ON COMPACTIFICATIONS OF METRIC SPACES WITH TRANSFINITE DIMENSIONS

LEONID A. LUXEMBURG
ON COMPACTIFICATIONS OF METRIC SPACES WITH TRANSFINITE DIMENSIONS

LEONID LUXEMBURG

In this paper we prove that every separable metric space X with transfinite dimension $\text{Ind} X$ has metric compactification cX such that

$$\text{Ind} cX = \text{Ind} X, \quad \text{ind} cX = \text{ind} X, \quad D(cX) = D(X),$$

where $\text{ind} X(\text{Ind} X)$ denotes small (large) inductive transfinite dimension, and $D(X)$ denotes the transfinite D-dimension. More generally, let T be a set of invariants (ind, Ind, D). We consider the following problem:

Let $R \subseteq T$ and X be a metric space. Does there exist a bicom pactum (complete space) $cX \supset X$ such that

$$\mu(X) = \mu(cX) \text{ for } \mu \in R.$$

When it is not so, we give counterexamples. We give also necessary and sufficient conditions of the existence of transfinite dimensions of separable metric space in terms of compactifications.

0. Introduction. In this paper we consider three transfinite invariants: $\text{ind} X$, $\text{Ind} X$, $D(X)$ where $\text{ind} X$ (respectively, $\text{Ind} X$) is small (respectively large) transfinite inductive dimension and $D(X)$ is D-dimension, see [3], Henderson.

Definition 0.1.

(a) $\text{ind} X = -1 \iff X = \emptyset$.

(b) We assume that for every ordinal number $\alpha < \beta$ the class of spaces X with $\text{ind} X \leq \alpha$ is defined. Then $\text{ind} X \leq \beta$ if for every point $x \in X$ and a closed subset F, $x \notin F \subset X$, there exists a neighborhood O_x of x such that

$$O_x \subset X \setminus F$$

$$\text{ind} FrO_x \leq \alpha < \beta.$$

We put $\text{ind} X = \min \{\beta: \text{ind} X \leq \beta\}$.

(c) The dimension $\text{ind}_x X$ of a space X in a point $x \in X \leq \beta$ if there exists a base $\{O_x, \lambda\}$ in this point, such that

$$\text{ind} FrO_x < \beta.$$

We put $\text{ind}_x X = \min \{\beta: \text{ind}_x X \leq \beta\}$.

1 FrA denotes the boundary of A.

399
DEFINITION 0.2. (a) \(\text{Ind} \, X = -1 \iff X = \emptyset \).

(b) Let for every ordinal number \(\alpha < \beta \) the class of spaces \(X \) with \(\text{Ind} \, X \leq \alpha \) is defined. Then, \(\text{Ind} \, X \leq \beta \) if for every pair of disjoint closed subsets \(F \) and \(G \) there exists a partition\(^2\) \(C \) between \(F \) and \(G \) such that

\[
\text{Ind} \, C \leq \alpha < \beta .
\]

We put

\[
\text{Ind} \, X = \min \{ \beta : \text{Ind} \, X \leq \beta \}.
\]

We note that the dimension \(\text{ind} \) we can also introduce using partitions, because if \(x \in \overline{V} \subset X \setminus F \) and \(V \) is open, then \(F \cap V \) is a partition between \(x \) and \(F \).

Let us introduce some notations. For every ordinal number \(\beta \) the equality \(\beta = \alpha + n \) holds, where \(\alpha \) is a limit number or 0, and \(n = 0, 1, 2, \ldots \). Then we set

\[
K(\beta) = n , \quad J(\beta) = \alpha .
\]

DEFINITION 0.3. See [3], Henderson. We put \(D(\phi) = -1 \). If \(X \neq \emptyset \) then \(D(X) \) is the smallest ordinal number \(\beta \) such that there exists a collection of sets

\[
\{ A_\xi : 0 \leq \xi \leq \gamma \}
\]

satisfying the following conditions:

(a) \(X = \bigcup \{ A_\xi : 0 \leq \xi \leq \gamma \} \).

(b) Every set \(A_\xi \) is closed and finite dimensional.

(c) For any \(\delta \leq \gamma \) the set

\[
\bigcup \{ A_\xi : \delta \leq \alpha \leq \gamma \} \text{ is closed in } X .
\]

(d) \(J(\beta) = \gamma , \text{Ind} \, A_\gamma \leq K(\beta) \).

(e) For any point \(x \in X \) there exists the greatest number \(\delta \leq \gamma \) such that \(x \in A_\delta \).

If there is no such number \(\beta \) we put \(D(X) = \Delta \), where \(\Delta \) is an abstract symbol such that \(\Delta > \beta \) for any ordinal number \(\beta \) and \(\beta + \beta = \beta \times \Delta = \Delta \times \beta = \Delta \).

If conditions (a)-(e) hold then equality (a) is called a \(\beta \)-\(D \)-representation of a space \(X \).

Hence, for any space \(X \) the dimension \(D(X) \) is either an ordinal number or the symbol \(\Delta \).

For any compact metric space \(X \) having dimension \(\text{Ind} \, X \)

\(^2\) A partition \(C \) in \(X \) between sets \(A \) and \(B \) is a closed set in \(X \) such that \(X \setminus C = U \cup V, U \cap V = \emptyset, A \subset U, B \subset V, \) for some open in \(X \) sets \(U \) and \(V \).
In $\text{X}^D(\text{X})$ (see [3], Henderson). For further results concerning D-dimension see [11], Luxemburg. Inequalities

\[\text{ind X} \leq \text{Ind X} \]

and

\[(1) \quad D(\text{X}) \leq D(\text{Y}), \quad \text{ind X} \leq \text{ind Y} \quad \text{for X \subset Y} \]

are evident for all topological spaces. However, the dimensions ind X and Ind X are not defined for every space. For example Hilbert cube I^ω has no inductive transfinite dimensions [5], p. 51 (Hurewicz and Wallman). Let

\[Z = \bigcup_{n=1}^{\infty} I^n \]

be the discrete union of Euclidean cubes I^n. Then obviously, $\text{ind Z} = \omega_0$. However the dimension Ind X does not exist. But obviously

\[(2) \quad \text{if for a space X the dimension Ind X exists, then the dimension ind X also exists}^8. \]

There are compact metric spaces X such that $\text{ind X} < \text{Ind X} < D(X)$, see [12], [13], Luxemburg.

In what follows all spaces are assumed to be metric and all mappings to be continuous if otherwise is not stated.

A space X we call finite dimensional if $\dim X \leq n$ for some $n = -1, 0, 1, 2, \ldots$, where $\dim X$ is the covering dimension4. For finite dimensional metric space X

\[(3) \quad D(X) = \text{Ind X} = \dim X \]

and

\[(4) \quad D(X) = \text{Ind X} = \text{ind X} = \dim X \]

if X is separable.

Definition 0.4. For any space Z we denote by $P(Z)$ a closed subset such that $Z \setminus P(Z)$ is the union of all finite dimensional sets, open in X. For spaces X and Y with $\text{diam} Y < \infty$ we denote by

8 For compact metric space X the dimension ind X exists if and only if the dimension Ind X exists (see [22], Smirnov).

4 $\dim X \leq n$ if for any open covering U of a space X there exists an open refinement V of U having the order $\leq n + 1$, i.e., the intersection of any $(n + 2)$ elements of V is empty.
$C(X, Y)$ the space of all continuous mappings $f: X \to Y$ with the metric $d(f, g) = \sup \{\delta(f(x), g(x)) : x \in X\}$, where δ is the metric on Y. We note that the space $C(X, Y)$ is complete if Y is complete. We consider a Hilbert cube I^ω to be the set of all sequences $\{x_i\}, 0 \leq x_i \leq 1$, with the metric, defined by the equality

$$d(\{x_i\}, \{y_i\}) = \sum_{i=1}^{\infty} |x_i - y_i| \cdot 2^{-i}, \quad i = 1, 2, \ldots.$$

The number x_i is called the i-coordinate of a point $x = \{x_i\} \in I^\omega$.

1. On homeomorph mappings to the Hilbert cube.

Theorem 1.1. (The Compactification Theorem). Let X be a separable space and a fixed countable system of closed sets $L_i, (i = 1, 2, \ldots)$ such that dimensions $\text{Ind} L_i$ exist.

Then the set Ψ of all homeomorphisms $f: X \to I^\omega$ of the space X to the Hilbert cube I^ω such that for each i the equalities

(a) $\text{Ind} L_i = \text{Ind} \overline{f(L_i)}$
(b) $\text{ind} L_i = \text{ind} \overline{f(L_i)}$
(c) $D(L_i) = D(\overline{f(L_i)})$
(d) $f(P(X)) = \overline{f(X)}$

are satisfied contains an everywhere dense set of type G_δ in the space $C(X, I^\omega)$.

In the case when the dimensions $\text{Ind} C_i$ are finite, this theorem has been proved in [8], Kuratowski. See also [14], Luxemburg for infinite dimensional case.

Corollary 1.1. For any separable space X having dimension $\text{Ind} X$ there exists a separable compactification X such that

$\text{Ind} cX = \text{Ind} X, \text{ind} cX = \text{ind} X, D(cX) = D(X), P(cX) = P(X)$.

Proof. It is sufficient to put in Theorem 1.1

$L_i = X, \quad cX = \overline{f(L_i)}$.

For the proof of this theorem we need some preliminary lemmas.

Lemma 1.1. Let A and B be two fixed closed sets in the space X and put

$C = A \cap B$.

Then for any $n = 1, 2, \ldots$ the set ϕ_n of mappings f from the space
X to a compact space Z such that

\[f(A) \cap f(B) \setminus O_{1/n}f(C) = \emptyset \]

is open in \(C(X, Z) \).

Proof. We suppose that the set \(\phi_n \) is not open in \(C(X, Z) \). Then for some \(f \in \phi_n \) there exists a sequence of mappings \(g_k \in C(X, Z) \setminus \phi_n \), \(k = 1, 2, \ldots \), such that

\[
\lim_{k \to \infty} g_k = f
\]

and

\[
\overline{g_k(A)} \cap \overline{g_k(B)} \setminus O_{1/n}g_k(C) \neq \emptyset.
\]

Therefore for any \(k \) there exists a pair of points \(a_k \in A, b_k \in B \), such that

\[
\delta(g_k(a_k), g_k(b_k)) < \frac{1}{k}, \quad \delta(g_k(a_k), \overline{g_k(C)}) \geq \frac{1}{n} - \frac{1}{k}
\]

(3)

where \(\delta \) denotes a metric on \(Z \). Since \(Z \) is a compactum there exists a point \(p \in Z \) such that

\[
p = \lim_{k \to \infty} g_{k_i}(a_{k_i}) = \lim_{k \to \infty} g_{k_i}(b_{k_i})
\]

(4)

for some subsequence of integers \(k_i \). Since \(\lim_{k_i \to \infty} g_{k_i} = f \) we have

\[
p = \lim_{k_i \to \infty} f(a_{k_i}) = \lim_{k_i \to \infty} f(b_{k_i}).
\]

(5)

Consequently

\[
p \in \overline{f(A)} \cap \overline{f(B)}.
\]

(6)

Let us show that

\[
\delta(p, \overline{f(C)}) \geq \frac{1}{n}
\]

(7)

where \(\delta(p, \overline{f(C)}) = \inf \{ \delta(p, x) : x \in \overline{f(C)} \} \).

We suppose on the contrary. Then there exists a point \(q \in C \), satisfying the condition:

\[
\delta(f(q), p) < \frac{1}{n} - \varepsilon
\]

(8)

\footnote{O_{\varepsilon}M denotes \(\varepsilon \)-neighborhood of the set \(\mathcal{M} \).}
for some $\varepsilon > 0$. By virtue of (2), (5) we can find an integer k_i such that

\begin{equation}
(9) \quad d(g_{k_i}, f) < \frac{\varepsilon}{4}, \delta(p, g_{k_i}(a_{k_i})) < \frac{\varepsilon}{4}, \frac{1}{k_i} < \frac{\varepsilon}{2}.
\end{equation}

From (3), (8), (9) it follows that

\[
\frac{1}{n} - \frac{1}{k_i} \leq \delta(g_{k_i}(a_{k_i}), g_{k_i}(q)) \\
\leq \delta(g_{k_i}(a_{k_i}), p) + \delta(p, f(q)) + \delta(f(q), g_{k_i}(q)) \\
< \frac{\varepsilon}{4} + \frac{1}{n} - \varepsilon + \frac{\varepsilon}{4} \\
= \frac{1}{n} - \frac{\varepsilon}{2}.
\]

Consequently $1/k_i > \varepsilon/2$, which contradicts the condition (9). Thus, condition (7) holds. Consequently from conditions (6), (7) it follows that

\[p \in \overline{f(A)} \cap \overline{f(B)} \setminus O_{1/n}(f(C)), \]

which contradicts condition (1). Hence the set ϕ_n is open in $C(X, Z)$. Since obviously

\begin{equation}
(10) \quad \phi = \bigcap_{n=1}^{\infty} \phi_n
\end{equation}

we obtain that ϕ has type G_δ in the space $C(X, Z)$. \hfill \Box

Lemma 1.2. If in Lemma 1.1 we take $Z = I^\omega$, then the set ϕ of all mappings $f: X \to I^\omega$ such that

\[\overline{f(A)} \cap \overline{f(B)} = \overline{f(C)} \]

is everywhere dense G_δ-set in $C(X, I^\omega)$.

Proof. First we show that the set ϕ_n is everywhere dense in $C(X, I^\omega)$. Let $f: X \to I^\omega$ be an arbitrary mapping and $\varepsilon > 0$. We can find an integer k such that

\begin{equation}
(11) \quad 2^{-k} < \frac{1}{4n}, \quad 2^{-k} < \varepsilon.
\end{equation}

Let us define a mapping $g: X \to I^\omega$, such that

\begin{equation}
(12) \quad \delta(f, g) < \min\left[\frac{1}{4n}, \varepsilon\right].
\end{equation}
We put
\[(13) \quad U = f^{-1}(O_{1/n} \overline{f(C)}) .\]
Then the set U is a neighborhood of the set C in the space X. Therefore,
\[(A \setminus U) \cap (B \setminus U) = \emptyset .\]
Consequently, there exists a function $\varphi: X \to [0, 1]$ such that
\[(14) \quad \varphi(A \setminus U) = 0 , \quad \varphi(B \setminus U) = 1 .\]
We will define a mapping $g: X \to I^\omega$ by the equalities
\[(15) \quad g_i(x) = f_i(x) \quad \text{for} \quad i \leq k , \quad g_{k+1}(x) = \varphi(x) ,
\quad g_i(x) = 0 \quad \text{for} \quad i > k + 1 .\]
where g_i (respectively f_i) is i-coordinate of g (respectively f). Inequality (12) follows from (11), (15). Let us show that
\[(16) \quad \overline{g(A \setminus U)} \cap \overline{g(B \setminus U)} = \emptyset .\]
We assume on the contrary. Then there exist two points $a \in A$ and $b \in B$ such that
\[(17) \quad \delta(g(a), \overline{g(C)}) \geq \frac{1}{n} , \quad \delta(g(b), \overline{g(C)}) \geq \frac{1}{n} , \quad \delta(g(a), g(b)) < 2^{-(k+1)}
\]
where δ is a metric in I^ω. From condition (11), (15) it follows that
\[
\delta(\overline{g(A \setminus U)}, \overline{g(B \setminus U)}) \geq 2^{-(k+1)} .
\]
Consequently
\[\text{either } g(a) \notin \overline{g(A \setminus U)} \text{ or } g(b) \notin \overline{g(B \setminus U)} .\]
Let, for example $g(a) \notin \overline{g(A \setminus U)}$, then obviously $a \notin (A \setminus U)$ and, consequently $a \in U$. From condition (13) it follows that
\[
\delta(f(a), \overline{f(C)}) < \frac{1}{4n} .
\]
Consequently, for some point $c \in C$
\[(18) \quad \delta(f(a), f(c)) < \frac{1}{4n} .\]
By virtue of (12), (18)
\[
\delta(g(a), \overline{g(C)}) \leq \delta(g(a), g(c)) \leq \delta(f(a), f(c)) + \delta(f(a), f(c)) + \delta(f(c), g(c)) < \frac{3}{4n} < \frac{1}{n} .
\]
which contradicts the condition (17). Consequently equality (16) holds and \(g \in \phi_n \). We have proved that the set \(\phi_n \) is everywhere dense in \(C(X, I^\omega) \). By Lemma 1.1 \(\phi_n \) is open in \(C(X, I^\omega) \). Since, obviously

\[\phi = \bigcap_{n=1}^{\infty} \phi_n \]

then by Baire's theorem \(\phi \) is an everywhere dense \(G_\delta \)-set.

Let \(X \) be a space, then we denote by \(G_X \) the set of all subsets \(A \subseteq C(X, I^\omega) \) such that \(A \) contains an everywhere dense \(G_\delta \)-set in \(C(X, I^\omega) \). We note that from Baire's theorem it follows that

(19) \[\text{if } A_i \in G_X (i = 1, 2, \ldots), \text{ then } \bigcap_{i=1}^{\infty} A_i \in G_X. \]

In what follows we shall use the assertion (see [5], Hurewicz and Wallman).

(20) If \(X \) is a separable space, then the set of all homeomorphisms \(f: X \to I^\omega \) contains an everywhere dense \(G_\delta \)-set in \(C(X, I^\omega) \).

The following two lemmas can be proved by well known standard methods. However we shall prove them for the completeness.

We remind the reader that \(g: X \to Y \) is an \(\varepsilon \)-mapping if diameter \(g^{-1}(y) < \varepsilon \) for any point \(y \in Y \).

Lemma 1.3. Let \(K \subseteq X \) be a compactum in a space \(X \), then the set of all mappings \(f: X \to I^\omega \) such that the restriction of \(f \) to \(K \) is a homeomorphism is an everywhere dense \(G_\delta \)-set in \(C(X, I^\omega) \).

Proof. Let \(\phi_s \) be a set of all mappings \(f: X \to I^\omega \) such that the restriction \(f_K \) of a mapping \(f \) to \(K \) is an \(\varepsilon \)-mapping, and \(\psi_s \) be a set of all \(\varepsilon \)-mappings \(g: K \to I^\omega \). Then \(\psi_s \) is open and everywhere dense in \(C(K, I^\omega) \), see [5]. Consequently \(\phi_s \) is open in \(C(X, I^\omega) \). Let us show that \(\phi_s \) is everywhere dense. Let \(f: X \to I^\omega \) be a mapping and \(\delta > 0 \). Since \(\psi_s \) is everywhere dense there exists an \(\varepsilon \)-mapping \(g: K \to I^\omega \) such that

\[d(f_K, g) \leq \frac{\delta}{2}. \]

Since \(I^\omega \in AR \) there is an extension \(\bar{g}: X \to I^\omega \) of a mapping \(g \). We put
Then, obviously \(d(h, f) \leq \delta/2 < \delta \) and since \(g(x) = (x) \) for \(x \in K \) we have \(h \in \phi \). Therefore, the set \(\phi \) is open and everywhere dense in \(C(X, I^\omega) \). Our lemma now follows from (19) and the equality

\[
\phi = \bigcap_{n=1}^{\infty} \phi_{1/n} .
\]

Lemma 1.4. Let \(A \) be a closed subset of a space \(X \) and \(\dim A \leq n \), then the set \(\phi \) of all mappings \(f: X \to I^\omega \) such that

\[
\dim f(A) \leq n
\]

is an everywhere dense \(G_\delta \)-set in \(C(X, I^\omega) \).

Proof. Let \(K \) be a set of all mappings \(f: X \to I^\omega \) such that

\[
d_{n+1}(\overline{f(A)}) < \varepsilon
\]

where \(d_{n+1}(\overline{f(A)}) \) is an \((n + 1)\)-coefficient of Urysohn, i.e., the inf of \(\varepsilon > 0 \) such that there is a covering of \(\overline{f(A)} \) with open sets of diameter \(\varepsilon \) and of order \(\leq n + 1 \).

Then, clearly

\[
\phi = \bigcap_{n=1}^{\infty} K_{1/n} .
\]

Therefore by virtue of (19) it is sufficient to prove that \(K_{1/n} \) is open and everywhere dense set. Let \(f \in K_{1/n} \) then there exists a finite collection of open in \(I^\omega \) sets \(V = \{ V_1, \ldots, V_s \} \) such that

\[
\overline{f(A)} \subset \bigcup_{i=1}^{s} V_i, \quad \text{diam} V_i \leq \frac{1}{n}, \quad \text{order} \quad V \leq n + 1 .
\]

It is evident that the set 0 of all mappings \(f: X \to I^\omega \) satisfying the condition (21) is a neighborhood of \(f \) in \(C(X, I^\omega) \). Thus, \(K_{1/n} \) is open. Let us prove that \(K_{1/n} \) is everywhere dense. Let \(g: X \to I^\omega \) be a mapping. Since \(\dim A \leq n \) we can construct by Kuratowski method [8] a mapping \(f: X \to I^\omega \), such that

\[
d_x(f, g) < \varepsilon \]

and \(f(A) \) is contained in \(n \)-dimensional polyhedra. Therefore \(\dim \overline{f(A)} \leq n \) and \(d_{n+1}(\overline{f(A)}) = 0 \). Consequently, \(f \in K_{1/p} \). Thus the set \(K_{1/p} \) is everywhere dense in \(C(X, I^\omega) \). \(\square \)
2. Further lemmas for the compactification theorem.

DEFINITION 2.1. A space X is called weakly infinite dimensional if for any countable sequence of pairs $\{F_i, G_i\}$ of closed sets in X ($i = 1, 2, \ldots$), $F_i \cap G_i = \emptyset$, there exists for every i a partition C_i between F_i and G_i such that

$$\bigcap_{i=1}^{k} C_i = \emptyset,$$

for some $k = 1, 2, \ldots$.

Every finite dimensional space is clearly weakly infinite dimensional.

DEFINITION 2.2. A countable system of open sets U_n, $n = 1, 2, \ldots$, in a space X is called convergent if for any discrete in X sequence of points $\{x_i\}$, $i = 1, 2, \ldots$, there exist numbers p and $n, p, n = 1, 2, \ldots$ such that $x_i \in U_n$ for $i \geq p$.

If the system $\{U_n\}$ is convergent then the set $X \setminus \bigcup_{n=1}^{\infty} U_n$ is called the limit of this system. Let a space X be weakly infinite dimensional and

$$U_n = \{x : x \in X, \text{ there exists a neighborhood } O_x \ni x \text{ such that } \dim O_x \leq n\}.$$

Then we have, see [19], Sklyarenko:

(S1) The system of sets $\{U_n\}$ is convergent and has a compact limit.

COROLLARY 2.1. If a space X is infinite dimensional and weakly infinite dimensional then

(i) the set $P(X)$ is a nonempty compactum.

(ii) $\text{Ind}(X \setminus \text{OP}(X)) < \omega_0$ for any neighborhood $\text{OP}(X)$ of a compactum $P(X)$.

Proof. The compactness of $P(X)$ follows the equality

(2) $$P(X) = X \setminus \bigcup_{n=1}^{\infty} U_n$$

and Theorem (S1). Let $P(X) = \emptyset$. Since X is infinite dimensional, there exists a sequence of points x_i in X such that

(3) $$x_i \in U_{n_i} \setminus \{U_j : j < n_i\}, \quad n_{i+1} > n_i, \quad n_i = 1, 2, \ldots.$$

From condition (3) it follows that a sequence $\{x_i\}$ is discrete in X but by Theorem (S1) the system $\{U_n\}$ is convergent. We obtain the contradiction. Consequently $P(X) \neq \emptyset$.

If condition (ii) does not hold then there exists a sequence of points \(\{x_i\} \) with property (3) and such that \(x_i \in X \setminus \text{OP}(X) \), consequently a sequence \(\{x_i\} \) is discrete in \(X \) and we again obtain the contradiction. Therefore the property (ii) holds.

We shall use the following theorem, see [21]; Smirnov.

(SM1) If the space \(X \) has dimension \(\text{Ind} \, X \) then \(X \) is weakly infinite dimensional.

Lemma 2.1. *If sets \(A, B \) are closed in \(X = A \cup B \) and the set \(B \) is finite dimensional, \(\alpha \geq \omega_0 \) and \(\text{Ind} \, A < \alpha \) (\(\text{ind} \, A < \alpha \)) then \(\text{Ind}(A \cup B) < \alpha \) (\(\text{ind}(A \cup B) < \alpha \)).*

This lemma directly follows from [10] (Levshenko), Theorems 1, 1', p. 257.

Lemma 2.2. *If \(B \) is a bicompactum (not necessarily metrizable) and \(C \subset B \setminus \text{P}(B) \) is a closed subset, then \(\dim C < \infty \).*

Proof. From Definition 0.4 it follows that every point \(x \in C \) has a closed finite dimensional neighborhood \(V(x) \). The lemma now follows from the compactness of \(C \) and the sum theorem for dimension \(\dim \).

Lemma 2.3. *Let \(X \) be an arbitrary normal space (not necessarily metrizable) and \((A, B) \) be a pair of two closed disjoint sets in \(X \). Let also \(P \subset X \) be a closed set and \(C \) be a partition in \(X \) between \(A_1 = A \cap P \) and \(B_1 = B \cap P \). If the set \(C \) has a type \(G_3 \) in \(X \) then there exists a partition \(C_0 \) in \(X \) between \(A \) and \(B \) such that \(C_0 = C_1 \cup C_2 \), where sets \(C_1 \) and \(C_2 \) are closed in \(X \), \(C_1 \subset C, C_2 \subset X \setminus \text{OP} \) for some neighborhood \(\text{OP} \) of the set \(P \). (We do not suppose here that \(A_1 \neq \emptyset \) and \(B_1 \neq \emptyset \).)

Proof. Since \(C \) is a partition between \(A_1 \) and \(B_1 \) there are such open sets \(U, V \) of that

\[
U \cap V = \emptyset, \quad X \setminus (U \cup V) = C, \quad A_1 \subset U, \quad B_1 \subset V.
\]
Consequently
\[(A\setminus U) \cap P = (B\setminus V) \cap P = \emptyset .\]

Since \(X\) is a normal space, there exists a closed neighborhood \(W\) of the set \(P\) such that
\[(5) \quad W \cap ((A\setminus U) \cup (B\setminus V)) = \emptyset \]
and \(W\) has a type \(G_δ\). We put
\[(6) \quad U_1 = (W \cup A \cup B) \setminus (B \cup (W\setminus U)), \quad V_1 = (W \cup A \cup B) \setminus (A \cup (W\setminus V)) .\]

Then sets \(U_1, V_1\) are open in \(W \cup A \cup B\). Since \(A \cap B = \emptyset\), by virtue of (4), (5), (6)
\[U_1 \cap V_1 = W \cup A \cup B \setminus A \cup B \cup (W\setminus U) \cup (W\setminus V) = \emptyset ,\]
\[A \subset U_1 , \quad B \subset V_1 .\]

Consequently the set
\[C_i = (W \cup A \cup B) \setminus (U_1 \cup V_1) = (A \cup (W\setminus V)) \cap (B \cup (W\setminus U)) = W \cap C \subset C\]
is a partition in \(W \cup A \cup B\) between \(A\) and \(B\). Since the sets \(W\) and \(C\) are \(G_δ\), the set \(C_i = W \cap C\) is also a \(G_δ\)-set. Consequently there exists a continuous function \(φ: W \cup A \cup B \to [-1, 1]\) such that
\[φ^{-1}(0) = C_1 , \quad φ(A) = -1 , \quad φ(B) = 1 .\]

Let \(φ: X \to [-1, 1]\) be any continuous extension of \(φ\). We put
\[C_0 = φ^{-1}(0) , \quad C_2 = C_0 \setminus C_1 .\]

Then obviously
\[C_0 = C_1 \cup C_2 ,\]
since \(C_0 \setminus C_1 \subset X \setminus W\) and \(W\) is a closed neighborhood of \(P\), there exists a neighborhood \(OP \subset W\) of the set \(P\) such that
\[C_0 \setminus C_1 = C_2 \subset X \setminus OP .\]

\[\square\]

Definition 2.3. Let \(S = \{F_i : i = 1, 2, \ldots\}\) be a countable system of sets in a space \(X\) and the set \(U \subset X\) be open. Then the system \(S\) is called simple with respect to \(U\) if
\[(7) \quad U = \bigcup_{i=1}^{∞} F_i ,\]
\[(8) \quad F_i \cap F_j = \emptyset \quad \text{for} \quad |i - j| > 1 .\]
The system \(F \) is locally finite on \(U \) and sets \(F_t \) are closed in \(X \).

Lemma 2.4. Let \(B \) be a bicompactum not necessarily metrizable and \(f: B \to K \) be a zero dimensional mapping\(^6\) in a compactum \(K \).\(^7\) If there is a closed set \(P \subset B \) and a simple, with respect to \((B \setminus P) \), system \(\{B_i\} \) in \(B \) such that:

1. \(f(P) \cap f(B_i) = \emptyset \) for every \(i = 1, 2, \ldots \)
2. \(\dim f(B_i) < \infty \)
3. the restriction of \(f \) to \(P \) is a homeomorphism

and

4. \(\text{Ind } K \leq \alpha \)

then \(\text{Ind } B \leq \alpha \).

Proof. We shall prove this lemma by induction on \(\alpha \). If \(\alpha < \omega_0 \) then for any bicompactum \(B \) having zero-dimensional mapping in \(\alpha \) dimensional compactum \(K \) we have

\[
\text{Ind } B \leq \text{Ind } K \leq \alpha.
\]

(See [10], Pasynkov.) Let \(\alpha \geq \omega_0 \) and for all \(\alpha' < \alpha \) our lemma is proved. Let \(F, G \) be a pair of two disjoint closed sets in \(B \). By virtue of (12)

\[
f(F \cap P) \cap f(G \cap P) = \emptyset.
\]

Then by virtue of (13) there exists a partition \(D \) between \(f(F \cap P) \) and \(f(G \cap P) \) such that

\[
\text{Ind } D \leq \beta < \alpha.
\]

We put

\[
C = f^{-1}(D).
\]

Then, since \(K \) is metrizable and \(D \subset K \) is closed, \(D \) is a \(G_\delta \)-set. Consequently, \(C \) is also a \(G_\delta \)-set. Moreover the set \(C \) is a partition between \(F \cap P \) and \(G \cap P \) in \(B \). By virtue of Lemma 2.3 there exists a partition \(C_0 \) between \(F \) and \(G \) such that:

\[
C_0 = C_1 \cup C_2, \quad C_1 \subset C, \quad C_2 \subset X \setminus OP
\]

for some closed sets \(C_1 \) and \(C_2 \) and a neighborhood \(OP \) of a set \(P \).

\(^6\) A mapping \(f \) is zero dimensional if \(\dim f^{-1}(x) \leq 0 \) for any point \(x \) in image \(f \).

\(^7\) In our terminology a compactum is a metrizable bicompactum.
We note that if $B' \subseteq B$ is a closed set, $B'_i = B_i \cap B'$, $P' = P \cap B$, $K' = f(B')$ then all conditions of Lemma 2.4 are fulfilled for bicom pactum B' (we have only to change notation). Consequently, if $\text{Ind } f(B') < \alpha$ then by inductive assumption $\text{Ind } B' \leq \text{Ind } f(B') < \alpha$. Therefore for proving inequality

$$\text{(17) } \text{Ind } C_0 < \alpha$$

we have only to prove that

$$\text{(18) } \text{Ind } f(C_2) < \infty.$$

Indeed, as it was mentioned above we have only to prove that

$$\text{Ind } f(C_i) = \text{Ind } f(C_i) \cup f(C_2) < \alpha.$$

By virtue of (14), (15), (16) we obtain the inequality

$$\text{(19) } \text{Ind } f(C_i) \leq \text{Ind } D \leq \beta < \alpha.$$

By Lemma 2.1 and (18), (19)

$$\text{Ind } (f(C_i) \cup f(C_2)) < \alpha.$$

Let us prove inequality (18). By conditions of the lemma we have

$$B \setminus P = \bigcup_{i=1}^{\infty} B_i$$

and the system $\{B_i, i = 1, 2, \cdots\}$ is locally finite on $B \setminus P$. Since $C_2 \subseteq B \setminus P$ and C_2 is a subbicompactum of B then for some finite collection B_{i_1}, \cdots, B_{i_k} we have

$$C_2 \subseteq \bigcup_{s=1}^{k} B_{i_s}.$$

Consequently, by virtue of (11)

$$\text{dim } f(C_2) \leq \max\{\text{dim } f(B_{i_s}); s = 1, \cdots, k\} < \infty.$$

Since $f(C_2) \subseteq K$ and K is a metrizable space, $\text{dim } f(C_2) = \text{Ind } f(C_2)$. Thus inequality (18) and consequently (17) holds. Therefore $\text{Ind } B \leq \alpha$.

Lemma 2.5. If for any two closed disjoint sets F, G in weakly infinite dimensional space Z such that

$$F \cup G \subseteq P(Z)$$

there exists a partition C having the dimension $\text{Ind } C < \alpha (\alpha \geq \omega_0)$ then $\text{Ind } Z \leq \alpha$.

Proof. Let \((A, B)\) be an arbitrary pair of disjoint closed sets in \(Z\). If either \(A \cap P(Z) = \emptyset\) or \(B \cap P(Z) = \emptyset\) then either the set \(A\) or \(B\) belongs to the set \(Z \setminus OP(Z)\) for some neighborhood \(OP(Z)\) of the set \(P(Z)\). By virtue of Corollary 2.1 there exists a finite dimensional partition \(C\) between \(A\) and \(B\); consequently

\[\text{Ind} C < \omega_0 \leq \alpha . \]

Let \(A_i = A \cap P(Z) \neq \emptyset\) and \(B_i = B \cap P(Z) \neq \emptyset\). By the given condition there exists a partition \(C\) between \(A_i\) and \(B_i\) such that

\[\text{Ind} C < \alpha . \]

Since \(Z\) is metrizable, \(C\) is a \(G_\delta\)-set and by virtue of Lemma 2.3 there exists a partition \(C_0\) between \(A\) and \(B\) such that

\[C_1 \subset C , \ C_7 \subset X \setminus OP , \ C_0 = C_1 \cup C_2 \]

for some closed sets \(C_1, C_2\) and a neighborhood \(OP\) of the set \(P\). By virtue of Corollary 2.1

\[\text{Ind} C_2 < \infty . \]

From (20), (21) it follows that

\[\text{Ind} C_1 < \alpha . \]

The inequality \(\text{Ind} C_0 < \alpha\) now follows from Lemma 2.1 and (21).

Lemma 2.6. If for any point \(p \in P(Z)\) in a weakly infinite dimensional space \(Z\) and for any closed set \(F \subset P(Z), F \not\ni p\), there exists a partition \(C\) in \(Z\) such that

\[\text{ind} C < \alpha(\alpha \geq \omega_\alpha) \]

then \(\text{ind} Z \leq \alpha\).

The proof is similar to the proof of Lemma 2.5.

Corollary 2.2. For any weakly infinite dimensional space \(Z\) the following assertions hold:

(a) \(\text{Ind} Z \leq \alpha \iff\) for any closed sets \(F, G, F \cup G \subset P(Z), F \cap G = \emptyset\) there is a partition \(C\) with \(\text{Ind} C < \alpha\). \(\alpha \geq \omega_\alpha\).

(b) \(\text{ind} Z \leq \alpha \iff\) for any closed set \(F \subset P(Z)\) and a point \(x \in P(Z) \setminus F\) there is a partition \(C\) with \(\text{ind} C < \alpha\). \((\alpha \geq \omega_\alpha)\)

Corollary 2.3. If \(X\) has the dimension \(\text{Ind} X\) and \(Y \subset X\) is weakly infinite dimensional then
We shall prove this corollary by induction on $\alpha = \text{Ind } X$. If $\alpha < \omega_0$ our assertion is known. Let $\alpha \geq \omega_0$ and F, G be a pair of two disjoint closed sets in $P(Y)$. Since $Y \subset X$ we have

$$P(Y) \subset P(X).$$

Since by Corollary 2.1 $P(Y)$ is a compactum, the sets F, G are closed in $P(X)$ and by inductive assumption there exists a partition C between F and G in X such that

$$\text{Ind } C < \alpha.$$

Then $C \cap Y$ is a partition between F and G in Y and since $C \cap Y$ is closed in Y it is weakly infinite dimensional space. Consequently by inductive assumption

$$\text{Ind}(C \cap Y) \leq \text{Ind } C < \alpha.$$

Inequality (22) now follows from Corollary 2.2. \hfill \square

Lemma 2.7. Let $\mathcal{U} = \{U_i : i = 1, 2, \ldots\}$ be a system of open sets in a space X, α a limit ordinal number ω_i and

$$D(U_i) < \alpha$$

$$U = \bigcup_{i=1}^{\infty} U_i.$$

Then for any sequence of ordinal numbers γ_i such that

$$\gamma_{i+1} > \gamma_i, \quad \sup_{i} \gamma_i = \alpha \quad i = 1, 2, \ldots$$

there exists a simple, with respect to U, system $\mathcal{F} = \{F_i\}$ such that

$$D(F_i) \leq \gamma_i.$$

Proof. We take a system of open sets $\mathcal{V} = \{V_i\}$ such that

$$V_i \subset V_{i+1} \subseteq U, \quad \bigcup_{i=1}^{\infty} V_i = U \quad (i = 1, 2, \ldots).$$

Since X is metrizable, there exists an open covering $\{D_i\}$ of the set U such that the covering $\{\overline{D}_i\}$ consisting of closures \overline{D}_i is a refinement of \mathcal{V} and \mathcal{U}. Since coverings \mathcal{V} and \mathcal{U} are countable, we can require a covering $\{D_i\}$ to be countable. Then there exists a closed covering $\mathcal{C} = \{H_i\}$ of U such that

$$H_i = \overline{H}_i \subset D_i \quad (i = 1, 2, \ldots).$$
By virtue of (25) the sets \(H_i, D_i \) are closed in \(X \). From condition (23) it follows that

\[
D(H_i) \leq D(D_i) \leq D(\bar{D}_i) \leq \beta_i < \alpha.
\]

We can now construct by induction open sets \(W_i \) such that:

\[
\bigcup_{k=1}^{i} H_k \subset W_i \subset \bar{W}_i \subset \bigcup_{i=1}^{k} D_i \subset U
\]

\[
\bar{W}_i \subset W_{i+1}.
\]

By (27), (28) and the sum theorem for union of finite number of closed sets with \(D \)-dimension [3], Henderson, we have

\[
D(\bar{W}_i) \leq \max \{ D(\bar{D}_i) : i = 1, \cdots, k \} = \delta_i < \alpha.
\]

Since \(\mathcal{H} \) is a covering of \(U \), we have, by virtue of (28)

\[
\bigcup_{i=1}^{\infty} W_i = U.
\]

From conditions (24), (30) it follows that there exists such subsequence \(\{ \gamma_{n(i)} \}^n_1 = 1, 2, \cdots \) of a sequence \(\{ \gamma_i \} \) so that

\[
D(\bar{W}_i) \leq \gamma_{n(i-1)} \quad n(i + 1) > n(i) > 0, \quad i = 1, 2, \cdots.
\]

Since the space \(X \) is normal, from condition (29), it follows that for any \(i \) there exist such open sets

\[
V_{n(i)}, \cdots, V_{n(i+1)} \quad (i = 0, 1, \cdots)
\]

so that

\[
V_{n(i)} = W_i, \quad V_{n(i+1)} = W_{i+1}, \quad V_i = \emptyset \quad \text{for} \quad 0 \leq i < n(1).
\]

\[
V_{n(i)+k} \subset \bar{V}_{n(i)+k} \subset V_{n(i)+k+1} \quad k = 0, \cdots, n(i+1) - n(i).
\]

By virtue of (11), (32), (33), (34), (31) we have

\[
D(\bar{V}_j) \leq D(\bar{W}_{i+1}) \leq \gamma_{n(i)} \leq \gamma_j \quad \text{for} \quad n(i) \leq j \leq n(i+1)
\]

\[
D(\bar{V}_j) = -1 \leq \gamma_j \quad \text{for} \quad 0 \leq j < n(1)
\]

\[
\bar{V}_i \subset V_{i+1} \subset U, \bigcup_{i=1}^{\infty} V_i = U.
\]

We put

\[
F_i = \bar{V}_i \setminus V_{i-1} \quad \text{for} \quad i > 0, \quad F_0 = \emptyset.
\]

Then for \(j > i \), \(V_i \cap F_j = \emptyset \). Consequently, by virtue of (37) the system \(\{ F_i \} \) is locally finite. Conditions (7), (8) follow from (37), (38).

Inequality \(D(F_i) \leq \gamma_i \) follows from (35), (36), (38).
COROLLARY 2.4. For any space X there exists a simple with respect to $X\setminus P(X)$ system $\{C_i\}$ such that

$$\dim C_i \leq i \quad (i = 1, 2, \cdots).$$

Proof. Let U_n be the set defined by equality (1), then obviously

$$\dim U_n \leq n$$

and by definition

$$X\setminus P(X) = \bigcup_{n = 1}^{\infty} U_n.$$

Hence by Lemma 2.7 there is a simple, with respect to $X\setminus P(X)$, system $\{C_i\}$ such that

$$\dim C_i = D(C_i) \leq i = \gamma(i).$$

\[\square\]

Lemma 2.8. If $D(X) \geq \omega_0$ then $D(X) = \omega_0 + D(P(X))$.

Proof. If $D(X) = \Delta$ then our lemma is trivial. Let $D(X) = \beta < \Delta$, $D(P(X)) = \alpha$ and the equality

$$P(X) = \bigcup \{A_{\xi}: \xi \leq J(\alpha)\}$$

be the α-D-representation of $P(X)$. By virtue of Corollary 2.4, we have the representation

$$X = P(X) \cup \bigcup_{i = 1}^{\infty} C_i$$

for simple, with respect to $X\setminus P(X)$, system $\{C_i\}$ such that property (39) holds. Let us put

$$B_{\omega_0 + \xi} = A_{\xi}, \quad B_i = C_i, \quad \text{for } i < \omega_0.$$

Then clearly the equality

$$X = \bigcup \{B_{\xi}: \xi \leq J(\omega_0 + \alpha) = \omega_0 + J(\alpha)\}$$

is a $(\omega_0 + \alpha)$-D-representation of X. Therefore

$$\beta \leq \omega_0 + \alpha.$$

Let the equality

$$X = \{A_\xi = \xi \leq J(\beta)\}$$

be a β-D-representation of X and $\beta = \omega_0 + \delta$. Let us put

$$B_i = A_{\omega_0 + \xi}.$$
and

\[(40) \quad T = \bigcup \{B_t : \xi \leq J(\delta)\}.\]

Then (40) is clearly a \(\delta\)-\(D\)-representation of \(T\). From conditions (b), (c), (e) of Definition 0.3 it follows that the set \(X \setminus T\) is a union of open finite dimensional sets. Consequently, \(P(X) \subset T\) and

\[D(P(X)) \leq D(T) \leq \delta.\]

Hence \(\omega_0 + \delta \geq \omega_0 + \alpha.\)

Definition 3.1. Let

\[(1) \quad X = P(X) \cup \bigcup_{i=0}^{\infty} C_i.\]

Then equality (1) is called a standard representation of a space \(X\) if

(a) The system \(\{C_i\}\) is simple with respect to \(X \setminus P(X)\). (In particular \(C_i \cap P(X) = C_i \cap C_j = \emptyset\) for \(|i - j| > 1\).)

(b) \(\dim C_i \leq n(i)\).

(c) For any \(x \in C_i\), \(\delta(x, y) < 1/i\) for some \(y \in P(X)\), \(i > 0\), where \(\delta\) is a metric on \(X\).

Lemma 3.1. Let \(X\) be a weakly infinite dimensional space. Then there exists a standard representation of \(X\).

Proof. We put

\[C_i = \left\{x : \frac{1}{i + 2} \leq \delta(x, P(X)) \leq \frac{1}{i + 1}\right\} \quad \text{for} \quad i \geq 1,

\[C_0 = \left\{x : \delta(x, P(X)) \geq \frac{1}{2}\right\}.\]

Then, clearly the equality (1) and properties (a), (c) hold. Property (b) follows from Corollary 2.1.

Definition 3.2. Let (1) be a standard representation of \(X\) and \(f : X \to I^\omega\) be a mapping such that:

(a) \(f\) is a homeomorphism on \(P(X)\).

(b) \(\overline{f(C_i)} \cap f(P(X)) = \overline{f(C_i)} \cap \overline{f(C_j)} = \emptyset\) for \(|i - j| > 1\).

(c) \(\dim \overline{f(C_i)} \leq \dim C_i \leq n_i < \infty\).

Then \(f\) is called a standard mapping.

Lemma 3.2. Let \(f : X \to I^\omega\) be a standard mapping of a weakly
infinite dimensional and infinite dimensional space X. Then

$$(2) \quad \overline{f(X)} = f(P(X)) \cup \bigcup_{i=1}^{\infty} \overline{f(C_i)}.$$

(3) the system $\{\overline{f(C_i)}\}$ is locally finite on $f(X) \setminus f(P(X))$.

$$(4) \quad f^{-1}P\overline{f(X)} \subset P(X).$$

$$(5) \quad Df(X) \leq D(X).$$

Proof. Let us show that

$$(6) \quad \text{for any sequence } \{y_i\}, \text{ such that } y_i \in \overline{f(X)}, y_i \in \overline{f(C_j)} \text{ for } j < i \text{ we have}$$

$$\lim_{i \to \infty} y_{k(i)} = a \text{ for some point } a \in f(P(X)), \text{ and some subsequence } \{y_{k(i)}\} \text{ of sequence } \{y_i\}.$$

Indeed, we can take for any i a point $f(x_i)$ such that

$$\delta(f(x_i), y_i) < \frac{1}{i}, \quad f(x_i) \in \overline{f(C_j)} \text{ for } j < i.$$

Consequently $x_i \in P(x) \cup \cup \{C_j: j \geq i\}$ and by condition (c) of Definition 3.1 we have

$$\delta(x_i, P(X)) < 1/i.$$

Since X is weakly infinite dimensional, $P(X)$ is compact and from (9) it follows that

$$\lim_{i \to \infty} x_{n(i)} = b \text{ for some point } b \in P(X) \text{ and some subsequence } \{x_{n(i)}\} \text{ of sequence } \{x_i\}.$$

Let $f(b) = a$, then property (7) follows from (8), (10). Let us prove (2). Let $x \in \overline{f(X) \setminus f(P(X))}, x \in f(C_i)$ for any i, and $x \in f(P(X))$, then clearly we can construct a sequence $\{y_i\}$ such that

$$\lim_{i \to \infty} y_i = x \text{ and } y_i \in \overline{f(C_j)} \text{ for } j < i.$$

From condition (7) it follows that $x \in f(P(X))$ and we obtain the contradiction. Hence property (2) holds. Similarly we can prove (3). Indeed, if $x \in \overline{f(X) \setminus f(P(X))}$ and any neighborhood Ox of x contains points of infinitely many sets $f(C_i)$, we can construct a sequence $\{y_i\}$ satisfying (6) and such that

$$\lim_{i \to \infty} y_i = x.$$

By virtue of (7) $x \in f(P(X))$ and we again get the contradiction.
Therefore the system \(\{ f(C_i) \} \) is locally finite on \(f(X) \setminus f(P(X)) \). Let us prove (4). Since \(P(X) \) is compact, the set \(f(P(X)) \) is closed and the set \(f(X) \setminus f(P(X)) \) is open in \(f(X) \). By virtue of condition (2) and (b) of Definition 3.2 we have

\[
(11) \quad f(X) \setminus f(P(X)) = \bigcup_{i=1}^{\infty} f(C_i)
\]

\(f^{-1}(P(X)) = P(X) \).

From conditions (3) and (c) of Definition 3.2 it follows that

\[
(12) \quad Pf(X) \subseteq f(P(X)).
\]

Consequently, condition (4) follows from (11), (12). Property (5) follows from (12). Indeed, by Lemma 2.8

\[
D(f(X)) = \omega + D(Pf(X)) = \omega + Df(P(X)) = \omega + Df(P(X)) = D(X).
\]

We used here the equality \(Df(P(X)) = D(P(X)) \) which follows from condition (a) of Definition 3.2. \(\square \)

Lemma 3.3. Let \(U \) be an open set in some closed subset \(A \) of a space \(X \) and \(\phi \) the set of all mappings \(f: X \rightarrow I^\omega \) such that

\[
f(U) \cap f(A \setminus \overline{U}) = \emptyset
\]

then

\[
\phi \in G_X.
\]

Proof. Let \(\{ F_i : i = 1, 2, \cdots \} \) be a collection of closed sets in a space \(X \) such that \(\bigcup_{i=1}^{\infty} F_i = U \). Then by virtue of Lemma 1.2 and (19) §1 the set \(\psi \) of all mappings \(f: X \rightarrow I^\omega \) such that

\[
f(F_i) \cap f(A \setminus \overline{U}) = \emptyset
\]

belongs to \(G_X \). Since clearly \(\phi \supseteq \psi \), we have also \(\phi \in G_X \). \(\square \)

Lemma 3.4. Let \(X \) be a weakly infinite dimensional closed subset of a space \(Y \) and \(\phi \) be a set of all mappings \(f: Y \rightarrow I^\omega \) such that \(f \) is standard on \(X \). Then \(\phi \in G_Y \).

Proof. By Lemma 3.1 there exists a standard representation (1) of a space \(X \). Since the system \(\{ C_i \} \) is countable, our lemma follows from Lemmas 1.2, 1.3, 1.4 and (19) §1. \(\square \)

Lemma 3.5. Let \(U \) be an open set in a space \(X \) and \(V = \text{Int} \overline{U} \)
(where $\text{Int}\bar{U}$ is an interior of \bar{U}). Then

$$FrV \subset FrU, \quad V = \text{Int}\bar{V}, \quad U \subset V$$

and the set $X \setminus (FrV \cup V)$ is everywhere dense in $X \setminus V$. The lemma is trivial.

An open set V such that $V = \text{Int}\bar{V}$ is called canonic.

Lemma 3.6. Let $\text{Ind} X = \alpha$, $\text{ind} X = \beta (\alpha \geq \beta \geq \omega_0)$ and $\lambda(\mu) = \{U^\gamma_\gamma : \gamma \in \Gamma\} \mu = a, b$ be two system of open canonic in X sets such that for all $\gamma \in \Gamma$:

$k1$) $\text{Ind} FrU^\alpha_\gamma < \alpha$

$k2$) $\text{ind} FrU^\beta_\gamma < \beta$

$k3$) $\lambda(a)$ forms a large base in $P(X)^a$ and $\lambda(b)$ forms a base in $P(X)$.

Then if $f: X \to I^a$ is a standard mapping such that:

$k4$) $\text{Ind} FrU^\alpha_\gamma \geq \text{Ind} f(FrU^\alpha_\gamma)$

$k5$) $\text{ind} FrU^\beta_\gamma \geq \text{ind} f(FrU^\beta_\gamma)$

$k6$) $f(U^\alpha_\gamma) \cap f(X \setminus U^\beta_\gamma) = f(FrU^\alpha_\gamma)$

$k7$) If $U^\alpha_{\gamma_1} \subset U^\alpha_{\gamma_2}$ then $f(U^\alpha_{\gamma_1}) \cap f(X \setminus U^\beta_{\gamma_2}) = \emptyset$

$k8$) $f(FrU^\alpha_\gamma) \cap f(X \setminus FrU^\beta_\gamma) = \emptyset$.

For all $\gamma \in \Gamma$ and $\mu = a, b$ then

(a) $\text{Ind} f(X) \leq \text{Ind} X$

(b) $\text{ind} f(X) \leq \text{ind} X$

(c) $D\bar{f}(X) \leq D(X)$.

Moreover, for proving condition (a) it is sufficient to assume that conditions $k1, k3, k4, k6, k7, k8$ hold and for proving condition (b) it is sufficient to assume that conditions $k2, k3, k5, k6, k7, k8$ hold, and condition (c) follows from the standardness of mapping f.

Proof. Condition (c) follows from Lemma 3.2, property (5). Let us prove (a). Let F, G be a pair of disjoint closed sets in $\bar{P}f(X)$. We put

$$F_1 = f^{-1}(F), \quad G_1 = f^{-1}(G).$$

Since f is a standard mapping, by Lemma 3.2(4) we have

$$F_1 \cup F_2 \subseteq P(X)$$

and clearly

$$F_1 \cap F_2 = \emptyset.$$

8 This means that for any pair (F, G) of closed disjoint sets in (X) there is a set U^α_γ, open in X, such that $F \subset U^\alpha_\gamma \subset X/G$.

8
By virtue of k_1, k_3 there exist such sets $U^a_{r_1}, U^a_{r_2}, U^a_{r_3} \in \lambda(\alpha)$ so that

\begin{equation}
F_1 \subset U^a_{r_1} \subset \overline{U}^a_{r_1} \subset U^a_{r_2} \subset \overline{U}^a_{r_2} \subset U^a_{r_3} \subset X \setminus G_1,
\end{equation}

\begin{equation}
\text{Ind } F r U^a_{r_3} < \alpha.
\end{equation}

We put

\begin{equation}
U = U^a_{r_2}, V = \text{Int } \overline{f(U^a_{r_2})} = \overline{f(U^a_{r_2}) \setminus F r U} = A = \overline{f(X) \setminus f(U^a_{r_2})}.
\end{equation}

Since f is a continuous mapping,

\begin{equation}
\overline{f(U)} = \overline{f(U)}.
\end{equation}

Let us show that

\begin{equation}
A = \overline{f(X \setminus U)}.
\end{equation}

By virtue of $(k_6), (k_8), (18)$

\begin{equation}
\overline{f(U)} \cap \overline{f(X \setminus U)} \cap f(X \setminus F r U) = \emptyset.
\end{equation}

Since U is canonic set, from Lemma 3.5 it follows that the set $\overline{f(X \setminus U)} \cap f(X \setminus F r U)$ is everywhere dense in $\overline{f(X \setminus U)}$, consequently

\begin{equation}
\overline{f(X \setminus U)} = \overline{f(X \setminus U)} \cap f(X \setminus F r U).
\end{equation}

From $(18), (20), (21)$ it follows that

\begin{equation}
\overline{f(X \setminus U)} = f(X \setminus U) \cap f(X \setminus F r U) \subset f(X) \setminus f(U) = A.
\end{equation}

Since

\[\overline{f(X) \setminus f(U)} = (\overline{f(X \setminus U)} \cup f(U)) \setminus \overline{f(U)} \subset \overline{f(X \setminus U)} \]

and the set $\overline{f(X \setminus U)}$ is closed, we have

\begin{equation}
A = \overline{f(X) \setminus f(U)} \subset \overline{f(X \setminus U)}.
\end{equation}

The condition (19) follows from $(22), (23)$. By virtue of $(17), (18), (19)$ we have

\begin{equation}
V = \overline{f(U) \setminus (\overline{f(U)} \cap f(X) \setminus f(U))} = \overline{f(U) \setminus (f(U) \cap f(X) \setminus f(U))}.
\end{equation}

From conditions $(13), (15), (17), k_7$ it follows that

\[F \subset \overline{f(U^a_{r_1})}, \overline{f(U^a_{r_1})} \cap \overline{f(X \setminus U)} = \emptyset.\]

Consequently,

\begin{equation}
F \subset V.
\end{equation}

On the other hand, by virtue of $k_7, (15), (24), (13)$
\[V \subseteq f(U), \ f(U) \cap f(X \backslash U^c) = \emptyset, \ G \subseteq f(X \backslash U^c) . \]

Consequently
\[(26) \quad \bar{V} \subseteq f(X) \backslash G . \]

Since the set \(V \) is open (condition 17), it follows from (25) and (26) that \(FrV \) is a partition between \(F \) and \(G \) in \(f(X) \). Since by (24) \(\bar{V} \subseteq f(U) \) and \(V \) is open, we have
\[(27) \quad FrV = \bar{V} \backslash V \subseteq f(U) \backslash V = f(U) \cap f(X \backslash U) . \]

But by virtue of (19), (17)
\[(28) \quad Frf(U) = f(U) \cap (f(X) \backslash f(U)) = f(U) \cap f(X \backslash U) . \]

From (k6), (27), (28) it follows that
\[f(FrU) = Frf(U) \supset FrV . \]

By virtue of (k4), (16), (17)
\[Ind \ f(FrU) \leq Ind FrU < \alpha . \]

Consequently \(Ind FrV < \alpha \). Inequality \(a \) now follows from Corollary 2.2(a). Similarly one can prove inequality \(b \). \hfill \(\Box \)

4. Proof of the compactification theorem. First we shall prove some general theorems.

Theorem 4.1. Let \(X \) be a closed subset of a space \(Y \) and dimension \(Ind X \) exists. Let \(\phi \) be the set of all standard on \(X \) mappings \(f : Y \to I^\omega \) such that
\[Ind f(X) \leq Ind X \]
\[Df(X) \leq D(X) . \]

Then \(\phi \in G_f \).

Lemma 4.1. Let \(X \) be a closed subset of a space \(Y \) and dimension \(Ind X \) exists. (We note that by virtue of (2) (introduction) the dimension \(ind X \) also exists.) Let \(Ind X = \alpha, ind X = \beta \) and \(\beta \geq \omega_0 \). Then there exist two countable systems \(\lambda(\mu) = \{ U_\gamma : \gamma \in \Gamma \} \mu = a, b \) of open in \(X \) canonic sets such that for all \(\gamma \in \Gamma \) conditions k1, k2, k3 of Lemma 3.6 are fulfilled.

Proof. The existence of systems \(\lambda(\mu) \) with properties k1, k2, k3
is evident. Since $\text{Ind} X$ exists by (SM1) §2 and Corollary 2.1, $P(X)$ is compact. Consequently we can consider systems $\lambda(\mu)$ to be countable. Indeed, from any base (large base) of compact metric space we can select a countable subsystem which is also a base (large base). By virtue of Lemma 3.5 all elements of these bases we can consider to be canonic.

Lemma 4.2. Let in Lemma 4.1 ϕ_i be the set of all mappings $f: Y \to I^\omega$ such that f is standard on X and conditions k_6, k_7, k_8 of Lemma 3.6 are fulfilled. Then $\phi_i \in G_\gamma$.

Proof. Let ϕ_i be the set of all mappings $f: Y \to I^\omega$ such that the condition $k_i(i = 6, 7, 8)$ of Lemma 3.6 holds. Since

$$Fr U_i^\rho = \bar{U}_i^\rho \cap X \setminus U_i^\rho$$

and the systems $\lambda(\mu)$ are countable, from Lemma 1.2 and (19) §1 it follows that

$$\phi_3 \in G_x.$$

Analogously $\phi_7 \in G_x$. Inclusion $\phi_8 \in G_x$ follows from (19) §1 and Lemma 3.3. Let ψ be the set of all mappings $f: Y \to I^\omega$ such that f is standard on X. Then $\psi \in G_x$ by Lemma 3.4. Since obviously

$$\phi_1 = \psi \cap \phi_6 \cap \phi_7 \cap \phi_8,$$

our lemma follows from (19) §1.

Proof of Theorem 4.1. We shall prove the theorem by induction on $\alpha = \text{Ind} X$. Let $\alpha < \omega_0$ then by virtue of (3) (introduction)

$$\text{Ind} X = \dim X = D(X)$$

and our theorem follows from Lemma 1.4. Let $\alpha \geq \omega_0$ then by Lemma 4.1 there exists a countable system $\lambda(\alpha)$ of open canonic in X sets satisfying conditions k_1, k_3 of Lemma 3.6. Let ψ be the set of all mappings $f: Y \to I^\omega$ such that the condition $(k4)$ is fulfilled. Then from inductive assumption and (19) §1 it follows that

$$\psi \in G_\gamma.$$

Consequently,

$$\phi_0 = \psi \cap \phi_1 \in G_\gamma$$

where ϕ_i is the set defined in Lemma 4.2. Let $f \in \phi_0$, then f is standard on A mapping. Moreover the conditions $(k1), (k3), (k4), (k6), (k7), (k8)$ are fulfilled. Consequently, by Lemma 3.6 $f \in \phi$, where ϕ
is defined in Theorem 4.1. Hence $\phi_0 \subset \phi$. Consequently $\phi \in G_x$. □

THEOREM 4.2. Let A be a closed subset of a space X and dimension $\text{Ind} A$ exists. Let A be strongly metrizable\(^8\) and ϕ be the set of all standard on A mappings $f: X \to I^\omega$ such that

\[
\begin{align*}
\text{Ind } \overline{f(A)} & \leq \text{Ind}(A) \\
D \overline{f(A)} & \leq D(A) \\
\text{ind } \overline{f(A)} & \leq \text{ind } A.
\end{align*}
\]

Then $\phi \subset G_x$.

Proof. We shall prove the theorem by induction on $\beta = \text{ind } A$. By virtue of Theorem 4.1 it is sufficient to prove that the set ψ of all mappings satisfying condition (1) belongs to G_x. Let $\beta < \omega_0$, then

$$\text{ind } A = \text{Ind } A = \text{dim } A,$$

see [23], Zarelua. Consequently, our theorem now follows from Lemma 1.4. Let $\beta \geq \omega_0$. In this case our proof is completely similar to the proof of Theorem 4.1.

COROLLARY 4.1. Let X be a space and $\{L_i\}$ be a countable system of closed subsets such that the dimension $\text{Ind } L_i$ exists for every i. Let Φ be the set of all mappings $f: X \to I^\omega$ such that

(a) $\text{Ind } \overline{f(L_i)} \leq \text{Ind } L_i$ $(i = 1, 2, \cdots)$.

(b) $D \overline{f(L_i)} \leq D(L_i)$.

(c) if L_j is strongly metrizable for some j then $\text{ind } \overline{f(L_j)} \leq \text{ind } L_j$.

(d) f is a standard mapping on L_i.

(e) $f^{-1}(P \overline{f(L_i)}) \subset P(L_i)$

for any $i = 1, 2, \cdots$. Then $\Phi \in G_x$.

Proof. By Lemma 3.2 the condition (e) follows from (d). Our corollary now follows from Theorem 4.1, Theorem 4.2 and (19) §1.

Proof of Compactification Theorem (1.1). Let ψ_0 be the set of all homeomorphisms $f: X \to I^\omega$ of separable space X in Hilbert cube. Then, see [5], Hurewicz and Wallman,

$$\psi_0 \in G_x.$$

Since for every i and $f \in \psi_0$

\(^8\) The condition of strong metrizability of X is equivalent to the following one:

There exists an imbedding $f: X \to I^\omega \times \prod_{i=1}^\omega B_i$, where $I^\omega \times \prod_{i=1}^\omega B_i$ is a product of Hilbert cube and a countable number of discrete spaces.
\[
\text{Ind } f(L_i) = \text{Ind } L_i, \quad \text{ind } f(L_i) = \text{ind } L_i, \quad D(f(L_i)) = D(L_i)
\]
and \(f(L_i) \subset \overline{f(L_i)} \), we have
\[\text{ind } L_i \leq \text{ind } \overline{f(L_i)}, \quad D(L_i) \leq D \overline{f(L_i)} \]
see [3] (introduction). Inequality
\[\text{Ind } L_i \leq \text{Ind } \overline{f(L_i)} \]
follows from Corollary 2.3 and SM1 §2. Let \(\phi_0 = \phi \cap \psi_0 \), where \(\phi \) is defined in Corollary 4.1. Then from Corollary 4.1, (2) and (19) §1 it follows that
\[\phi_0 \in G_X.\]

Since \(f \) is a homeomorphism, we have \(f(P(X)) = P(f(X)) \subset P \overline{f(X)} \). Inclusion \(P \overline{f(X)} \subset f(P(X)) \) follows from condition (e) of Corollary 4.1. Consequently condition (d) of the Compactification Theorem also holds. We obtain that \(\psi \supset \phi_0 \), where the set \(\psi \) was defined in Theorem 1.1 and, by virtue of (5), \(\psi \in G_X \). The theorem is proved. \(\square \)

5. Uniformly zero dimensional mappings.

THEOREM 5.1. Let \(X \) be a space and a fixed countable system of closed sets \(L_i, i = 1, 2, \cdots \) such that dimensions \(\text{Ind } L_i \) exist. Then the set \(\psi \) of all uniformly zero dimensional mappings\(^{10}\) \(f: X \to I^\omega \) of the space \(X \) to the Hilbert cube \(I^\omega \) such that for each \(i \) we have:

(a) \(\text{Ind } L_i = \text{Ind } \overline{f(L_i)} \)
(b) \(D(L_i) = D \overline{f(L_i)} \)
(c) \(\text{ind } L_i \leq \text{ind } \overline{f(L_i)} \leq \omega_0 + \text{ind } L_i \)
(d) \(\text{ind } L_i = \text{ind } \overline{f(L_i)} \) if \(L_i \) is strongly metrizable
(e) \(f \) is a standard mapping on \(L_i \)
contains an everywhere dense set of type \(G_\delta \) in the space \(C(X, I^\omega) \).

To prove this theorem we need some preliminary lemmas.

LEMMA 5.1. Let \(X \) be a bicom pactum, not necessarily metrizable (respectively by a metric space) and \(f: X \to Y \) be a zero dimensional mapping (respectively uniformly zero dimensional) in a compactum \(Y \). Then

(a) \(\text{ind } Y \geq \text{ind } X \)
(b) \(D(Y) \geq D(X) \).

\(^{10}\) We recall that \(f: X \to Y \) is uniformly zero dimensional if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for every set \(\mathcal{A} \subset Y \) of diameter \(\mathcal{A} < \delta \) the set \(f^{-1}(\mathcal{A}) \) is a union of a discrete collection of sets, each of them having the diameter \(< \varepsilon \).
Proof. Inequality (a) was proved in [23] (Theorem 1), Zarelua. Let $D(Y) = \alpha$ and

$$Y = \{Y_\gamma : \gamma \leq J(\alpha)\}$$

be an α-D-representation of Y. Since zero dimensional mappings of bicympecta (respectively uniformly zero dimensional mappings of metric spaces) do not lower dimension Ind; see [17] (respectively [6]), it is easy to see that

$$X = \cup \{Y = f^{-1}(Y_\gamma) : \gamma \leq J(\alpha)\}$$

is an α-D-representation of X. Consequently, $D(X) \leq \alpha$. \qed

Lemma 5.2. Let X, Y be spaces with dimensions $\text{Ind} X, \text{Ind} Y$ and $f : X \to Y$ be a uniformly zero dimensional standard mapping. Then $\text{Ind} Y \geq \text{Ind} X$.

Proof. We shall prove this theorem by induction on $\text{Ind} Y$. Let $\text{Ind} Y = \alpha$ and $\alpha < \omega_0$. Then $\dim Y = D(Y) = \text{Ind} Y$ (3 introduction) and our lemma follows from Lemma 5.1(b). Let $\alpha \geq \omega_0$ and F, G be a pair of closed disjoint subsets in X such that

$$F \cup G \subset P(X).$$

By virtue of (a) definition 3.2 we have

$$f(F) \cap f(G) = \emptyset.$$

Since X is weakly infinite dimensional (SM1 §2), $P(X)$ is compact by Corollary 2.1 and consequently sets $f(F), f(G)$ are closed. Let C be a partition between $f(F)$ and $f(G)$ such that

(1) \hspace{1cm} $\text{Ind} C < \alpha$.

Then $f^{-1}(C)$ is a partition between F and G in X. Since clearly the restriction of any uniformly zero dimensional standard mapping to a closed subset is also zero dimensional standard mapping we have by inductive assumption and (1)

$$\text{Ind} f^{-1}(C) \leq \text{Ind} C < \alpha.$$

Our lemma now follows from Corollary 2.2(a). \qed

Lemma 5.3. Let X be a space with dimension $\text{Ind} X$. Then $\text{ind} X \leq \omega_0 + \text{ind} P(X)$.\footnote{\text{We consider that } \omega_0 + (-1) = \omega_0.}

Proof. We will prove this lemma by induction on $\text{ind} P(X)$. If
ind \(P(X) = 0 \), then for any point \(x \in P(X) \) and a closed set \(F \subset P(X) \setminus \{x\} \) there exists a partition \(C \) in \(X \) between \(\{x\} \) and \(F \) such that

\[
C \cap P(X) = \emptyset.
\]

Then by Theorem SM1 and Corollary 2.1, \(C \) is finite dimensional and \(\text{ind} \ C < \omega_0 + \text{ind} \ P(X) \). Therefore \(\text{ind} \ X \leq \omega_0 + \text{ind} \ P(X) \) by Corollary 2.2(b). If \(\text{ind} \ P(X) \geq 1 \) then for any point \(x \in P(X) \) and a closed set \(F \subset P(X) \setminus \{x\} \) there exists a partition \(C \) in \(X \) between \(\{x\} \) and \(F \) such that

\[
\text{ind}(C \cap P(X)) < \text{ind} \ P(X).
\]

Since clearly \(P(C) \subset C \cap P(X) \) we have by inductive assumption that

\[
\text{ind} \ C \leq \omega_0 + \text{ind} \ P(C) < \omega_0 + \text{ind} \ P(X).
\]

Our lemma now follows from Corollary 2.2(b).

Proof of Theorem 5.1. Let \(R \) be the set of all uniformly zero dimensional mappings \(f: X \to I^\omega \). Then by virtue of [6], Theorem 2.15, p. 359 and (B), p. 354, Katetov

\[
R \in G_X.
\]

Let \(\phi \) be the set defined in Corollary 4.1. By virtue of this corollary

\[
\phi \in G_X.
\]

To prove our theorem it is sufficient to show that

\[
(3) \quad \psi \supset \phi \cap R.
\]

Let \(f \in \phi \cap R \). Then (e) is evident and (a), (b), (d) follow from Corollary 4.1 and Lemmas 5.1, 5.2. Let us prove (c). Inequality

\[
(4) \quad \text{ind} \ L_i \leq \text{ind} \ f(L_i)
\]

follows from Lemma 5.1. By virtue of Lemma 5.3

\[
(5) \quad \text{ind} \ f(L_i) \leq \omega_0 + \text{ind} \ f(L_i).
\]

By Corollary 4.1(e) \(f^{-1} f(L_i) \subset P(L_i) \) and since \(f \) is a homeomorphism on \(P(L_i) \) (see Definition 3.2(a)), we have

\[
(6) \quad \text{ind} \ f(L_i) \leq \text{ind} \ P(L_i) \leq \text{ind} \ L_i.
\]

Property (c) now follows from (4), (5), (6). Thus property (3) and Theorem 5.1 are proved.

THEOREM 6.1. For any space X with dimension $\text{Ind} X$ there exists a bicompactification $bX \supset X$ such that:

(a) $\text{Ind} bX = \text{Ind} X$
(b) $DbX = DX$
(c) $\text{ind} X \leq \text{ind} bX \leq \omega_0 + \text{ind} X$
(d) $\text{ind} bX = \text{ind} X$ if X is strongly metrizable
(e) weight $bX = \text{weight} X$.

Property (a) was also proved in [17], Pasynkov, for normal spaces. We note that for every metric space X there is not a bicompactum bX such that $\text{ind} bX = \text{ind} X$, $\text{Ind} bX - \text{Ind} X$. For example, if $\text{ind} X = 0$, $\text{Ind} X = 1$ (see [18], Roy) then for any bicompactum bX with $\text{ind} bX = 0$ we have also $\text{Ind} bX = 0$.

We recall that a mapping $f: X \to Y$ is called scattering (see [23], Zarelua) if for any point $x \in X$ and its any neighborhood $U \ni x$ there is a neighborhood $V \ni f(x)$ such that for some open sets $W_1, W_2 \subset X$ we have:

$$f^{-1}(V) = W_1 \cup W_2, \quad W_1 \cap W_2 = \emptyset, \quad x \in W_1 \subset U.$$

Every uniformly zero dimensional mapping is obviously scattering.

Proof of Theorem 6.1. Since for a space X with weight $X < \aleph_0$ the theorem is trivial, we suppose weight $X \geq \aleph_0$. By virtue of Theorem 5.1 there exists a uniformly zero dimensional mapping $f: X \to K$ in compact $K \subset I^\omega$ such that we put $bX = K$ the conditions (a) – (d) hold and f is a standard mapping. Since f is scattering, there exists a bicompactification $bX \supset X$ and a scattering mapping

$$F: bX \longrightarrow K$$

such that the restriction of F to X is f and the condition (e) holds. This result was proved in [23]. Since $X \subset bX$ we have

(1) $\text{ind} X \leq \text{ind} bX$

see (1) (introduction). Since every scattering mapping is obviously zero dimensional, we obtain by virtue of Lemma 5.1

(2) $D(K) = D(X) \geq D(bX)$
(3) $\omega_0 + \text{ind} X \geq \text{ind} K \geq \text{ind} bX$
(4) $\text{ind} X = \text{ind} K \geq \text{ind} bX$ if X is strongly metrizable.

Thus, conditions (b)–(e) hold. Moreover we obviously can consider

(5) $bX = \bar{X}$
where closures are taken in bX. Let us prove the inequality
\[(6) \quad \text{Ind } bX \leq \text{Ind } X.\]

Since $f: X \to K$ is a standard mapping there is a standard representation
\[(7) \quad X = P(X) \cup \bigcup_{i=1}^{\infty} C_i\]
such that conditions (a), (b), (c) of Definition 3.2 hold. Let us prove the equality:
\[(8) \quad bX = P(X) \cup \bigcup_{i=1}^{\infty} \bar{C}_i.\]

Let $x \in bX \setminus P(X)$ be any point. Then there are open in bX sets $U \supset P(X)$ and $W \ni x$ such that
\[(9) \quad W \cap \bar{W} = \emptyset.\]

We put
\[U = V \cap X.\]

Then U is a neighborhood of $P(X)$ in X. Since $P(X)$ is compact for some $\epsilon > 0$, we have:
\[O_\epsilon(P(X)) = \{x: \delta(x, P(X)) < \epsilon\} \subset U.\]

Since (7) is a standard representation of X, by virtue of (c) (Definition 3.1) we have:
\[C_i \subset U \quad \text{for } 1/i < \epsilon.\]

Consequently, by virtue of (9),
\[\bar{W} \cap (P(X) \cup \bigcup_{j=k}^{\infty} \bar{C}_j) = \emptyset \quad \text{for any } k \text{ such that } 1/k < \epsilon.\]

This proves the condition (8) and shows that
\[(10) \quad \text{the system } \{\bar{C}_i\} \text{ is locally finite on } bX \setminus P(X).\]

Moreover from condition (b) of Definition 3.2 it follows that
\[(11) \quad \bar{F}(\bar{C}_i) \cap F(P(X)) = \bar{F}(\bar{C}_i) \cap F(\bar{C}_j) = \emptyset \quad \text{for } |i - j| > 1\]

and consequently
\[(12) \quad \bar{C}_i \cap \bar{C}_j = \emptyset = \bar{C}_i \cap P(X) \quad \text{for } |i - j| > 1.\]

From conditions (8), (10), (12) it follows that (see Definition 2.3),
(13) the system \(\{C_i\} \) is simple with respect to \(X \backslash P(X) \). Since \(f \) is a standard mapping, we have:

\[
\dim \overline{f(C_i)} = \dim \overline{F(C_i)} < \infty ,
\]

and

(15) the restriction of \(F = f \) to \(P(X) \) is a homeomorphism.

From conditions (13), (11), (14), (15) it follows that conditions of Lemma 2.4 are fulfilled for \(B = bX, B_i = C_i \) and \(P = P(X) \). Consequently by Lemma 2.4

\[
\text{Ind } bX \leq \text{Ind } K = \text{Ind } X .
\]

If \(\text{Ind } bX = X \) then our theorem is proved. Otherwise we can put

\[
b_oX = bX
\]

and consider the disjoint sum \(bX = b_oX \cup K \) which obviously satisfies conditions (a)-(e).

7. Separable spaces which have no compactifications with the same dimension \(\text{ind} \). By Theorem 6.1 (or by Corollary 1.1) every separable space \(X \) with dimension \(\text{Ind } X \) has a compactification \(cX \) such that

\[
\text{ind } X = \text{ind } cX .
\]

In this section we construct examples of separable spaces which have no compactification with the same dimension \(\text{ind} \). Similar examples for dimension \(D \) we shall give in the next section.

Theorem 7.1. For any limit ordinal number \(\alpha, \omega_0 \leq \alpha < \omega_1 \), there exists such complete\(^{12}\) weakly-countable dimensional\(^{13}\) separable space \(X_\alpha \) with dimension \(\text{ind } X_\alpha = \alpha \) such that for any compactification \(Y \supset X_\alpha \) we have

\[
\text{ind } Y > \alpha = \text{ind } X_\alpha .
\]

We note that by Hurewicz's theorem [5] every finite dimensional space \(X \) has a compactification \(cX \supset X \) such that \(\text{ind } cX = \text{ind } X \). It also follows from Corollary 1.1 because for finite dimensional space \(X \) \(\text{Ind } X = \text{ind } X \).

\(^{12}\) We consider a space \(X \) to be complete if it is an absolute \(G_\delta \)-set or equivalently if we can introduce on \(X \) a complete topology preserving metric.

\(^{13}\) A space \(X \) is weakly countable dimensional if \(X \) is a union of countable number of finite dimensional closed subsets.
Definition 7.1. Let α be an ordinal number. We put
\[\varphi(\alpha) = \alpha \quad \text{for} \quad \alpha \leq \omega_0. \]
If $\alpha > \omega_0$, then $\alpha = \omega_0 + \beta$ for some $\beta > 0$ and we put
\[\varphi(\alpha) = \omega_0 + \omega_0 \times \beta. \]

We will use the following results, see [13], §1, Luxemburg.

1. For any $\alpha < \omega$, there exists a weakly countable dimensional compact space Y_α such that:
\[\text{ind} Y_\alpha = \alpha \text{Ind} Y_\alpha = \varphi(\alpha). \]

2. For any compactum Y having a dimension $\text{ind} Y$ we have
\[\text{ind} Y \leq \text{Ind} Y \leq \varphi(\text{ind} Y). \]

From Definition 7.1 it follows that (see also [13, Lemma 1.1]).

3. If $\alpha < \beta$ then $\varphi(\alpha) < \varphi(\beta)$.

4. If $\alpha = \sup\{\beta_i\}$ then $\varphi(\alpha) = \sup\{\varphi(\beta_i)\}$.

Construction of the space X. Since α is a limit number there exists such a sequence of ordinal numbers $\{\gamma_i\}$ so that
\[\{\gamma_i < \gamma_{i+1} < \alpha, \gamma_i = \beta_i + 1 \}
\]
\[\alpha = \sup\{\gamma_i; i = 1, 2, \ldots\} = \sup\{\beta_i; i = 1, 2, \ldots\}. \]

By virtue of (1) there exists a weakly countable dimensional compacta K_i such that
\[\text{ind} K_i = \gamma_i, \quad \text{Ind} K_i = \varphi(\gamma_i). \]

Since by virtue of (3), (5), $\varphi(\beta_i) < \varphi(\gamma_i)$ we can take in every compactum K_i a pair of closed sets $F_i, G_i (F_i \cap G_i = \emptyset)$ such that
\[\text{Any partition} \ C \ \text{between} \ F_i \ \text{and} \ G_i \ \text{has the dimension} \ \text{Ind} C \geq \varphi(\beta_i). \]

Let K'_i be a compactum which we obtain by identification of all points of the F_i with some point $n_i \in F_i$ and by identification of all points of the set G_i with some point $v_i \in G_i$. Let
\[Z = \bigcup_{i=1}^{\infty} K'_i, \quad K'_i \cap K'_j = \emptyset \quad \text{for} \quad i \neq j \]
be a discrete sum of compacta K'_i. We put
Then U and V are disjoint closed subsets in Z. We take a countable number of copies Z_p of a space Z. The set in Z_p which corresponds to a set $A \subset Z$ we shall denote by A_p. In the set $\bigcup_{p=1}^{\infty} Z_p$ with topology of a discrete union of copies Z_p we identify the point v^*_p with the point u^*_{p+1} for all n and p. Then we obtain the space

\begin{equation}
\hat{X}_\alpha = \bigcup_{p=1}^{\infty} Z_p
\end{equation}

such that

$$Z_p \cap Z_{p+1} = V_p = U_{p+1}.$$

We put

$$X_\alpha = \hat{X}_\alpha \cup \{\delta\}$$

where in a point δ we define the topology by the open basis

$$G_{k+1} = X_\alpha \bigcup_{p=1}^{k} Z_p$$

and in \hat{X}_α the topology is preserved.

Proof. From condition (7) it follows that

\begin{equation}
\text{any partition } C \text{ between } \{u_i\} \text{ and } \{v_i\} \text{ has the dimension } \text{Ind } C \geq \varphi(\beta_i).
\end{equation}

Consequently $\text{Ind } K'_i > \varphi(\beta_i)$ and by virtue of (2)

\begin{equation}
\text{ind } K'_i \geq \beta_i + 1 = \gamma_i.
\end{equation}

Besides that

\begin{equation}
\text{ind } K'_i \leq \gamma_i + 1 < \alpha.
\end{equation}

Indeed, from (6) it follows that for any point $x \in K'_i((v_i) \cup \{u_i\})$

$$\text{ind}_x K'_i \leq \gamma_i.$$

Further if V is an arbitrary neighborhood of a point v_i in K'_i and $V \ni u_i$ then

$$Fr V \subset K'_i\setminus((v_i) \cup \{u_i\})$$

and consequently $\text{ind } Fr V \leq \gamma_i$. Similarly one can prove that $\text{ind}_{x_i} K'_i \leq \gamma_i$. Hence (12) holds. From conditions (5), (8), (9), (11), (12) it follows that
\[\text{ind } \tilde{X}_\alpha = \alpha . \]

Since obviously \(FrG_{k+1} = V_k = U_{k+1} \) and the set \(V_k \) is countable, we have \(\text{ind}_\delta X_\alpha \leq 1 \). Therefore

\[\text{ind } X_\alpha = \alpha . \]

Since compacta \(K_i \) are weakly countable dimensional, compacta \(K_i' \) are also weakly countable dimensional. Consequently the space \(X_\alpha \) is also weakly countable dimensional. Since \(X_\alpha \) is a union of locally compact separable spaces \(\tilde{X}_\alpha \) and a point \(\delta, X_\alpha \) is complete and separable. Let us prove that \(X_\alpha \) is not contained in any compactum \(Y \) with

\[\text{ind } Y = \alpha . \]

We suppose on the contrary. Then \(Y \supset X_\alpha \) and (14) holds. By virtue of (2)

\[\text{Ind } Y \leq \varphi(\alpha) . \]

We consider a neighborhood \(O_\delta \) in \(Y \) of the point \(\delta \) such that

\[O_\delta \cap U_i = \emptyset . \]

Since \(\text{Ind } Y \leq \varphi(\alpha) \), it follows that there exist neighborhoods \(W_i, i = 1, 2, \ldots \), of the point \(\delta \) such that for all \(i \)

\[\tilde{W}_i \subset O_\delta, \quad \tilde{W}_i \subset W_{i+1}, \quad \text{ind } Fr \tilde{W}_i < \varphi(\alpha) . \]

Since sets \(G_k, k = 2, 3, \ldots \), constitute a basis in \(X_\alpha \) at the point \(\delta \), there is some integer \(m \) such that \(G_m \subset W_1 \). Thus for \(k \geq m \) the sets \(U_m \) are contained in \(W_1 \). We shall show that \(U_{m-1} \setminus \tilde{W}_2 \) contains only finitely many points. Indeed, if \(u_{m-1}^{k_1}, u_{m-1}^{k_2}, \ldots \), is an infinite sequence of points which does not lie in \(\tilde{W}_2 \), then since \(u_{m-1}^{k_1}, u_{m-1}^{k_2}, \ldots \subset U_m \subset \tilde{W}_m \subset W_2 \), we have that the set \(Fr \tilde{W}_2 \) separates points \(u_{m-1}^{k_i} \) and \(v_{m-1}^{k_i} \) and by virtue of (10)

\[\text{Ind } Fr \tilde{W}_2 \geq \varphi(\beta_{k_i}) \quad \text{for any } i . \]

By virtue of (5) \(\sup\{\beta_{k_i}: i = 1, 2, \ldots\} = \alpha \) and consequently by virtue of (4) \(\sup\{\varphi(\beta_{k_i}): i = 1, 2, \ldots\} = \varphi(\alpha) \). Therefore from (17) it follows that

\[\text{Ind } Fr \tilde{W}_2 \geq \varphi(\alpha) \]

which contradicts the condition (16). Therefore, the set \(U_{m-1} \setminus \tilde{W}_2 \) is finite. Analogously to the case \(\iota = m - 1 \) we can show by induction that for \(\iota = 1, 2, \ldots, m - 1 \) the set \(U_{\iota} \setminus \tilde{W}_{m+1-\iota} \) consists of only finitely many points. From this taking \(\iota = 1 \) we get that the set \(U_1 \setminus \tilde{W}_m \) is
finite, but this contradicts conditions (15), (16). Thus, assumption
of the existence of a compact space $Y \supset X_\alpha$ with $\text{ind} Y = \alpha = \text{ind} X_\alpha$
leads us to a contradiction.

8. On compactifications of spaces with D-dimension. In [4],
Henderson, it was proved that every separable weakly infinite
dimensional space has a compactification of the same dimension D.
This result also follows from Corollary 1.1. In that paper it was
the conjecture which we prove in the following theorem:

THEOREM 8.1. Every separable space X has a compactification
$cX \supset X$ such that

\[(1) \quad D(cX) \leq D(X) + 1^\alpha.\]

This result appeared also in [7] earlier than ours. In [4]
Henderson gave an example of separable space $X(D(X) = \omega_0)$ which
is not contained in any compactum with the same D-dimension. In
the following theorem this result will be generalized for all $\alpha < \omega_1$,
$\alpha \geq \omega_0$.

THEOREM 8.2. For any $\alpha, \omega_0 \leq \alpha < \omega_1$ there exists a separable
space X_α such that $D(X_\alpha) = \alpha$ and X_α is not contained in any com-
 pactum with the same D-dimension.

To prove Theorem 8.1 we need some preliminary lemmas.

LEMMA 8.1. Let

\[(2) \quad X = \bigcup \{A_\gamma : \gamma \leq J(\beta)\}\]

be a β-D-representation of a separable space X. Then X is homeo-
morphic to a subset of a separable space Z such that for some β-D-
representation of Z

\[(3) \quad Z = \bigcup \{B_\gamma : \gamma \leq J(\beta)\}\]

the set $B_{J(\beta)}$ is compact.

Proof. By virtue of Lemmas 1.4 and 3.3 there exists a homeo-
morphism $f: X \to I^\alpha$ such that:

\[
\dim f(A_{J(\beta)}) \leq \dim A_{J(\beta)}
\]

\[
\overline{f(A_{J(\beta)})} \cap f(X \setminus A_{J(\beta)}) = \emptyset.
\]

\[14\] We will prove that it is possible to take such compactification cX that $cX \in AR$
and inequality (1) holds.
We put $Z = f(A_{\gamma(\beta)}) \cup f(X)$, $B_\gamma = f(A_\gamma) \cap Z$, ($\gamma \leq J(\beta)$). Then clearly $B_{\gamma(\beta)} = f(A_{\gamma(\beta)})$ and the equality (3) is a needed β-D-representation of Z.

Lemma 8.2. Let (2) be a β-D-representation of a space X, $\alpha = J(\beta) \geq \omega_0$, then for any sequence of ordinal numbers $\{\gamma_i\}$ such that $\gamma_{i+1} > \gamma_i$, $\sup\{\gamma_i : i = 1, 2, \cdots\} = \alpha$

there exists a simple with respect to $U = X \setminus A_{\gamma(\beta)}$ system of sets $\mathcal{F} = \{F_i\}$ such that

$$D(F_i) \leq \gamma_i .$$

Proof. Let $\delta < \alpha$ then we put

$$U = X \setminus \{A_\gamma : \delta \leq \gamma \leq J(\beta)\} .$$

Then by Lemma 8.3 in [13], Luxemburg, $D(U_\delta) < \alpha$. From Definition 0.3 it follows that the sets U_δ are open and since the system $(U_\delta : i = 1, 2, \cdots)$ is countable, our lemma follows. \qed

Lemma 8.3. Let P_i, $i = 1, 2, 3$, be closed subsets of a space $P = P_1 \cup P_2 \cup P_3$ and $P_1 \cap P_3 = \emptyset$. Let $f : P \to K$ be a homeomorphism. Then there exists a homeomorphism $g : P \to K \times I$, where $I = [0, 1]$, such that $g(P_1) \cap g(P_3) = \emptyset$.

Proof. Let $\varphi : P \to [0, 1]$ be a continuous function such that $\varphi(P_1) = 1$, $\varphi(P_3) = 0$. Then we put

$$g(x) = \{f(x), \varphi(x)\}, \quad x \in P .$$

Then, clearly, $g : P \to K \times I$ is a suitable mapping. \qed

Definition 8.1. Let spaces $P_i, i = 1, 2, 3$, satisfy the condition of Lemma 8.3 and $h : P_1 \cup P_2 \to K$ is a homeomorphism in a compactum K such that

$$h(P_1) \cap h(P_2 \cap P_3) = \emptyset .$$

We put $T = h(P_1) \cup h(P_3) \subset K$ and in disjoint sum $T \cup P_2$ we identify every point $h(x) \in T$ with a point x for $x \in P_2 \cap P_3 \subset P_3$. Then we get a factor space, which we denote by $\mu(h, K, P_1, P_2, P_3)$.

Lemma 8.4. There exists an imbedding $\pi : P \to \mu(h, K, P_1, P_2, P_3) = \mu$. Moreover, the space μ is separable and metrizable if P is separable and metrizable, $\pi(P)$ is everywhere dense in μ,.
\[\mu = \overline{\pi(P_1)} \cup \pi(P_2) \cup \pi(P_3) \]

the set \(\pi(P_3) \) is closed in \(\mu \), \(\pi(P_1) \) is compact, \(\overline{\pi(P_1)} \cup \pi(P_3) \) is closed in \(\mu \) and can be imbedded in \(K \) and \(\overline{\pi(P_1)} \cup \pi(P_3) = \emptyset \). The lemma is evident.

We will consider the following conjecture:

\(C(\alpha) \). For any separable space \(X \) with \(D(X) < \alpha \) there exists a compactification \(K \ni X \) with \(D(K) < \alpha \).

Definition 8.2. Let \(X = \cup \{ X_i : i \in I \} \) be a union of spaces \(X_i \) then \(X \) is called an inductive limit \(X = \operatorname{Lim} \{ X_i \} \) if a set \(U \subset X \) is open in \(X \leq U \cap X_i \) is open in \(X_i \).

Lemma 8.5. Let \(\alpha \) be a limit ordinal number and conjecture \(C(\alpha) \) is true. Let the system \(\{ F_i \} (i = 1, 2, \cdots) \) in a separable space \(X \) be simple with respect to \(X \) and \(D(F_i) < \alpha \). Then there exists a locally compact separable space \(G \), the system of compacta \(\{ G_i \} \) in \(G \) and imbedding \(f: X \to G \) such that:

\begin{enumerate}
 \item \(f(F_i) = G_i \).
 \item \(G_i \) is a compactum.
 \item \(G_i \) is simple with respect to \(G \).
 \item \(D(G_i) < \alpha, D(G) \leq \alpha \).
\end{enumerate}

Proof. We will define by induction spaces \(Y_i \ni X_i, i = 0, 1, 2, \cdots \) such that

\begin{enumerate}
 \item \(Y_i = P_0 \cup \cdots \cup P_i \cup F_{i+1} \cup F_{i+2} \cup \cdots \)
 \item \(\overline{F_j} = P_j \) and \(P_j \) is compact \(j = 0, 1, \cdots, i \).
\end{enumerate}

where \(\overline{F_j} \) is a closure of \(F_j \) in \(Y_i \).

\begin{enumerate}
 \item \(Q_i = \bigcap_{k=0}^{i} P_k \cup F_{i+2} \), \(Q_{i+2} = \bigcup_{j=i+3}^{i+2} F_j \), \(F_{i+2} = \overline{F_{i+2}} \).
\end{enumerate}

where \(Q_i = \bigcup_{k=0}^{i} P_k \cup F_{i+2} \), \(Q_{i+2} = \bigcup_{j=i+3}^{i+2} F_j \), \(F_{i+2} = \overline{F_{i+2}} \).

(7) \(P_k \cap P_\ell = P_k \cap F_\ell = \emptyset \) if \(|k - \ell| > 1 \).

(8) \(D(Q_i^i) < \alpha \).

We put \(P_0 = F_0 = \emptyset, Y_0 = X \). Let a space \(Y_i \) for \(i = i_0 \) be defined. We put \(Q_i^0 = F_{i+2} \). Then from (6) it follows that sets \(Q_i^i, Q_{i+2}^i \) are closed in \(Y_i \). Since \(D(F_k^i) < \alpha \), from condition (8) and the sum theorem for \(D \)-dimension (see [3], Henderson), it follows that \(D(Q_i^i \cup Q_i^i < \alpha \). Consequently, by \(C(\alpha) \) there exists an imbedding \(f: Q_i^i \cup Q_i^i \to K \) in a compactum \(K \) with \(D(K) < \alpha \). From Lemma 3.3 it follows that
there exists an imbedding \(\psi: Q_i^r \cup Q_i^l \to K \times I \) such that
\[
\overline{\psi(Q_i^r) \cap \psi(Q_i^l \cap Q_i^r)} = \emptyset.
\]
We put \(Y_{i+1} = \mu(\psi, K \times I, Q_i^r, Q_i^l, Q_i^0), P_{i+1} = [F_{i+1}] \),
where \([F_{i+1}]\) is a closure of \(F_{i+1} \) in \(Y_{i+1} \). Conditions (4), (5), (6), (7), for \(i_0 + 1 \) follow from Lemma 8.4. Since by Lemma 8.4 \(Q_i^0 + 1 = Q_i^0 + 1 \cup Q_i^0 \) can be embedded in \(K \times I \), we have \(D(Q_i^0 + 1) < D(K \times I) \). Since \(\alpha \) is a limit number, property (8) follows from the inequality \(D(K \times I) \leq D(K) + 1 \) (see [3], Henderson). Hence, space \(Y_i \) are constructed.

Let us put

\[
G = \lim\{Y_i\}, \quad G_i = \pi_i(P_i)
\]

where \(\pi_i: Y_i \to G \) are inclusions. From conditions (6), (7) it follows that for every point \(x \in G \) there exists \(i \) and an open in \(Y_i \) set \(U, x \in U \subset P_i \cup P_{i+1}(j + 1 \leq i) \), such that \(\pi_i(U) \) is a neighborhood of \(x \) in \(G \). Consequently, by virtue of (7) we obtain the condition (c). Conditions (a), (b) follow from (5). Since \(\pi_i \) is a homeomorphism, inequality \(D(G_i) < \alpha \) follows from inclusion \(P_i \subset Q_i^j(j < i) \) and (8). Since collection of compacta \(\{G_i\} \) is locally finite, the inequality \(D(G) \leq \alpha \) follows from sum theorem for \(D \)-dimension (see [3], Henderson). Hence property (d) and Lemma 8.5 are proved.

NOTATION. Let \(K \subset Y, X \subset Y, K \) is compact and \(f: K \to R \) is a mapping in a compact space \(R \), such that if \(x \in K \cap X \) then for any \(y \in K, y \neq x \), we have \(f(x) \neq f(y) \). We will consider points \(x, y \in Y \) to be equivalent if either \(x = y \in Y \setminus K \) or \(f(x) = f(y) \) and \(x, y \in K \). We get a factor space which we will denote by \(F = F(K, X, Y, f) \) and a factor mapping \(\pi: Y \to F \).

LEMMA 8.6. If a space \(Y \) is metrizable and separable then \(F \) is also metrizable and separable. Moreover, the restriction of \(\pi \) to \(X \) is a homeomorphism.

The lemma follows from well known theorems on factor mappings.

DEFINITION 8.2. The equality

\[
Y = K \cup \bigcup_{i=1}^{\infty} F_i
\]

we will call canonic representation of a space \(Y \) if

(a) the system \(\{F_i\} \) is simple with respect to \(Y \setminus K \).
(b) any sequence of points \(\{x_i\} \) such that \(x_i \in F_{i(k)}, i(k + 1) > i(k) \), has an accumulation point \(y \in K \).

LEMMA 8.7. Let \(X \) be a separable space and (2) be a \(\beta \)-\(D \)-representation of \(X(\beta \geq \omega_0) \). Then there exists a separable space \(Y \supset X \) such that \(Y \) has a canonic representation (9) and
(i) \(K \) is compact.
(ii) \(D(F_i) < \alpha = J(\beta) \).
(iii) \(K \cap X = A_{J(\beta)} \).

Proof. By Lemma 8.2 there exists a simple with respect to \(V = X \backslash A_{J(\beta)} \), system \(\{F'_i\} \) in a space \(X \) such that

\[
D(F'_i) < \alpha .
\]

Since \(\{F'_i\} \) is a simple system, sets \(F'_i \) and \(P_i = A_{J(\beta)} \cup \{F'_i : |k - i| > 1\} \) are closed and disjoint. Since the set of all homeomorphisms \(\varphi: X \to I^w \) contains an everywhere dense \(G_\delta \)-set in \(C(X, I^w) \), we get by Lemma 1.2 and (19)§1 a homeomorphism \(f: X \to I^w \) such that

\[
\overline{f(P_i)} \cap \overline{f(F'_i)} = \emptyset \quad \text{for any } i.
\]

We put

\[
K_i = \bigcup_{j=1}^{\infty} f(F_j) \cup A_{J(\beta)} \subset I^w, \quad K = \bigcap_{t=1}^{\infty} K_t, \quad F_t = f(F'_t)
\]

\[
Y = K \cup \bigcup_{t=1}^{\infty} F_t.
\]

Since \(f \) is a homeomorphism, \(Y \supset f(X) \), we can consider that \(X = f(X) \). Then conditions (i)–(iii) follow from (10), (11), (12), (13). Let us prove that representation (13) is canonic. Property (a) of Definition 8.2 follows from (11). Let \(\{x_i\} \) be such a sequence as in (b) of Definition 8.2. Then \(x_i \subset F_{t(k)} \subset K_{t(k)} \). Since \(K_{t+1} \subset K_t \) and \(K_t \) are compact, there is an accumulation point \(y \in \bigcap_{t=1}^{\infty} K_t = K \). The lemma is proved.

NOTATION. It is known (see [1], Bothe) that every separable \(n \)-dimensional space is contained in compact separable \((n + 1) \)-dimensional AR-space \(R^{n+1} \). In particular \(R^{n+1} \) contains a universal \(n \)-dimensional compact space \(A_n \subset R^{n+1} \).

Lemma 8.8. In Lemma 8.7 we can also require that \(K = R^{n+1} \), \(R^{n+1} \cap X = A_{J(\beta)} \subset A_n \), where \(n = K(\beta) \).

Proof. By Lemma 8.1 we can consider the set \(A_{J(\beta)} \) to be a compactum. Let \(Y \) be a space from Lemma 8.7. Since \(\dim A_{J(\beta)} \leq K(\beta) = n \) (see Definition 0.3 (d)), there is a homeomorphism \(g: A_{J(\beta)} \to \bigcup_{t=1}^{\infty} K_t \subset R^{n+1} \). Let \(f: K \to R^{n+1} \) be an extension of \(g \). We put \(Y' = F(K, X, Y, f) \). Then by Lemma 8.6 we can consider that \(X \subset Y' \), and the equality

\[
Y' = R^{n+1} \cup \bigcup_{t=1}^{\infty} F_t
\]
is clearly a canonic representation of Y'. Condition

$$R_{n+1} \cap X = A_{J(\beta)}$$

is evident. □

Lemma 8.9. Let X be a separable space, $D(X) \leq \beta$, $\beta = \alpha + n$, $\alpha = J(\beta)$, $n = K(\beta)$. Then there exists a compact space $K \supset X$ such that

1. $D(K) \leq \beta + 1 = \alpha + n + 1$.
2. $K = R^{n+1} \cup \bigcup_{i=1}^{\infty} H_i$, $H = \bigcup_{i=1}^{\infty} H_i$, $H \cap R^{n+1} = \emptyset$.
3. $D(H_i) < \alpha$, $D(H) \leq \alpha$.
4. H_i is compact and the system $\{H_i\}$ is simple with respect to H.
5. There exists a homeomorphism $i: R^{n+1} \to R^{n+1}$ such that $i(X \cap R^{n+1}) \subset A_n \subset R^{n+1}$.

Proof. We shall prove our theorem by induction on β. If $\beta < \omega_0$ then we put $K = R^{n+1}$, $G = \emptyset$. Let $\beta \leq \omega_n$. Since $D(X) \leq \beta$, there exists a β-D-representation of X and by Lemma 8.8 there exists a separable space $Y' \supset X$ such that representation (14) is canonic and

(15)

$$X \cap R^{n+1} \subset A_n, \quad D(F_i) < \alpha.$$

Since the conjecture $C(\alpha)$ holds by inductive assumption, by Lemma 8.5 there exists a separable locally compact space G such that $\bigcup_{i=1}^{\infty} G_i = G$, G_i is compact, the system $\{G_i\}$ is simple with respect to G.

(16)

$$D(G_i) < \alpha, \quad D(G) \leq \alpha$$

and there exists a homeomorphism $h: Y' \setminus R^{n+1} \to G$ such that $h(F_i) \subset G_i$. Let us put $G' = \omega \cup G$

where ω is a compactification point and G' is a compactum. Then obviously $D(G') = D(G)$. We put:

(17) $K = R^{n+1} \times G'$, $H_i = R^{n+1} \times G_i$, $H = R^{n+1} \times G, R^{n+1} = R^{n+1} \times \omega$.

Then from (16), (17) it follows that

$$D(K) = D(G') \oplus D(R^{n+1}) = D(G) \oplus (n + 1) \leq \alpha + n + 1 = \beta + 1.$$

Since α is a limit number from (16), (17) it follows that

13Here we use the inequality $D(X \times Y) \leq D(X) \oplus D(Y)$, where \oplus is a natural sum of ordinal numbers, see [3], Henderson.
Moreover the system H_i is simple with respect to H because the system \{G_i\} simple with respect to G. Consequently, from (18) and the sum theorem for D-dimension (see [3]) it follows that $D(H) \leq \alpha$. Thus conditions (i)-(iv) of our lemma are satisfied. We have only to prove the existence of homeomorphism $F: Y' \to K$ such that

\[(19) \quad F(X) \cap \overline{R^{n+1}} \subset A_n \times \omega.\]

Then condition (v) will take place. Since R^{n+1} is AR space, there exists a retraction $r: Y' \to R^{n+1}$. We define a mapping $q: Y' \to G'$ by the equalities

$$q(y) = h(y) \quad \text{for} \quad y \in Y' \setminus R^{n+1}, \quad q(y) = \omega \in G' \quad \text{for} \quad y \in R^{n+1}.$$

Then obviously q is a homeomorphism on $Y' \setminus R^{n+1}$. We define a mapping $F: Y' \to K$ by the equalities:

$$\pi_1 \circ F(y) = q(y), \quad \pi_2 \circ F(y) = r(y)$$

where $\pi_1: K = R^{n+1} \times G' \to G'$, $\pi_2: K \to R^{n+1}$ are projections. The condition (19) follows from (15). Let us prove that F is a homeomorphism. The mapping F is obviously injective and continuous. Moreover, since q is a homeomorphism on $Y' \setminus R^{n+1}$ and r is a homeomorphism on $R^{n+1} \subset Y'$, the mapping F is a homeomorphism on $Y' \setminus R^{n+1}$ and on R^{n+1}. Besides that

$$F(Y' \setminus R^{n+1}) \subset H, \quad F(R^{n+1}) = \overline{R^{n+1}}, \quad F(Y' \setminus R^{n+1}) \cap F(R^{n+1}) = \emptyset.$$

Therefore, for proving that F is a homeomorphism, we have only to prove that for any sequence \{F(x_n)\} such that

\[(20) \quad F(x_n) \in H, \quad \lim_{n \to \infty} F(x_n) = F(y) \in \overline{R^{n+1}}\]

we have

\[(21) \quad \lim_{n \to \infty} x_n = y.\]

From condition (20) it follows that $\lim_{n \to \infty} (\pi_1 \circ F(x_n) = q(x_n) = h(x_n)) = \pi_1 \circ F(y) = \omega$. Since G_i and $G' = \pi_1(K)$ are compact, there exist two subsequences of natural numbers \{n(k)\}, \{i(k)\} such that

\[(22) \quad h(x_{n(k)}) \subset G_{i(k)}, \quad n(k + 1) > n(k) + 2, \quad i(k + 1) > i(k) + 2.\]

Since $h(F_i) \in G_i$, and systems \{G_i\}, \{F_i\} are simple [from condition (22)], it follows that

\[(23) \quad x_{n(k)} \subset F_{i(k)-1} \cup F_{i(k)} \cup F_{i(k)+1}.\]
Let \(j(k) \) is such a number so that \(x_{n(k)} \in F_{j(k)} \), then since \(\{F_i\} \) is a simple system, from conditions (22), (23) it follows that \(j(k + 1) > j(k) \). Since (14) is a canonic representation, a sequence \(\{x_{n(k)}\} \) has an accumulation point \(y' \in \mathbb{R}^{n+1} \) and consequently \(y' = \lim z_j \) for some subsequence \(\{z_j\} \) of the sequence \(\{x_{n(k)}\} \). Moreover \(F(y') = F(y) \) and since \(F \) is injective, we have \(y = y' \). We have proved that for any sequence with condition (20) there exists a subsequence \(\{z_j\} \) of a sequence \(\{x_n\} \) such that \(\lim z_j = y \). From this fact it follows (21).

The lemma is proved. \(\square \)

Theorem 8.1 obviously follows from Lemma 8.9. Let us prove Theorem 8.2.

Definition 8.3. (See [20], Smirnov.) For any ordinal number \(\beta < \omega_1 \) we shall define a compactum \(K_\beta \). For \(\beta < \omega_0 K_\beta \) is a \(\beta \)-dimensional cube. If \(\beta \) is a limit number we consider \(K_\beta \) to be a one-point compactification (with point \(p_\beta \)) of a discrete union of compact \(K_\gamma \); \(\gamma < \beta \). If \(\beta = \alpha + n \), \(\alpha = J(\beta) \), \(n = K(\beta) \), we put \(K_\beta = K_\alpha \times I^n \), where \(I^n \) is an \(n \)-dimensional cube.

In what follows we will consider \(\alpha \) to be a limit number \(< \omega_1 \) and \(n = 0, 1, 2, \ldots \). For any \(K_\beta \)

\[
(24) \quad \text{Ind } K_\beta = \beta .
\]

(See [20], Smirnov.) Since for any compactum \(Z \)

\[
(25) \quad D(Z) \geq \text{Ind } Z ,
\]

see [4], Henderson (Theorem 2), \(D(K_\beta) \geq \text{Ind } K_\beta = \beta \). By transfinite induction it is easy to prove that \(D(K_\beta) \leq \beta \). Therefore

\[
(26) \quad D(K_\beta) = \beta .
\]

By definition we have

\[
(27) \quad K_{\alpha+n+1} = \{p_\alpha\} \times I^{n+1} \cup \{K_\gamma \times I^{n+1} : \gamma < \alpha\} .
\]

Let \(S^n \) be a sphere which is a boundary of the cube \(I^{n+1} \). We put:

\[
(28) \quad X_{\alpha+n} = \{(p_\alpha) \times S^n\} \cup \{K_\gamma \times I^{n+1} : \gamma < \alpha\} \subset K_{\alpha+n+1} .
\]

Then \(X_{\alpha+n} = Y \cup \{(p_\alpha) \times S^n\} \), where \(Y \) is a discrete union of compacta \(K_\gamma \times I^{n+1} : \gamma < \alpha \). From (26) it follows that

\[
D(Y) \leq \sup \{D(K_\gamma \times I^{n+1}) : \gamma < \alpha\} = \alpha .
\]

Since \(Y \) is open in \(X_{\alpha+n} \) and \(\{p_\alpha\} \times S^n \) is closed we have the inequality

(see [3], Henderson, Theorem 4)
D(X_{a+n}) \leq D(Y) + D(p_a \times S^n) = \alpha + n.

Let A be an n-dimensional face of the cube I^{n+1}, then $K_a \times A \subset X_{a+n} \subset K_{a+n+1}$ and $K_a \times A$ is homeomorphic to K_{a+n}. Consequently

$$D(X_{a+n}) \geq D(K_a \times A) = D(K_{a+n}) = \alpha + n.$$

Thus $D(X_{a+n}) = \alpha + n$. Let $(A_i, B_i)i = 1, \cdots, n+1$ be a system of all pairs of opposite faces in cube I^{n+1}, then clearly $(K_a \times A_i, K_a \times B_i)$ is a system of compact disjoint pairs in X_{a+n}. Let $C \supset X_{a+n}$ by any compact space, then we have to prove that

$$D(C) \geq \alpha + n + 1 = \beta + 1. \tag{29}$$

We put $F_i = K_a \times A_i, G_i = K_a \times B_i$. Let D_i be a partition between F_i and G_i in C.

Since clearly

$$F_i \cap K_{\gamma} \times I^{n+1} = K_{\gamma} \times A_i, \quad G_i \cap K_{\gamma} \times I^{n+1} = K_{\gamma} \times B_i (\gamma < \alpha)$$

the set $C_i = D_i \cap K_{\gamma} \times I^{n+1}$ is a partition between $K_{\gamma} \times A_i$ and $K_{\gamma} \times B_i$ in $K_{\gamma} \times I^{n+1} = K_{\gamma+n+1}$ for all $\gamma < \alpha$. Consequently, by virtue of [13], Luxemburg, Lemma 4.8 we have for all $\gamma < \alpha$

$$\text{Ind} \left[\bigcap_{i=1}^{n+1} C_i \right] \geq \gamma.$$

Therefore $\text{Ind} (\bigcap_{i=1}^{n+1} D_i) \geq \sup \{\gamma: \gamma < \alpha\} = \alpha$ and by virtue of [13], Luxemburg, Lemma 4.7

$$\text{Ind} C \geq \alpha + n + 1 = \beta + 1. \tag{30}$$

Inequality (29) now follows from (25), (30). The theorem is proved. \[\square \]

9. On completion of metric spaces. It is known, see [15], Nagata, that every finite dimensional subspace $X \subset Y$ is contained in G_δ-set $G \subset Y$ with the same dimension $\text{Ind} G = \text{Ind} X$. Here we extend this result to infinite dimensional case.

Theorem 9.1. For any subspace X of a space Y, such that the dimension $\text{Ind} X$ exists, there is a G_δ-set G, such that $\text{Ind} G = \text{Ind} X, X \subset G \subset Y, P(X) = P(G)$.

We note that by Lemma 2.8 we have also $D(X) = D(G)$.

Corollary 9.1. For any space X with dimension $\text{Ind} X$ there exists a completion $G = X^{\delta}$ such that $\text{Ind} X = \text{Ind} G$, weight $X = \ldots$

\[^{16} \text{We call a space } G \supset X \text{ a completion of a space } X \text{ if } G \text{ is an absolute } G_\delta \text{-set. It is equivalent to the fact that we can introduce in } G \text{ a complete metric (see [8]).} \]
Proof. Let $Y \supset X$ be any complete space and G_0 be a G_δ-set in Y such that $X \subset G_0 \subset Y$, $\text{Ind } G_0 = \text{Ind } X$. Such G_0 exists by Theorem 9.1. We put $G = G_0 \cap \bar{X}$. Then G is G_0 in Y, and consequently is an absolute G_δ-set. Also, $\text{Ind } G \leq \text{Ind } G_0 = \text{Ind } X$. Inequality $\text{Ind } G \geq \text{Ind } X$ follows from Corollary 2.3 and (SM1) §2.

For proving Theorem 9.1 we need some preliminary results.

(S2) [19], Sklyarenko. If in a space X there exists a convergent system (see Definition 2.2) of weakly infinite dimensional open sets with weakly infinite dimensional limit then X is weakly infinite dimensional.

Lemma 9.1. Let $K(K \subset X)$ be a limit of a system of open sets $\{\Gamma_n\}$ in a space X, then if $K \subset Y \subset X$ the system $\{\Gamma_n \cap Y\}$ is convergent in Y and K is a limit of this system in Y.

The lemma is evident.

Lemma 9.2. Let a space X have the dimension $\text{Ind } X$ and $Y \subset X$ is a subspace such that $Y \supset P(X)$. Then the dimension $\text{Ind } Y$ exists and $\text{Ind } Y \leq \text{Ind } X$ and Y is weakly infinite dimensional.

Proof. Let U_n be the set defined by equality (1) §2. Since $\text{Ind } X$ exists, the space X is weakly infinite dimensional by (SM1) §2, consequently by Theorem (S1) §2 the set $X \cup_{n=1}^{\infty} U_n = P(X)$ is a limit of the system $\{U_n\}$. By Lemma 9.1 $P(X)$ is a limit of the system $\{U_n \cap Y\}$. Since $\dim U_n \cap Y \leq \dim U_n \leq n$ sets $U_n \cap Y$ are weakly infinite dimensional. Moreover $P(X)$ is closed in X and, consequently, is also weakly infinite dimensional. Therefore, by virtue of (S2) Y is weakly infinite dimensional. Our lemma now follows from Corollary 2.3.

Proof of Theorem 9.1. We shall prove this theorem by induction on $\text{Ind } X$. If $\text{Ind } X$ is a finite number then this theorem is known (see [15]), and in this case $P(X) = \emptyset$. Let $\text{Ind } X \geq \omega_0$. Then $P(X)$ is a nonempty compactum (Corollary 2.1). We put

$$V_n = Y \setminus \overline{O_{1/n} P(X)}.$$

Then by Theorem SM1 §2 and by Corollary 2.1 the set $V_n \cap X$ is finite dimensional. Then by inductive assumption there exists G_δ-sets G_n such that
(2) \[V_n \supseteq G_n \supseteq V_n \cap X, \quad \text{Ind} \ G_n < \omega_0. \]

We put

(3) \[F = \bigcup_{n=1}^{\infty} (V_n \backslash G_n), \quad D_n = (Y \backslash F') \cap V_n. \]

Then \(F \) is \(F_\sigma \)-set in \(Y \), \(D_n \) is open in \(Y \setminus F \) and

(4) \[X \subseteq Y \setminus F, \quad D_n \subseteq G_n. \]

Consequently, by virtue of (2), \(D_n \) is finite dimensional. By virtue of (3) we have

(5) \[\phi = P(X) \cup \bigcup_{n=1}^{\infty} D_n = Y \setminus F. \]

Since \(P(X) \) is compact, by virtue of (1), (3) the system \(\{D_n\} \) is convergent in \(\phi \) and \(P(X) \) is a limit of this system. Since \(P(X) \) is closed in \(X \), it is weakly infinite dimensional. Since \(D_n \) are finite dimensional and consequently weakly infinite dimensional, \(\phi \) is also weakly infinite dimensional by

Theorem S2. Since \(F \) is \(F_\sigma \)-set, \(\phi = Y \setminus F \) is a \(G_\delta \)-set in \(Y \). Moreover, since \(X \subseteq \phi \) and \(D_n \) are finite dimensional, we have

(6) \[P(\phi) = P(X). \]

Let \(\text{Ind} \ X = \alpha \geq \omega_{\gamma} \) then there exists a countable system \(\{U_k\} \) of open in \(Y \) sets such that a system \(\{U_k\} \) forms a large base in \(P(X) \) and

(7) \[\text{Ind} \ Fr U_k \cap X \leq \beta_k < \alpha. \]

By inductive assumption for any \(k \) there exists such \(G_\delta \)-set \(W_k \) in \(Y \) so that

(8) \[W_k \supseteq Fr U_k \cap X, \quad \text{Ind} W_k \leq \beta_k, \quad P(W_k) = P(Fr U_k \cap X). \]

We put \(H_K = Fr U_K \setminus W_K \), then \(H_K \) is \(F_\sigma \)-set in \(Y \) and \(H_K \cap X = \emptyset \). Consequently the set \(G = \phi \setminus \bigcup_{k=1}^{\infty} H_K \) is a \(G_\delta \)-set and

(9) \[X \subseteq G, \quad Fr U_k \cap X \subseteq Fr U_k \cap G \subseteq W_k. \]

From conditions (8), (9) it follows that \(P(Fr U_k \cap X) = P(Fr U_k \cap G) = P(W_k) \) and by Lemma 9.2 we have

(10) \[\text{Ind} \ Fr U_k \cap G \leq \text{Ind} W_k \leq \beta_k < \alpha. \]

Since \(X \subseteq G \subseteq \phi \), by virtue of (6) we have

\[P(G) = P(X) = P(\phi). \]
Consequently by Lemma 9.2 G is weakly infinite dimensional, because ϕ is weakly infinite dimensional.

Since $\{V_k\}$ is a large base in $P(G)$, for any closed subsets F_1, F_2 in $P(G)$ there exists a set U_k such that $\text{Fr}U_k \cap G$ is a partition in G between F_1 and F_2. Therefore from condition (10) and Lemma 2.5 it follows that

$$\text{Ind } G \leq \alpha.$$

The inequality $\text{Ind } G \geq \text{Ind } X = \alpha$ follows from Corollary 2.3. \hfill \square

Theorem 9.2. Let X be a separable subspace of a space Y, and the dimension $\text{ind } X$ exists. Then there exists a G_δ-set $G \subset Y$ such that $\text{ind } G = \text{ind } X$, $X \subset G$.

Problem. Is this theorem true for a nonseparable space? The answer is still unknown even for finite dimensional spaces.

Corollary 9.2. For any separable space X with dimension $\text{ind } X$ there exists a separable completion $G \supset X$ with the same dimension $\text{ind } G = \text{ind } X$.

The proof is similar to the one of Corollary 9.1.

Proof of Theorem 9.2. We shall prove this theorem by induction on $\text{ind } X$. For $\text{ind } X = -1$ the theorem is evident. Let $\text{ind } X = \alpha > -1$. Since X is separable for any $n = 1, 2, \cdots$, there exists a countable system of open in Y sets $\{V_n\}$ such that

$$\text{ind } (\text{Fr } V_n) \cap X \leq \beta_n < \alpha$$

and

$$(11) \quad X \subset H_n = \bigcup_{i=1}^{\infty} V_{ni}, \quad \text{diam } V_{ni} < \frac{1}{n}.$$

By inductive assumption for every pair (i, n) there exists a set G_{in} of a type G_δ in Y such that

$$(12) \quad \text{Fr } V_{ni} \cap X \subset G_{nk}, \quad \text{ind } G_{ni} = \text{ind } (\text{Fr } V_{ni} \cap X) = \beta_{ni} < \alpha.$$

We put

$$(13) \quad A_n = H_n / \bigcup_{i=1}^{\infty} (\text{Fr } V_{ni} \setminus G_{ni}), \quad G = \bigcap_{n=1}^{\infty} A_n.$$

Then $A_n \supset X$ and A_n is a G_δ-set in Y. Consequently $G \supset X$ and G is also a G_δ-set in Y. Let us prove the inequality
(14) \[\text{ind } G \leq \alpha . \]

Let \(x \in G, \varepsilon > 0 \) and \(1/n < \varepsilon \) for some \(n \). Then by virtue of (11) there exists an open set \(V_{n_1} \) such that \(x \in V_{n_1} \). From (12) and (13) it follows that

\[Fr V_{n_1} \cap G \subset Fr V_{n_1} \cup A_n \subset G_{n_1} \]

and consequently \(\text{ind}(Fr V_{n_1} \cap G) \leq \text{ind } G_{n_1} < \alpha \). Hence inequality (14) is true. Since \(X \subset G \) we also have \(\text{ind } G \geq \text{ind } X \). □

Theorem 9.3. Let \(X \subset Y \) then there exists a \(G_\sigma \)-set \(G \) in \(Y \) such that \(D(X) = D(G), X \subset G \).

Corollary 9.3. For any space \(X \) there exists a completion \(G \supset X \) such that \(D(G) = D(X) \), weight \(G = \text{weight } X \).

The proof is similar to the one of Corollary 9.1.

Lemma 9.3. Let \(\mathcal{A} = \bigcup \{ A_\mu : \mu \in \mathcal{M} \} \) be a locally finite system of \(F_\sigma \)-sets in a space \(X \). Then the set \(A = \bigcup \{ A_\mu : \mu \in \mathcal{M} \} \) is also a \(F_\sigma \)-set in \(X \).

The lemma follows from the fact that a union of locally finite system of closed sets is also a closed set.

Proof of Theorem 9.3. We will prove this theorem by induction on \(D(X) \). If \(D(X) < \omega_0 \), then \(D(X) = \text{Ind } X \) and our assertion is true. Let \(D(X) = \beta \geq \omega_0 \) and the equality

\[X = \bigcup \{ A_\varepsilon : \varepsilon \leq \alpha = J(\beta) \} \]

be a \(\beta \)-\(D \)-representation of \(X \). We put

\[Z = Y \setminus \bar{A}_\alpha \]

where \(\bar{A}_\alpha \) is a closure of \(A_\alpha \) in \(Y \). Let \(U_\delta = X \setminus \bigcup \{ A_{\mu'} : \delta' > \delta \} \) where \(\delta < \alpha \). Then from condition (e) of Definition 0.3 we have

(15) \[X \setminus A_\alpha = \bigcup \{ U_\delta : \delta < \alpha \} \]

and by Lemma 8.3 in [13], Luxemburg, \(U_\delta \) is open in \(X \) and

(16) \[D(U_\delta) < \alpha = J(\beta) \leq \beta . \]

Let \(V_\delta \) be an open in \(Y \) set such that \(V_\delta \subset Z \) and

(17) \[V_\delta \cap X = U_\delta . \]

We put \(V = \bigcup \{ V_\delta : \delta < \alpha \} \) then \(V \subset Z \) and \(V \) is an open set in \(Y \).
Since V is paracompact, we can find a closed in V locally finite refinement $\mathcal{F} = \{F_\mu: \mu \in \mathcal{M}\}$ of the covering $\{V_\delta: \delta < \alpha\}$. Consequently from (16), (17) it follows that

$$D(F_\mu \cap X) < \alpha \ (\mu \in \mathcal{M}).$$

By inductive assumption for every $\mu \in \mathcal{M}$ there exists a G_δ-set G_μ in F_μ such that

$$X \cap F_\mu \subset G_\mu \subset F_\mu. \quad D(G_\mu) = D(F_\mu \cap X) < \alpha.$$

Since the system \mathcal{F} is locally finite in V, the system $\mathcal{L} = \{L_\mu = F_\mu \setminus G_\mu: \mu \in \mathcal{M}\}$ is also locally finite in V. Moreover, since G_μ is a G_δ-set in V the set L_μ is F_γ-set in V and by Lemma 9.3 the set $L = \cup \{L_\mu: \mu \in \mathcal{M}\}$ is F_σ in V. We put $G_1 V \setminus L$, then clearly, G_1 is a G_δ-set in V (and consequently in Y) and

$$Z \supset G_1 \supset X \setminus A_\alpha.$$

Since $F_\mu \cap G_1 = F_\mu \setminus L$, sets $F_\mu \setminus L$ are closed in G_1. Moreover, the system $\{F_\mu \setminus L, \mu \in \mathcal{M}\}$ is locally finite in V (and consequently in G_1) and $F_\mu \setminus L \subset G_\mu$. Therefore

$$D(F_\mu \setminus L) \leq D(G_\mu) < \alpha.$$

By the sum theorem for locally finite union of closed sets (see [3], Henderson) we get

$$D(G_1) = D(\cup \{F_\mu \setminus L: \mu \in \mathcal{M}\}) \leq \sup\{D(F_\mu \setminus L): \mu \in \mathcal{M}\} \leq \alpha = J(\beta).$$

Let us consider the set $A_\alpha \subset Y \setminus Z \subset Y \setminus G_1$. Since $\text{Ind } A_\alpha \leq K(\beta) < \omega_0$ (see condition (d) of Definition 0.3) there exists a G_δ-set G_2 in Y such that

$$A_\alpha \subset G_2, \quad D(A_\alpha) = \text{Ind } A_\alpha = D(G_2) \leq K(\beta).$$

We put $G_3 = G_2 \cap (Y \setminus Z)$, then clearly G_3 is closed in $G = G_3 \cup G_1$ and G_3 is a G_δ-set in Y, because $Y \setminus Z$ is a closed set. Moreover, we have obviously that

$$X \subset G, \quad D(G_3) \leq D(G_2) \leq K(\beta)$$

and G is a G_δ-set in Y as a union of G_γ-sets G_1 and G_3. Since G_3 is closed in G, the set $G_3 = G \setminus G_3$ is open in G and consequently (see [3]) from (18), (19) it follows that:

$$D(G) \leq D(G_1) + D(G_3) \leq J(\beta) + K(\beta) = \beta = D(X).$$

The inequality $D(X) \leq D(G)$ follows from the inclusion $X \subset G$.

10. On the necessary and sufficient conditions of the existence
of transfinite dimensions. As it was mentioned in the introduction, dimensions $\text{ind } X$ and $\text{Ind } X$ do not exist for every space X. In this section we shall consider that D-dimension of a space X exists if $D(X)$ is an ordinal number. The following theorem gives a criterion of the existence of transfinite dimensions in terms of compactifications.

Theorem 10.1. Let X be a separable space, then

(a) $\text{Ind } X$ exists \iff there is a countable dimensional\(^{17}\) compactification $cX \supset X$ such that $P(cX) = P(X)$.

(b) $\text{ind } X$ exist \iff there is a countable dimensional compactification $cX \supset X$.

(c) $D(X)$ exists \iff there is a weakly countable dimensional compactification $cX \supset X$.

To prove this we need the following assertions:

1. If $\text{Ind } X$ exists then X is countable dimensional, see [21], Smirnov.
2. If X is a countable dimensional compactum then $\text{Ind } X$ exists, see [22], Smirnov.
3. If X is a complete countable dimensional space then $\text{ind } X$ exists, see [5], Hurewicz and Wallman.
4. If $\text{ind } X$ exists, X is a separable space, then X is countable dimensional, see [5], Hurewicz and Wallman.
5. If X is a complete separable space, then $D(X)$ exists \iff is a weakly countable dimensional\(^{18}\), see [4], Henderson.

Proof of Theorem 10.1. (a) Let $\text{Ind } X$ exist, then the existence of such a compactification cX follows from Corollary 1.1 and (1). If there exists a countable dimensional compactification $cX \supset X$ then by virtue of (2) $\text{Ind } X$ exists and our assertion follows from Lemma 8.2.

(b) Let $\text{ind } X$ exist, then by Corollary 9.2 there exists a separable absolute G_δ-set $pX \supset X$ such that $pX = \text{ind } X$. Since pX is an absolute G_δ-set there exists a compactification $cX \supset pX$ such that the set $cX \setminus pX$ is countable dimensional see [9], Lelek. Since $\text{ind } pX$ exists, by virtue of (4), the space pX is countable dimensional, consequently the compactum cX is also countable dimensional. If a space X has a countable dimensional compactification $cX \supset X$, then by virtue of (3) $\text{ind } cX$ exists. Consequently, $\text{ind } X$ also exists (see (1), introduction).

Property (c) follows from (5), Theorem 8.1 and (1) introduction.

\(^{17}\) A space X is countable dimensional if X is a union of countable number of zero-dimensional sets.

\(^{18}\) It is easy to prove this theorem also for nonseparable spaces.
COROLLARY 10.1. For any separable space X with dimension $\text{ind} X$ there exists a compactification cX such that the dimension $\text{ind} cX$ also exists. This corollary follows from Theorem 10.1(b) and (3).

Theorem 7.1 shows that we can not require that the equality $\text{ind} cX = \text{ind} X$ holds for some compactification $cX \supset X$. However I think that the technique of the proof of Theorem 1.1 will permit proving the following.

Conjecture. If X is a separable space and $\text{ind} X = \alpha + p$, where $\alpha = J(\alpha + p)$, $p = K(\alpha + p) = 0, 1, 2, \ldots$, then there exists a compactification $cX \supset X$ such that $\text{ind} cX \leq \alpha + 2p + 1$.

We also note that using Theorems 9.1 and 9.3 we can easily obtain criteria of the existence of dimensions $\text{Ind} X$ and $D(X)$ in terms of completions for nonseparable spaces.

REFERENCES

Received March 5, 1979 and in revised form February 12, 1981.

University of Kentucky
Lexington, KY 40506
Jean Bourgain, A Hausdorff-Young inequality for B-convex Banach
spaces ... 255

J. L. Brenner and Lorraine L. Foster, Exponential Diophantine
equations .. 263

Henry H. Glover and William Duncan Homer, II, Fixed points on flag
manifolds ... 303

Lothar Hahn, A note on stochastic methods in connection with
approximation theorems for positive linear operators 307

James P. Henderson, Approximating cellular maps between
low-dimensional polyhedra .. 321

V. K. Jain, Certain transformations of basic hypergeometric series and their
applications ... 333

Charles David Keys, On the decomposition of reducible principal series
representations of p-adic Chevalley groups 351

M. S. Klamkin and A. Meir, Ptolemy’s inequality, chordal metric,
multiplicative metric .. 389

Robert F. Lax, Independence of normal Weierstrass points under
deflection .. 393

Leonid A. Luxemburg, On compactifications of metric spaces with
transfinite dimensions .. 399

Carlton James Maxson, Martin Ross Pettet and Kirby C. Smith, On
semisimple rings that are centralizer near-rings 451

Teodor C. Przymusiński, Extending functions from products with a metric
factor and absolutes .. 463

Giorgio Talenti, A note on the Gauss curvature of harmonic and minimal
surfaces .. 477

D. M. Terlinden, A spectral containment theorem analogous to the
semigroup theory result $e^{t\sigma(A)} \subseteq \sigma(e^{tA})$ 493