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Ptolemy's inequality in R2 states: If A, B, C, D are
vertices of a quadrilateral, then

AB-CD+BC AD^ AC-BD

with equality only ABCD is a convex cyclic quadrilateral. A
real normed linear vector space is called ptolemaic if

for all x, y and z in the space and it is called symmetric if

\\λx-y\\ = \\x-λy\\

for all unit vectors x, y and real λ. The equivalence of these
two properties of a normed linear space is established and
related results concerning: distance functions in such spaces
are proven.

Although Ptolemy's inequality is a useful tool and has often
been applied (e.g., see [7]) it does not seem to be as widely known
as would be desirable. Recently Apostol [1] gave an elegant proof
of this inequality using complex numbers in the plane (see also [2],
[4] and [5]) and extended the inequality to Rz thereafter. Apostol
used Ptolemy's inequality to show that the chordal distance

x ' ' i/l + | α | V l + |δ | 2 '

defined for pairs of complex numbers, satisfies the triangle inequality
X(af b) + X(b, c) ̂  X(a, c). In an earlier paper, Schoenberg [9], answer-
ing a problem raised by Blumenthal, proved the following: If S is
a real, seminormed space which is ptolemaic then the seminorm is a
norm which springs from an inner product. In this note we wish
to treat these results from a different point of view. We provide
simpler proofs for some of the earlier results and extend a recent
result of Schattschneider [6], [8].

2* DEFINITION 2. Let X be real normed linear space with norm

IHI
( i ) X i s c a l l e d p t o l e m a i c i f f o r e v e r y x, y , z e X w e h a v e

(2.1) \\χ-y\\ \\z\\ + | | y - 3 | H N | ^ \\χ-z\\ \\y\\.

( i i ) X i s c a l l e d s y m m e t r i c i f f o r e v e r y x , y e X w i t h | | g | | =

389
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\\y\\ = 1 and for all real λ we have

(2.2) l | λ * ~ y | | = | | s -

3* THEOREM 1. Let {X, || ||) be normed linear space. Then X
is ptolemaic if and only if X is symmetric.

Proof. Suppose X is symmetric. Let x, y, ze X; we wish to
prove (2.1). Clearly we may assume without loss of generality that
IN II > 0. II2/II > 0, | | s | | > 0. Now, by (2.2),

(3.1)
\v\

jc y

M l 2 HvlP
and similar relations hold for the pair of vectors x and z and for y
and z. Thus (2.1) is equivalent to the triangle inequality for the
vectors x/\\ x ||2, y/\\ y ||2 and z/\\ z ||2 in X. Conversely, if X is ptolemaic,
then by [9], Xis a real inner product space. (2.2) is then immediate,
i.e., X is symmetric.

COROLLARIES, (i) Rn (n = 1,2, •••) is ptolemaic, for, it is
clearly symmetric.

(ii) If X is a symmetric normed linear space, then the distance
function

(3.2) d(x, y) = - M 4
INI

defined for ||a?||, \\y\\ > 0, satisfies the triangle inequality. For, by
(3.1), the triangle inequality for d(x, y) follows from the triangle
inequality in X.

We note that the proof of Ptolemy's inequality using the sym-
metry condition is, in Rn, equivalent to using inversion.

4* The chordal metric* We shall establish the following
extension of ApostoPs result mentioned in our introduction.

THEOREM 2. Let {X, | | . ||) be a normed linear space. If X is
symmetric, then the chordal distance given by

) = Us - v\\
)K ' J {a + β\\x\\ψ^{a

is a metric for every a > 0, β ^ 0, p ^ 1.

Proof. We only have to prove that X satisfies the triangle ine-
quality. Let xf y, z be arbitrary vectors in X. Then by the triangle
inequality
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(4.2) α . ( | | s - y\\ + \\y - z\\)p ̂  a \\x - z\\>,

and since X is ptolemaic,

(4.3) /3 ( N H I * -v\\ + \\χ\\-\\v - *||)» s /3 ( | | » | | | l * - *\\Y .

Adding (4.2) and (4.3) and using Minkowski's inequality, we get

\\x - y|| (α + / ^ N i r * + ||v - * | |(α + β\\x\\p)1/p

^ | |α j - s | | (α + /9||i/||')1/1'

which proves that X in (4.1) satisfies the triangle inequality.

5* A multiplicative metric* We shall establish the following
extension of Schattschneider's result [8].

THEOREM 3. Let (X, || ||) be a normed linear vector space. If
X is symmetric, then the distance function defined by

= 0 , if

is a metric for every p ^ 1.

Proof Denote, for brevity, \\x - y\\ = a, (\\x\\p + \\y\\p)1/p = a',
\\V - «H = 6, (llvll* + l l « | | ' ) V f = V a n d II« — α;II = o, ( | | « | | ' + \\x\\>γ> =
<?'. We only need to prove the triangle inequality for d(x9 y), i.e.,
with the above notation, that

(5.2) ^ + -^^4-

σ! V cr

By the triangle inequality of the norm,

(5.3) a + b ^ c ,

and by Ptolemy's inequality,

(5.4) α||*| | + & N l ^
If c' ^ a9 and c' ^ 6', then (5.2) follows from (5.3). If cr £ a' and
c' <; 6', then, one sees easily, || y\\c'^\\z || α' and || ?/1| c' ̂  || α; || 6'. Hence,
(5.2) follows from (5.4). In the remaining case, c' is between α' and
V, say a' < c' < V or equivalently ||a?|| < | | j / | | < \\z\\. Now, using
the inequality up + vp ^ 21"ί)(u + v)p and then (5.3) and (5.4), we
obtain

aV + ba' ^ 2^
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A s i m p l e c a l c u l a t i o n s h o w s t h a t , b e c a u s e of | | & | | < \\y\\ < \\z\\, w e
h a v e

W h e n c e ,

aV + bo! ^ o!V— .
c

This proves (5.1) in the last case.

COROLLARY. The multiplicative distance defined by (5.1) is a
metric in Rn{n = 1, 2, •) and, in fact, in any inner product space.
(Schattschneider's metric corresponds to the special case p = 1 in Rn.)

We do not know whether or not d(x, y) of (5.1) is a metric for
every p ^ 1/2. We can prove that the triangle inequality holds if
p = 1/2 and fails if p = 1/4.
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