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Let G be a finite group with identity 0 and let %7 be a
group of automorphisms of G. The set C(; G)={f:G—>
G| f0) =0, fv) = yf(v) for every rye.7, vEG} is the cen-
tralizer near-ring determined by % and G. In this paper
we consider the following ‘‘representation’ questions: (I)
Which finite semisimple near-rirgs are of C(-°7; G)-type? and
(IT) Which finite rings are of C(=7; G)-type?

1. Introduction. Let G be a finite group and let I" denote a
semigroup of endomorphisms of G. The set of functions C(I"; G) =
{f:G—G|f(0) =0 and f(vv) = vf(v) for every veI',veG} forms a
zero-symmetric near-ring under function addition and function com-
position. (Since all near-rings in this paper will be zero-symmetric
this adjective will henceforth be omitted.) Such “centralizer near-
rings” are indeed general, for it is shown in [7] that if N is any
near-ring (with identity) then there exists a group G and a semi-
group of endomorphisms I” such that N = C(I"; G).

The structure of centralizer near-rings has been studied for
various G’s and I'’s, e.g. when I' = .7 is a group of automorphisms
of a finite group G ([5]), or when I' is a finite ring with 1 and G is
a faithful, unital I"-module ([6]). From a structure theorem due to
Betsch [1] we have that a finite near-ring N, which is not a ring,
is simple if and only if N = C(%; G) where .o is a fixed point
free group of automorphisms of a finite group G. (A group .o of
automorphisms is fixed point free if the identity map in .o is the
only element of .9 that fixes a nonidentity element of G.)

Since every finite simple nonring is of “C(.&; G)-type” it is
natural to ask for which finite near-rings does there exist a finite
group G and a group of automorphisms .& such that N = C(.¢; G),
i.e. which finite near-rings are of C(.%; G)-type? In this paper we
restrict our attention to the following more specific questions.

I. Which finite semisimple near-rings are of C(.&; G)-type?

II. Which finite rings are of C(.%; G)-type?
It will become clear in this paper that the “centralizer representation™
problems I and II give rise to nontrivial group-theoretic, combinatoric
problems.

In providing partial solutions to problems I and II we show that
certain semisimple near-rings are not of C(.%7; G)-type. Moreover
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it is proven that the only possible rings of C(.&7; G)-type are those
that are direct sums of fields, but this is only a necessary condition.
Information is obtained on which direct sums of fields are of C(.&7"; G)-
type.

For definitions and basic results on near-rings the reader is
referred to the book by Pilz [8]. A near-ring with 1 is simple if it
has no nontrivial ideals. Since we are dealing exclusively with finite
near-rings, we will regard a semi-simple near-ring as being one which
is a direct sum of simple near-rings. For connections between our

definition of semi-simplicity and near-ring radicals see [8], Chapters
4 and 5.

2. Rings of C(.%7; G)-type. In this section we present results
that characterize semisimple C(.%7; G) near-rings. We also show that
if a finite ring has a centralizer representation then this ring must be
a direct sum of fields, a result that has been established independently
by Zeller [10].

We begin by setting our notation and terminology. G will denote
a finite group (normally written additively with identity 0) and .o~ a
group of automorphisms of G. For v, € G, let C..(v,) = {a € & |av,= vy},
a subgroup of .o/ and let N(C.(v,) denote the normalizer of C, (v,)
in .2 Also let C4(C..(v,) = {veG|av = v for all «cC. (v,)}, a sub-
group of G. Finally for ve G* = G — {0} let 6(v) = {av| @ € &7}, the
orbit of G* determined by v under .o/

The set & = {C., (v)|veG*} is partially ordered by inclusion,
and we say C.(v) is maximal if it is maximal in &2 The following
theorem appears in [5], but since it and its proof are basic to this
paper we include it here for completeness.

Ti{EOREM 1. Let & be a group of automorphisms of a finite
group G. The following are equivalent.

1. C(s7; G) is semi-simple.

2. Ewvery element in & is maximal.

8. The collection, {Cs(C.(v))|ve€G*}, of subgroups partitions G.

Proof. Suppose C(.; G) is semisimple and there exist elements
u, v € G* with C..(u) properly contained in C,.(v). Let

M={feCl; G)|C.,(v) = C.(f(w) and f is zero off O(w)} .

Then M is a nonzero nilpotent C(.%7; G)-subgroup and C(.%; G) is
not semi-simple.

Suppose condition 2 holds, then if wu¢& Cy(C.. (v)), Cs(C. (V) N
Cy(C..(u)) = {0}. So G is partitioned by the desired subgroups.
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Assume now that condition 3 holds. For veG* let T(v) = U
{o(w) | C, (w) = C,())}, and let M(v) ={f € C(.%"; G)| f is zero off T(v)}.
M(v) is an ideal of C(.%7; G). We may select elements v,, : -+, v,€ G*
such that G = T(v,)U --- U T(»,) U {0}, a disjoint union. We have
C(;G)=Mw)P - P Mw,), a direct sum of ideals M(v,). It
remains to show that each M{v,) is simple. For each 4 let & =
N_{C.,(»))/C.(v,). Then .54 can be regarded as a group of auto-
morphisms on H, = C4C..(v;)) by defining Bw = gw for all we H,
B e.%7. Moreover M(v,) = C(57; H,), and since .7 acts fixed point
free on H, C(.%7; H,) is a simple near-ring. So C(.%7; G) is semi-
simple.

When C(.%; G) is semi-simple the proof of Theorem 1 establishes
that C(.%7; @) is a direct sum of simple near-rings of C(.%; G)-type.
We record this in the following corollary.

COROLLARY 1. C(&7; G) is semi-simple if and only if there
exist elements v, v, -+, v, in G* with corresponding subgroups H; =
Ce(C.,(v)) of G such that for every i, .5 = N(C.,(.))/C..(v;) acts
fixed point free on H, and

O G) = C(; H) @D -+ DO H)

PROPOSITION 1. Assume C(¥7'; G) is simple. Then C(.7; G) is
a ring if and only if it is a field. Moreover every field is a mear-
ring of C(.57; G)-type.

Proof. Assume C(.%; G) is a ring and suppose 6, and 6, are
distinet orbits in G*. Since C(.%7; @) is simple there exist elements
v, €0, such that C.,(v,) = C,(v,). Lete;: G—G,1, 5 =1,2be defined
by

e;(x) =0 x&6,U0,.

Then ¢;;€C(; G). But e,(e, + €.) # eqe, + ey, and C(7; G) is
not a ring. So G* is an orbit and C(7"; G) is a field.

If F' is a finite field, let G = (F, +) and let .7 = F'*, regarded
as acting on G by left multiplication. Then F = C(; G).

THEOREM 2. C(.7; G) is a ring if and only if C(7; G) is a
direct sum of fields.

Proof. Assume C(.%7; G) is a ring. We show first that C(.%7; G)
is semisimple. Assume not; then there exist orbits 6,(v,), 6,(v,) of G*
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such that C,(v,) & C,,(v,). If ey, 1 =1,2, 5 =1, 2 are defined as above
then e, ey, €, € C(Y; G); and ey(ey + €,1) # €xey + exey,.

So C(.o7; G) is semi-simple and C(; @) =C(; H)D ---
C(.%7; H,) as in the corollary to Theorem 1. This means each C(.57; H,)
is a ring, and by Proposition 1 must be a field. '

As a result of the arguments above we have the following
structural result.

COROLLARY 2. If N 1is a finite. semi-simple mear-ring with
N=S:--- DS, where each S; is simple, and if for some j, S; is
a ring which is not a field, then N is not of C(.7; G)-type.

3. Centralizer representations of direct sums of fields. From
Theorem 2 the only time C(.%; G) is a ring is when it is a direct
sum of fields. Thus, it is natural to investigate the problem of when
a direct sum of fields has a centralizer representation. We shall
show that not all direct sums of fields are near-rings of C(.; G)-
type. For notation, let GF(q) denote the finite field with q elements
where ¢ = p* for some prime p. If C(.&7; G) is direct sum of fields
then from Corollary 1 we have

C(7; @) = C(F; H) D -+ ®C(; H)

where each C(.%7; H,) is a finite field. From Theorem 1 and its proof,
and from Corollary 1, we have the following necessary and sufficient
conditions for GF(q,) D --- P GF(q,), q¢; = p* to be a near-ring of
C(7; G)-type:

(i) There exists a finite group G and a group of automorphisms
.7 such that any one of the conditions of Theorem 1 is satisfied.

(ii) G* has exactly t orbits under .o~

(iii) Every nonzero element in G has prime order.

(iv) If v, v’ € G* belong to different orbits then C. (v) and C. (v')
are not conjugate subgroups of .o

(v) There exist elements v, ---, v,€G*, no two in the same
orbit, such that for each ¢, N(C. (v,))/C.(v;) = GF(q,)*.

The following group theoretic result indicates that property (iii)
places a rather strong restriction on the structure of the group G.
The theorem is certainly known but we are not aware of any explicit
reference in the literature so, for the reader’s convenience, we have
included a proof that is, for the most part, elementary.

THEOREM 3. Let G be a finite group such that every non-identity
element of G has prime order. Then one of the following holds:

(a) G is a p-group of exponent p for some prime P,

(b) G s a Frobenius group with kernel of order p* and com-
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plement of order q, where p and q are distinct primes,
(e) G s isomorphic to A;, the alternating group on five elements.

Proof Case 1. Assume G is solvable and not a p-group. Then
every minimal normal subgroup of G is abelian ([4], page 23), so
the Fitting subgroup F(G) is nontrivial. The nilpotent group F(G)
must be a p-group for some prime p, for otherwise if « and y
in F(G) have distinet prime orders, xy = yx has composite order.
Let G = G/F(®), and let V = F(G)/9(F(G)), the Frattini factor group
of F(G). V is a vector space over GF(p) ([4], page 174, Theorem
1.8) and G acts faithfully by conjugation as a group of linear trans-
foamations on V ([4], page 229, Theorem 3.4).

Let N = N/F(G) be a minimal normal subgroup of G, so N is
an elementary abelian g¢-group for some prime ¢ == p. Since all
elements of G have prime order, N acts fixed point freely on V.
By Theorem 8.3, page 69 of [4] we have |N| = q. It suffices now
to prove G = N.

Suppose G # N and let M/N be a subgroup of prime order r in
G/N. Now # = q for if so, then M would be elementary abelian
of order ¢*, which is not allowed by Theorem 3.8 of [4]. I/ must
be a Frobenius group, so let M = N{x)», where x has order r.

Regarding I as a set of linear transformations on V, we see
that 3%,..5» maps Vinto C,(N)=1, so 3, n=0. Similarly, 3,..zm =0.
Since M* is partitioned by N* and the ¢ conjugates of {(x)* then

O=Z‘{m=z}vn+2(x+x2+ A
:0+2[§xi}v_q,_

Therefore >);=fx® = 0.

Let ve V* such that v* 1 where y = >t af. If » = p then
o= 0 e 07T = (e o) (00l - - (TP Ver?t) = (wr)? = 1. So
ve~' has order at least p® in the p-group {(x)V, impossible. On the
other hand, if » == p, the fact that « does not satisfy the polynomial
l+a+ - 4+a*=(a —1)/(x — 1), but does satisfy a” — 1 means
that 1 is an eigenvalue for # on V. Then 2z 'wx = w® = w for some
we V*, so wx has order pr, also impossible. Hence G = N.

Case 2. Assume G is not solvable. Then G has even order by
the Feit-Thompson theorem. Let S be a Sylow 2-subgroup of G.
Every element of S* has order 2 so S is abelian. This means for
every x€S* we have SCC(x) where C(x) is the centralizer of x.
On the other hand C(x) is a 2-group if x¢€S* otherwise G has
elements of composite order. Hence C(x) = S for every x e X*.
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If |S| =2 then G has a normal 2-complement (see e.g. [4],
Theorem 7.6.1, page 257) which implies G is solvable. Hence we
may assume |S| > 2. By a result of Brauer-Suzuki-Wall ([2], or for
a more elementary reference see [3]), either S is a normal subgroup
of G or else G isomorphic to SL(2, 2*) where |S| = 2". In the former
situation, G/S has odd order so it is solvable. Then G is solvable,
contradiction. Thus G is isomorphic to SL(2, 2*) for some n = 2.
Since SL(2, 2") contains cyclic subgroups of order 2" — 1 and 2" + 1
([4], Theorem 8.3 page 42) then 2" — 1 and 2" + 1 must be primes.
But 2" — 1 prime implies » is prime, and 2" + 1 prime implies n is
a power of 2. Hence n = 2 and G is isomorphic to SL(2, 4) = A,.

REMARK. By invoking a deep result of Suzuki on partitioned
groups [9], the following stronger result can be proved: If the
near-ring C(."; G) is semi-simple and F(G) =1, then G = SL(2, 2")
for some .

COROLLARY 3. Assume C(.7; G) is a direct sum of fields F;, 1 =
1, ---,n. Let S={p,|p; is the characteristic of F.}. Then

(i) |S]=3,

(ii) 2f |S| =38 then C(; G) = GF(2) P GF ) P GF(5) where
G = A, and &7 = Aut(G),

(iii) 2f|S| = 2, then for some q € S, all components F, of C(.7; G)
with characteristic q are isomorphic to GF(q).

Proof. Part (i) is immediate from Theorem 3. For part (ii) we
have G = A, due to Theorem 3 and the remarks preceding it. If
&7 = Aut(4;) then @ ¢.o has the form &(x) = yxy™ where y is a
fixed element in S;. Hence A, has three nontrivial orbits, one for
each type of cycle structure. We have

Ca(C(123)) = {(123)) = Z,
Ce(C(12)(34)) = {(12)(34)) = Z,
C.(C,,(12345)) = {(12345)) = Z,

Computations show that
N(C..(123))/C.,(128) = Z,, N(C,(12)(34)/C.(12)(34) = {I}

and N(C,(12345))/C.,(12345) = Z,. Hence C(; @)= GF2)P GF(B)P
GF(5).

It remains to show that no other group .% of automorphisms
of G = A, gives rise to a near-ring which is a direct sum of fields.
We may assume . &S, where & acts on A; by conjugation. If
xz is a b-cycle then ze A, and C.(x) is a subgroup of <(x). Since
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C(s7; A,) is semisimple we must have C.(x) = <x). Thus . con-
tains all 5-cycles in S,. Since the set of 5-cycles generates a normal
subgroup of A;, and A, is simple, we have 4, £ .9~ Thus & = A4,.
The near ring C(A4,; A,) is semi-simple but is not a direct sum of
fields. So we have &7 = S,.

Part (iii) follows from the fact that in part b) of Theorem 3, a
Sylow g¢-subgroup of G has order q.

The preceding theorem places a restriction on which direct sums
of fields can be realized as a centralizer near-ring. The following
two theorems give more information about when a direct sum of
two fields with different characteristics is a centralizer near-ring.

THEOREM 4. Let G be a finite group and & a subgroup of
Aut G such that 7 has exactly two orbits in G*. If G does not
have prime power order, then for distinct primes » and q

(i) @G 1s a Frobenius group [V]Q, with V an elementary abelian
normal subgroup of order p* and Q a cyclic group of order ¢, and

(ii) » s a genmerator of GF(q)*.

Proof. Since G is not a p-group there exist distinct primes p
and ¢ such that the two orbits consist of the elements of order p
and the elements of order ¢ respectively. By Theorem 3, G is a
Frobenius group with a p-group V as kernel and with a complement
@ of order ¢q. Since V is characteristic in G, the center of V is
&7-invariant so the transitivity of .% on elements of order p» implies
that V is abelian. This proves (i).

If ae.7 Q% is a Sylow g¢-subgroup of G so Q* = g7'Qg for
some geG. Since G =VQ =QV, g can be selected to be in V so
Q* = v7'Quv = Q% where 1, is the inner automorphism of G induced
by v. So ai;*e€ Niwe(Q) = N and a€ Ni,. We now have &7 & NI,
where I, is the group of inner automorphisms of G induced by
elements of V. Since V is a characteristic subgroup of G then I, is
normal in Aut G so NI, = I,N.

Since 7 acts transitively on V* so does N. We claim N is also
transitive on Q*. For if z,ye@* then 2=y for some ac.%
Writing @ = i,n where ve V, n e N, we have a*" = y, so a'v = y* '€
Q"' =@. Hence x™wxv = 272 @. On the other hand, since V
is normal in G, x™w'azveV, so z7vzve@Q NV = {1}. Therefore
2 =2 and 2" = 2" = y.

Q@ acts faithfully on V so we may let @ = {T) where T is a
linear transformation on V regarded as a vector space over GF(p).
Suppose W is an irreducible @-submodule of V. Since Q is invariant
under N, W" is an irreducible Q-submodule for every meN. The
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transitivity of N on V* implies that every element of V* belongs
to some irreducible @-submodule V and hence for every v € V* there
exists an irreducible polynomial (over GF(p)), f,(x), such that f,(T)v=
0. If v, we V* then f,(T)f.(T)(w + w) = 0 s0 f,,.,(x) divides f,(x)f, ().
Hence we may assume f,,,(x) = f,(x), implying f(T)w = 0 so f,(®)=
Ju(x). Hence f,(x) = f,(x) for all v, w € V* and the minimal polynomial
f(x) of T on V is irreducible.

Since T = I, f(z) divides 2? — 1 = (x — 1)c(x) where ¢(x) = 2 +
-+ 4+ 2+ 1. Since T fixes no element of V*, f(x) divides ¢(z). On
the other hand if « is an eigenvalue of T in some extension field of
GF(p) then the transitivity of N on Q* implies 7 is similar in GL(V)
to T* for every k with 1 <k < q — 1, so a* is an eigenvalue for T
for every such k. Hence, all qth roots of 1 (except 1) are eigenvalues
for T and thus roots of f(x). It follows that f(x)=a''+---+ax+1=
¢(x) and ¢(x) is irreducible over GF(p). Therefore any extension of
GF(p) containing a gth root of 1 has degree at least ¢ — 1. Since
GF(p*) contains a gth root of 1 precisely when q divides |GF(p*)*|=
p* — 1, this means that p?* is the smallest power of » which is
congruent to 1 modulo ¢. In other words, » generates GF(g)*.

As an application of this group theoretic property we obtain the
following centralizer representation result, the “if” part being
established by Theorem 5 below.

COROLLARY 4. Let » and q be distinct primes. There is a group
G and a subgroup &7 of Aut G such that C(7; G) = GF(p) ® GF(q)
if and only if either p gemerates GF(q)* or q gemerates GF(p)*.

Corollary 4 partially generalizes to the case in which p” generates
GF(q)*. This is given in the next theorem.

THEOREM 5. Suppose p and q are distinct prime such that p"
is a generator of GF(q)*. Then there exists a group G and a sub-
group 7 of Aut G such that C(o7; G) = GF(p~) @ GF(q).

Proof. Let m be any integer divisible by n(¢ — 1) and let V=
GF(p™) considered as a vector space over GF(p). Since n divides m
we have GF(p") £ GF(p™) and the Galois group B = Gal (GF(p™)/GF(p™))
is cyeclic, generated by the automorphism 6: @ — a*, @ € GF(p™).

For every a e GF(p™* and o € B define the GF(p")-linear trans-
formation T,, of V by vT,, = av’. Let T ={T,.lacGF(p™)*, o€ B}
and M={T,,|aecGF(p™*}. The set T forms a group where T, T, ;=
T,..ts, and M T with M = GF(p™)* which is cyclic. Also, let H=
{T,.|0¢€ B}, a subgroup of T isomorphic to B. We have M N H=
{1} and T = MH.
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Since ¢ — 1 divides m then ¢ divides »™ — 1. But M is cyclic
of order »™ — 1 so M contains a characteristic subgroup @ of order
g. Also @ is normal in T. Let G be the semidirect product [V]Q,
so G is a Frobenius group and is a normal subgroup of the semidirect
product A =[V]T. We have C,(G) S C,(V) = {1}, so A acts faith-
fully on G by conjugation as a group of automorphisms.

Since 6: & — a?” generates B, the fact that p~ is a generator of
GF(¢)* implies that the powers 1, p*, »*, --- of p™ are congruent
modulo g to the integers 1,2, 3, ---, ¢ — 1 (in some order) and hence,
that H is transitive on Q*. Since G < A and since all Sylow g¢-
subgroups of G are conjugate in G, it follows A is transitive on
elements of order q. A is also transitive on elements of order p in
G (i.e., on V*), since M is. G is a Frobenius group so all its elements
have order p or ¢ (otherwise some nontrivial element of order ¢
would centralize an element of order p). Thus, A has precisely two
orbits in G, of sizes |V*| =p"—1 and |G| —|V]|=2p"q¢ —p™=
p™(g — 1).

If »,e V* and 2,eQ*, then V < C,(v,), Cy(x,) = {0}, @ < C,(x,)
and Cy(v,) = {1}. Hence, stabilizers in A of elements of G are in-
comparable and C(4; G) is semi-simple by Theorem 1. Also, if
H ={reG|Cix) = Cy(x)} = Cs(Cy(x)) and H, = Cz(C4(vy)), then
C(4; @) = C(A; H) D C(Ay; H,) where A, = N,(Cu(%,))/Ca(%,) and A, =
N (C v))/C4(v0).

Since x,€ H, and the Sylow g-subgroups of G have order ¢, H, =
Q. Since A is transitive on Q*, so also is A,. Since Aut Q is
abelian, A, is abelian and C(A;; H,) = GF(q).

It remains to show that C(A4,; H,) = GF(p"). First we claim H,
is an mn-dimensional subspace of V. For this we may assume v,€
GF(p™) S GF(p™) =V (since A is transitive on V*), so H S C,(v,),
and H, = C;(C,(v,))) S Cz(H) = GF(p”). On the other hand, the
stabilizer in A of any element of GF(p™)* is VH since no element of
M* fixes an element of V*. So GF(p") S H,. Hence H, = GF(p™)
if v,e GF(p™) proving the claim.

Now A, is transitive on H, since A is, so C(A4,; H,) is a near-field
of order p*. But if v,eGF(p") we have C,(v,) =VH so A, =
N, (VH)/VH =VHN,(VH)/]VH = N,(VH) using the facts that A =
VMH and VHN M = {1}. Since M is abelian, A, is abelian and
C(4,; H,) = GF(p").

Note that, by Corollary 8, (iii), a proof of the converse of
Theorem 5 would completely classify those near-rings of C(."; G)-type
which are a direct sum of two fields of different characteristic.

In our final representation theorem we show that a direct sum
of a tower of finite fields can be obtained as a centralizer near-
ring.
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THEOREM 6. Let F, S F, < --- S F, be fields. Then there exists
a vector space V over F, and a group &7 of linear tranformations
on V such that C(=7; V)= F . F,® - ---PF..

Proof. Let F,=GF(p"),t1=1,2,---,t. Then n; divides n,,.
We construct the vector space V as follows. Let W, be a (finite di-
mensional) vector space over F), let W,_, be any vector space over
F,_, that contains W, as a proper subspace, let W,_, be any vector
space over F,_, that contains W,_, as a proper subspace, etc. Hence
W.cW,,c---cW,c W,=V, where each containment is proper and
W, is a vector space over F;. Let .o~ be the set of invertible F,-
linear transformations on V defined as follows: A€ . if and only
if for each 4, W, is A-invariant and A restricted to W, is F-linear.

We claim that C(&; V)= F,.@ --- P F,. It is clear that V*
has ¢ orbits under .&, namely W*, W,_, —W,, -+, W, —W,. If v, ¢
W, —W,,, then C,(C.,(v,) = Fw,, Let &4 = N,(C.(v;)). If Se.
and AcC._(v,) then S7*ASv, = v,, that is ASv, = Sv,. Hence Sv, ¢
Cy(C.,(v,)) meaning Sv, = av; for some ac F¥*. This implies .o/ =
/C.,(v,) is isomorphic to F'}. This implies

Cle; V) = C(FE Fo)® --- @ CFY; Fiv)
=F,@---DF,.

We conclude this section (and the paper) with a couple of open
problems relative to representing C(.&7; G) as the direct sum of two
fields. The first question concerns the converse of Theorem 5 while
the second question deals with the theorem above.

Problem 1. If C,G) = GF(p~) @ GF(q), is p™ a generator of
GF(q)*?

Problem 2. If C(7, Q)= GF(»*)® GF(p*) and a <b, does a
divide b?
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