If d is a positive integer and (f.)..p, are func-
tions in L (2, P), then

R slisaroral” s care max {20 (Fat)
where p' = p/(p — 1).

Proof. 1If (x.)..p, are vectors in X, then
(SIS e V> = OV IS, [l |47

This follows from a duality argument, seeing the ¢, as Rademacher
functions. Hence, by Holder’s inequality,

313 e [Py < Cavey 243 (w1
Replacing the z. by functions f., we find

slisarora” = carmmzels | 1n0 ra)”

from which the required estimate follows.
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Proof of the main result. It is clear that only part [3] of
Th. 1 must be shown. Indeed, if X is B-convex, then X* is also
B-convex and [4] for X follows from a dualization of [3] for X*.
For a given (complex) Banach space X, we introduce the numbers

P(n) = sup {S H,eZA %, Y(t) ]lmlt}”2 .

The supremum is taken here over all subsets 4 of the spectrum
I'\{1} of a compact abelian group G and families (#,);., in the unit
ball of X, assuming #4 = » and v, # %, for v, %= 7, in 4.

Remark that the Haar measure of G can be taken diffuse, since
G may always be replaced by the group G x {1, —1}*. The proba-
bility space (2, P) considered in the previous section will be the group
G equipped with its Haar measure.

Our purpose is to establish a recursive estimate on the o(n).
For verI', denote Rev (resp. Im<) the real (resp. imaginary) part
of the character v. By the assumptions on 4, both sets

{Rev;ved} and {Im7v;7ved}

belong clearly to ¢ introduced in the previous section. Application
of Prop. 2 gives Borel probability measures g and v on & satisfying

Re” = Sgﬂu(dg) and Tm7v = Sg,u(dg)
for all ve 4.

Using the fact that the v are group characters and the trans-
lation invariance of the Haar measure, we get by substitution

1= e pal™
= {{{ 1= ey dude}
< ([ 1= Rev@mrt Fauat” + {[{ 12 I v | dud]
+ {S SS |3 &)y (w) | 2dudtp(d§)} v
+ {1 12 aewrt pavamas)™ .

1/2

Our next purpose is to estimate an integral of the form

{SS 1> &ty r(w)|du dti» 12

where (&);., belongs to &.
Let p be a type for X* with type constant C. Then
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PROPOSITION 5. For any positive integer ¢, the following in-
equality holds

174

{115 s@wreiraud}” s carzeem + 2 L) o).

Proof. Take in Prop. 3 k=27% and let 2,=2, ., which has measure
at least 1 — (1 +172)(8Yn)"
We have

>

3=1

IV 1= ewam Fanat = [{2 3| IS etonmw aufat, - - at,

= s 2| IS atoerw | du}

(t,estgre2o U

_— d \1/2
+ @+ D(E) gy
n
For fixed (¢, ---, t;) in 2,, we estimate

L= li1samrorad”

which can be rewritten as
1/2
LIz s oo
i e 7€,

where ¢ ranges in D; and 4, = A.(¢, - -, t,).
Taking f. = Xires, %7, application of Prop. 4 gives then the es-
timate
/!
Cd-g max{g s m(u)uwu}” < Cd-"2p(8A,)
& red,
§ Cd—1/p12d¢(2_d+l'n)

by definition of the set 2.

Combining inequalities, the required result is obtained. As a
consequence of Prop. 5 and the estimate given above involving the
extremal representation, we find

PROPOSITION 6. For any positive integer d, the following holds

P(n) < 207221 + 4(87”!)%(%) .

PROPOSITION 7. Assume p > 1 a type for X* and C the corre-
sponding type constant. Then, there is a constant K < « such that
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(*) P(n) < Kn*—* for all =
where 1/t = LTC)Y.
Proof. Fix a positive integer d satisfying (160)” < d < A7C)*
and let K be such that
o(n) < Kn'® for = < 84,

We now show that (*) also holds for % > 8‘** proceeding by
induction. Application of Prop. 6 yields namely

P(n) < 2Cd~7 20 K2~ 'n)"* + %¢(n)

and thus
Pp(n) < 8CdV*P25Kn'~* < Kn'™*

by the choice of d.

If now 4 is a finite subset of I, one may write 4 as disjoint
union 4 = A" U A" of two sets A’, A” such that v, # %, for v, # 7. in
A" or in A”. Hence

1= 2rora]” s 2000 = 2x@ay— .

Using a well-known technique (see [10], Lemma 2), [3] of Th. 1
follows for any % < 1/(1 — 7).
This concluded the proof of Th. 1.

Remarks and questions.

1. It is clear from the preceding that the numbers 7, ¢, M, ¢
in Th. 1 only depend on the type and type constant of X and X*.

2. Theorem 1 has an analogue if we replace the L%-norm by the
Li-norm for 1 < a < . If pis a type for X* with type constant
C, the same argument yields

(I1ser®a™ = Mos(S 10019

for some constant M, ;, provided

- A0 i o< p<y

P<mcy —1 © “=%=7
and

P < (170)" if a>9p".

a7y -1
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3. One may ask the question whether or not Th. 1 remains
valid for arbitrary ortonormal systems. Using results of [11], a
positive solution should solve the following conjecture affirmatively.

Question. Does there exist for all p > 1 and C < « some ¢ > 0
and K < c such that

d(E, ((dim E)) < K(dim E)"*

holds if F is a finite dimensional normed space of type p with type
constant C? (d is the Banach-Mazur distance).

The fact that the characters is heavily used in our argument.
Using Prop. 3 and Prop. 4, one can show estimates for general orto-
normal systems, but these are only of logarithmic order.
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