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Extendability of continuous functions from products with
a metric or a paracompact p-space factor is studied. We
introduce and investigate completions mX and pX of a
completely regular space X defined as ‘largest’’ spaces Y
containing X as a dense subspace such that every continuous
real-valued function extends continuously from X X Z over
Y x Z where Z is a metric or a paracompact p-space, re-
spectively. We study the relationship between mX (resp.
pX) and the Hewitt realcompactification »X (resp. the
Dieudonné completion p¢X) of X. We show that for normal
and countably paracompact spaces mX = vX and pX = pX,
but neither normality nor countable paracompactness alone
suffices. The relationship between completions mX and pX
and the absolute FX of X is discussed.

1. Introduction. All spaces are completely regular and all
functions and mappings are continuous. Symbols F, M,C and P
denote classes of finite spaces, metrizable spaces, compact spaces and
paracompact p-spaces, respectively. We recall that X is a paracom-
pact p-space if it is a closed subspace of a product space M x C,
where M is metrizable and C is compact or—equivalently—if X is
an inverse image of a metrizable space under a perfect mapping.
For all undefined notions the reader is referred to [3].

Let X be a subspace of a space Y and let = be a cardinal number.
We recall the definition of P -embedding of X in Y. OQOur definition
is equivalent to the original definition of this notion involving the
extendability of continuous pseudometrics [see [10] for the proof
and for more information].

If 7 is infinite, then X is P -embedded in Y if every mapping
f: X— B of X into a Banach space B of weight ¢ can be continuously
extended over Y. If 7 is finite, then X is P -embedded in ¥V if X
is C*-embedded in Y. Moreover, X is P-embedded in Y if X is P--
embedded in Y for every z. It is known that P¥-embedding is
equivalent to C-embedding [4]. The following theorem gives a
product-theoretic characterization of Pr-embedding. (X C.Y means
that X is C*-embedded in Y, ete.)

THEOREM 0 ([8], [10]). For a subspace X of Y and a cardinal

number © the following are equivalent:
(i) XC,.7Y;
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(ii) X X CCxnY x C, for every CeC of weight t;
(iii) there exists a C,€C of weight © such that XX C,CnY x Cj;
(iv) X X D*CsY X D, where D is the discrete two-point space.

]

CorOLLARY 0 ([8], [10]). For a subspace X of Y the following
are equivalent:

(1) XCrY;

(ii) X X CCunY x C, for every CeC;

(iii) there exists a Cy,eC of weight 7= |X| such that
XX CCnY x G

(iv) X X D°C,Y x D7, where v = | X|. O

The above stated results suggest the following definitions. By
Z we denote a nonempty class of spaces.

DerFINITION 1. Let X be a subspace of Y. We say that X is
Il ;-embedded in Y if X X ZCnY X Z for every Ze Z, i.e., if every
mapping f: X X Z— I can be continuously extended over Y x Z, for
ZeZ.

DEFINITION 2. We say that a space X is Il;-complete if there
is no space Y containing X as a proper, dense and I,-embedded
subspace, i.e., if X is closed in every space containing it as a /.-
embedded subspace.

DEFINITION 3. We say that a space Y is a Il ,-completion of X
if Y is a II,complete space containing X as a dense II,-embedded
subspace.

The following fact is easy to prove.

Basic Fact. Every space X has a uniquely determined I7,-
completion, denoted by 7.X, and 7, X = {yepBX: XCr, XU {y}} =
N{Y: XcYc X and Y is II,-complete). M

It is the aim of this paper to characterize and investigate
I ;~embedding, I7,-complete spaces and I7,-completions 7,X for the
classes M and P of metric spaces and paracompact p-spaces, respec-
tively. Let us put

mX =nyX and pX=7.X.
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The table below illustrates the introduced concepts.

VA 11 z-embedding 11 z-complete spaces Il z-completion nzX
BX
F C*-embedding compact spaces Cech-Stone
compactification
vX
MncC C-embedding realcompact spaces Hewitt real-
compactification
. Dieudonné-complete nX
c P-embedding spaces Dieudonné completion
M ? ? ?
P ? ? ?

Clearly, the following inclusions hold for any space X:

k3 FX ﬁX

U U

M0 cX v
U J IR\

or
zCX X equivalently: KX mX

(V) % v U

zpX X

v U

X
X

It follows from well-known facts and the results proved in this
paper that if measurable cardinals exist then all inclusions in the
above diagram are in general proper and no other inclusions are
generally valid. On the other hand, if the nonexistence of measurable
cardinals is assumed, then the above diagram can be simplified as
follows:

BX

vX=puX

mX=pX

REMARK 1. It is pointless to investigate I7,-completions for too
broad classes of spaces. For example, if the class Z contains all
spaces with one non-isolated point (in particular, if it contains all
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paracompact spaces), then 7, X = X for every X (cf. [7]; Theorem
5.2). O

This paper consists of four sections. In §2 we present charac-
terizations of I7,- and II,-embeddings, I/~ and II,-complete spaces
and I7,- and II,.-completions mX and pX. In §3 we give an example
of a normal space X such that mX # vX and pX # p¢X. Section 4
is devoted to a discussion of the relationship existing between the
above introduced concepts and absolutes of topological spaces. Several
problems are raised.

2. Characterization theorems. Theorems 1 and 2 below give
characterizations of 17,- and I7,-embeddings (for dense subsets X of
Y). By J(r) we denote the hedgehog with T spikes (see [3], Example
4.1.5). A set A is regularly open (regularly closed) if A = Int A
(A = Int 4).

THEOREM 1. For a dense subspace X of Y the following are
equivalent:

(1) XCnY;

(ii) X x ZCnY X Z, for every first countable Z;

(iil) X X J(r) CY X J(z), where v = | X|;

iv) XCuY and every regularly open increasing cover {U,}.<o
of X can be extended over Y.

Proof. Implications (ii) = (i) and (i) = (iii) are obvious.

(iii) = (iv). Let {U,}.<. be an increasing regularly open cover
of X and for every n let F, denote a closed set in X such that U, =
Int F,. Since X is completely regular there exist families W, =
{W,.}o<: and F, = {F, },.. of cozero and zero sets, respectively,
such that F,cF,,cW,, and N,<.W,, = F,. (Notice, that if the
sets F', are zero sets, then we can require that the families W, and
F, be countable.) For every n < ® and a <zt let f,,.X—1I be
such that f, ,|F,,. =0 and f, , [(X\W.,,,) = 1. Represent J(r) as the
set {(¢, a):tel, o < v} with points {(0, @): @« < 7} identified to a point
6 and define a mapping f: X X J(r) — I as follows. If ¢ =0 then
we put f(z, (¢, @) =0. If te(0,1], then we can find an integer
n=12, --- such that ¢e[(1/n + 1), (1/n)]. There exists a unique
s€[0, 1] such that ¢ = s(1/(n + 1)) + (L —s)(1/n). Define for each x € X
and a <z, f&, (¢ @) =5 fir6)+ A —s) f,.(x). Note that if
t = 1/n for some integer =, the two possible values for f(z, (¢, ))
given by the above formula agree. Thus f is well defined and is
obviously continuous except perhaps at points of the form (x, 6).
We now verify the continuity of f at such points. Let zeX.
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There exists an n such that xe U,. Therefore, xc U, CcU,CF,C
F., for k=n and a <7 and f|U, X B, =0, where B, = {(t, a) €
J(7): t < 1/m}.

By (iii) there exists a continuous extension f:Y x J(z) »I. To
prove (iv) it is enough to check that f),«, X\UJS = @. Let y,eY.
Then f(y,0) =0 and there exists a neighborhood W of y, in ¥
and » =1 such that Ff(W x B,_,)c[0,1). We shall show that
WnNXcU, Suppose otherwise. Then (WN X\U, # @ and thus
(WnNX\F,+# ©@. Choose z,6(WNXN\F, and a <t such that
2, € X\W,,,. Then f(x, ((1/n), @)= f..(2) =1, but 2z,€¢ W and
(1/n, a) € B,_,. Contradiction.

(iv) = (ii). Let Z be a arbitrary first countable space and let
fiXx Z—1I. For every yeY and z€Z put f(y, 2) = f.(y), where
f. is the continuous extension over Y of the function f,: X — I defined
by f.(x) = f(x,2). We shall show that the mapping f:Y x Z—1I is
continuous. Let y,€Y,2,¢€2Z,¢>0 and f(y, 2) = s,. There exists
a neighborhood U of the point 3, in Y such that AU X {z})
(so — (€/2), 5, + (€/2)). Let K be a zero subeset of Y such that Y\U C
Int K and y,¢ K and let A be a dense subset of Z. For everyacA
put

K, = {xeX: If(x,a)-—so

g
< =
< 2}
and for every n < @ define

F,=EnX)UN{K,;acANB,},

where {B,},<. 18 a decreasing neighborhood base at 2z, in Z. The
sets F, are closed in X and nondecreasing. (Notice, that if A4 is
countable, then the sets F, are zero subsets of X.) The sets U, =
Int F', are regularly open and nondecreasing. We shall show first
that X = U.«U,. If 2€lnt K, then x€ U, for every n. Other-
wise, # € U and there exists a neighborhood U, of x and n < @ such
that

f(Uz X BH)C(SO'—G,SO—I—S).

Then U, C K,, for all ac AN B, and thus U,cC F,.

By (iv) there exist open sets U, in Y such that J,.,U, =Y and
U.NnX=U, Letn be such that y,e U,. Since y, ¢ K there exists
a neighborhood V of y, such that VN Xc U,\K. By the continuity
of f we have

1 &
FUV N X) % Bn)c[so -, so+—2~:|,
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and therefore by the continuity of functions f, for z€Z and the
density of VN X in V we get

£

FV % B,L)c[so —La+

]c(so—e,so—i—e). 0
The following variant of Theorem 1 will be used in §3.

THEOREM 1*. For a dense subspace X of Y the following are
equivalent:

(1) X X MCxnY X M, for every separable Me M,

(ii) X X ZCxY X Z, for every separable first countable space Z;

(iii) there exists a non-locally compact metric space M, such that
X x M,CnY X M,

iv) XCoY and every increasing open cover {U,}.c. of X, such
that U, = Int F', for some zero sets F,, can be extended over Y.

Proof. Implications (ii) = (i) and (i)=>(iii) are obvious. The
proof of implications (iii) = (iv) and (iv)= (ii) is analogous to the
proof of the corresponding implications in Theorem 1 (see the remarks
in parentheses). One should only notice that every non-locally compact
metric space contains as a closed subspace the subspace J*(w) =
{¢, @) e J(w):t = 0 or t = (1/n) for some n = 1, 2, .-} of the hedgehog
J(®) and use the fact that for any space T, a closed subspace F
of a metric space M and any mapping h: F x T — I there exists a
continuous extension &: M x T — I [13]. O

THEOREM 2. For a dense subspace X of Y the following are
equivalent:

(i) XCurY;

(ii) X X ZCunY X Z, for every space Z of point-countable type';

(iii) X X J(r) X D" CxY x J(z) X D", where v = | X|;

(iv) XCun,Y and XC,p Y.

Proof. The implications (ii) = (i) and (i) = (iii) are obvious. The
implication (iii) = (iv) follows from Theorems 0 and 1.

(iv) = (ii) Let Z be a space of point-countable type and f: X x
Z— 1. As in the proof of Theorem 1 we define f:Y x Z—1I by
putting f(y, z) = f.(y). We have to show that f is continuous. Let
€Y, z,€Z, ¢>0 and f(y, %) = s. Let C be a compact set of
countable character in Z containing 2,. By (iv) f|Y xC is continuous.
Let G = {(y,2)e Y x C: f(y, 2) (s, — (¢/2), s, + (¢/2)}. The set G is
open in Y x C and contains (y,, #,). Let us put L = {z ¢ C: f(y,, 2) = s;}.

1 A space Z is of point-countable type if for every 2,€Z there exists a compact
F32z, of countable character in Z.



EXTENDING FUNCTIONS FROM PRODUCTS 469

The set L is a zero set in C and thus L is of countable character in
Z and z,¢ L. Moreover, {y} X LCG and therefore there exists a
neighborhood U of %, in Y such that UXx Lc G. Let K be a closed
set in Y such that Y\UcCInt K and y,¢ K and let {B,},<. be a de-
creasing base of neighborhoods of L in Z. Since f is continuous
and L is compact, for every x € U X there exists a neighborhood
U, and » such that f(U, X B,)C (s, — (€/2), 8, + (¢/2)). Put H, =
{xe X: f{x} x B,))Z[s, — (/2), s, + (¢/2})]. Of course, the sets H, are
closed. Define

U,=Int(H,U(KNX)).

The sets U, are regularly open, nondecreasing and cover X, hence
by (iv) and Theorem 1 there exists an # and an open set Vay, in
Y such that VN XU, and VNK=@. Then f(VNX)XB,)C
[so — (€/2), 8, + (¢/2)] and consequently f(V x B,)C[s,—(&/2), s,+(e/2)]
(8 — €, 8y + &). ]

COROLLARY 1. For every X we have pX = mX N pX.
Proof. pX =7, X =7, X N7 X=mXN pX. il

COROLLARY 2. If there are no measurable cardinals, then pX =
mX for every X. O

COROLLARY 3. For every X the following are equivalent:
(i) WX X M)= pX x M, for every Mec M,

(ii) X x P)=pX x P, for every PelP;

(iii) pX = pX.

Proof. The implication (ii) = (i) is obvious. If (i) holds, then
X x M is C*-embedded in p#X x M for every M e M and therefore
pXcmX and pX = pX N mX = pX.

If (iii) holds, then X X P X P’ is C*-embedded in X X P X P’
for every P, P'e P which implies that X X P is P-embedded in
prX x P. |

The following three corollaries can be easily derived from
Theorem 1.

COROLLARY 4. A point yc BX belongs to mX if and only if
for every decreasing sequence {F,,},,<w_ of regularly closed subsets of
X with empty intersection Y & [Vuco FoX. O

COROLLARY 5. A space X is Ily-complete if and only if for
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every y € BX\X there exists a dec'reasing sequence {F,}, <, of regularly
closed subsets of X such that y € N.<o F2¥ C X\ X. O

COROLLARY 6. A mormal space X is IIy-complete if and only
if every closed ultrafilter in X, such that every decreasing sequence
of its regularly closed elements has a nonempty intersection, converges
to a point of X. ]

REMARK 2. Since characterizations of P-embedding, Dieudonné-
complete spaces and Dieudonné completions are well known, Corollary
1 and Corollaries 4,5, and 6 yield immediately characterizations of
IT,-complete spaces and the I7p,-completion pX.

It is easy to verify that the assumption in Theorem 1 that the
sequence {U,},<., is increasing is essential. ]

In [2] N. Dykes introduced the concept of c¢-realcompact spaces
and c-realcompactification uX of a space X. Later, these concepts
were inverstigated by K. Hardy and R. Woods in [5] and [14],
where new characterizations of uX were obtained and the relationship
between the c-realcompactification uX and the absolute of X was
established. It follows from Corollary 4 and Lemma 1.1 from [5]
that the concepts of c-realcompact spaces and I7,-complete spaces
are identical and that uX = mX for every X. (We shall discuss the
relationship between completions mX and »pX and the absolute of
X in §4). The following two results were known for c-realcom-
pactification uX (see [2] and [5]).

COROLLARY 7. Suppose that X is normal and countabdly parae-
compact. Then:

mX =vX and pX=pX.

In particular, X is Ily-complete iff X is realcompact and X is IIp-
complete iff X is Dieudonné-complete.

Proof. Always mXcCvX and pXcCpX. Let yevXcC X and
let {F,}.<. be a decreasing sequence of regularly closed subsets of
X such that MN,<. F, = @. There exists a sequence {K,},., of zero
subsets of X such that F,c K, and N,«. K, = &. Let f: X—1
be functions such that f;'(0) = K, and let f,: 83X — I be continuous
extensions. Then the function f= 3,..(1/2")f,: BX — I is continu-
ous and f7(0) = M.« K2* © BX\X. Therefore f(0)NvX = @ and
Y& Naco F2¥CN,<o K25, which in view of Corollary 4 shows that
yemX.

Since pX=pXNmX=pXNvX and v XD pX, we have pX=pX. []
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COROLLARY 8. The following are equivalent:
(1) X s psedocompact;

(ii) mX = BX,

(iii) pX = BX.

Proof. Implications (iii) = (ii) = (i) are obvious. If X is pseudo-
compact, then clearly X = gX and since pX = mX N pX, it suffices
to show that mX = gX, but every decreasing sequence of regularly
closed subsets of a pseudocompact space is finite and thus s X cmX
by Corollary 4. ]

Let us finish this section with two problems.

ProBLEM 1. Characterize closed I7,-embedded (I7,-embedded)
subspaces of a space X. Is it true that a closed subset of a space
X is II,-embedded iff it is I7,-embedded and I7.-embedded (=P-
embedded) in X?

PROBLEM 2. Investigate the IT,-completion 7, X of a space X
for the class L of Lindelof spaces.

3. An example. As yet no example was given of a space X
such that mX = vX or pX = p¢X. In view of Corollary 7, such a
space cannot be normal and countably paracompact. It follows from
the properties of the example in [6], the identity uX = mX and
Theorem 1.11 from [5] that there exists a countably paracompact
space X such that v X = uX # mX = pX. (Moreover, the space X
is locally compact and vX is o-compact.) Below we shall give an
example of a normal space with analogous properties, thus showing
that normality of X is not sufficient in Corollary 7. Our example
will be a modification of M. E. Rudin’s example [12].

ExAMPLE 1. There exists a collectionwise normal space X such
that the space vX = uX is paracompact and for every metric space
M we have:

(*) XX MCuvX x M iff M is locally compact .
o*

In particular, v X = X # mX = pX and for every metric M we
have:

**) WX x M) = pX x M iff M is locally compact .

REMARK 3. The existence of a (nonnormal) space satisfying (**)
follows from results of H. Ohta [9]. O
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LEMMA 1. It suffices to construct a collectionwise mormal space
X such that:

(a) the space VX = pX is paracompact;

(b) there exists am increasing regularly open cover {U,},<. of
X which does mot have an open locally finite refinement and such
that the sets U, are zero subsets of X.

Proof. Clearly X X M C.vX X M for every locally compact M
(see [1]). Conversely, suppose that X x M,C.vX X M, for some
non-locally compact space M,. From Theorem 1* it follows that the
open cover {U,},.., can be extended over vX and since vX is
paracompact, it must have a locally finite open refinement. Con-
tradiction. O

By [12] there exists a collectionwise normal space Y of non-
measurable cardinality such that the space vY = Y is paracompact
and an increasing open cover {V,},<, of Y, which does not have a
locally finite open refinement.

Let Z be a closed subspace of the space Y X @w (where w bears
the discrete topology) defined by Z = U,<u(V. X {n}) and let W, =
ZN(V, x{1,2, ---,n}). One easily sees (cf. [11]), that Z is collec-
tionwise normal, the space vZ = pZ is paracompret, the sets W, are
zero subsets of Z and the increasing open cover {W,}.<., of Z does
not have a locally finite open refinement. Observe, that the sets
W, need not be regularly open.

Now, let X = Z x I, where points (z, t) € X are isolated if ¢ =0
and have a base of standard product neighborhoods if ¢ =0 (ef.
[11]). One easily checks that the space X is collectionwise normal,
the sets U, =W, X I form a regularly open covering of X with no
locally finite open refinement and the sets U, are zero subsets of X.
By Lemma 1 it suffices to show that the space vX = pX is para-
compact.

Let T={(y,t)evZ x I.ye Z if t == 0} be considered with the
topology in which points (y, t)e T are isolated if ¢ = 0 and basic
neighborhoods of a point (y, 0) € T are of the form z~*(U)\K, where
U is a neighborhood of % in vZ, n: T —vZ is the projection and K
is a closed subset of X=Z2x I contained in Zx (0, 1]. It is not difficult
to verify that the space T is paracompact and contains X as a dense
subspace. To show that vX = X = T it suffices to show that X is
C-embedded in T.

Let f: X— R and let 7: T — R be an extension of f defined by
fly, 0) = §(y) for yevZ, where §:vZ — R is the extension over vZ
of the function g: Z — R defined by g(z) = f(2,0). We have to show
that f is continuous. Let y,€vZ, e >0 and f(y, 0) =s, The set
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K ={xeX:|f(x) —s,| = ¢} is closed in X. Let

K= {yevz: | Fw, 0) —al= <} < I.
2
The set K = K, N K, is closed in X and contained in Z x (0, 1]. Let
W= rn"({yevZ: | fly,0) —s,] <¢&/2)\K. The set W is an open neigh-
borhood of (y, 0) in T and F(W)c (s, — ¢, s, + €), which completes
the proof. O

4. Relationship with absolutes. For information about absolutes
of topological spaces we recommend [15]. Here, we only recall that
for every space X there exists a uniquely determined extermally
disconnected space EX called the absolute of X such that KX can
be mapped by a perfect irreducible mapping &k, onto X.

If the space Z is compact, then EZ is the set of all ultrafilters
in the Boolean algebra R(Z) of all regularly closed subsets of Z with
the topology generated by the base {\(F'): F e R(Z)}, where \(F') =
{pe EZ: F < p}.

The mapyping k,: EZ — Z is defined by k,(p) =z iff {2} = N ».
The sets MF'), for Fe R(Z), constitute all clopen subsets of the
(compact) space EZ.

In general, EX is the inverse image of X under the mapping
kix: B(BX)— BX and ky = k;y |EX. The space EX is dense in E(RX).
We put M*(K) = MK*) N EX for all Ke R(X).

It is well-known that E(BX) = Q(EX) for every space X and
that always v(EX)c E(@wX) and p(EX)c E(p#X). The following
result has been proved by Hardy and Woods (we replace everywhere
uX by mX). Here k denotes the mapping k;;: E(BX) — pX.

THEOREM 3 [5], [14]. The following are equivalent
(i) v(EX)= EQVX).

(i) vX = mX.
More precisely, mX is the largest subspace T of R3X such that
EYT) cuEX). ™

We were unable to establish if the analogous fact holds for p#X
and pX. However, the following two propositions are true. We
denote by sX the largest subspace T of X such that 1 ™(T) c u(EX).

PrOPOSITION 1. A point y<BX belongs to sX if and only if
for every locally finite regularly clos_ed cover {F},.s of X there exist
8y, *+*y 8, €8 such that yeInt,, Ui, FEF.

ProposITION 2. Always sXCpX.
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Before proving Propositions 1 and 2 let us note that sX = uX
if and only if w(EX)= E(¢X) and thus if #(EX)= E(uX), then
»X = p#X. Two natural problems arise:

PrOBLEM 3. Is always sX = pX?

PrOBLEM 4. Is pX=pX equivalent to y((EX)=FE(1X)? (Natural-
ly, a positive answer to the first question answers positively the
second.)

Proof of Proposition 1. Suppose that y€sX and let {F,},.s be
a locally finite regularly closed cover of X. Then the family
{N*(F,): s€ S} is a locally finite clopen cover or EX® Since k™ (y)C
MEX), there exist indices s, ---, s, €S such that

k‘l(y) C 'ZJ k*(Fsi)ﬁ(EX) .

But R(EX) = E(8X) and therefore \*(F,)*** = )\(F¢%) for all s S.
Consequently, k7' (y) C U MF%¥) and since %k is a closed mapping,
there exists an open set Uey in BX such that k~(U)c Ui, MFEF).
Then ye Uc Ur, FEr.

Conversely, suppose that p € k7' (y) and let U = {U,},.s be a locally
finite cozero cover of EX. Since EX is extremally disconnected, we
can assume that U is pairwise disjoint and we have to show that
there exists an seS such that pe U?*®. Since the sets U, are
clopen, there exist regularly closed sets F', in X such that U, = N*(F,)
and clearly U0 = \(F?¥). The family {F,},.s is a regularly closed
cover of X and thus there exist s, ---,s,€S such that ye
Int,y UL, F?*. Therefore, Ui, F/* ¢ p and since p is an ultrafilter,
there exists an 4 such that F?*ep which means that pe\F?) =
(jg;Em. |:l

Pyroof of Proposition 2. By Theorem 3, sXcmX and since
pX = mX N pX it is enough to show that sXc p¢X. LetyesXand
let {U,),.s be a locally finite cozero cover of X. We have to show
that there exists an s€S such that ye U?*. Let {V,},.s be a cover-
ing of X such that V,cV,cU, for every s€S. The family {V},cs
is a locally finite regularly closed cover of X and thus there exist
8, -+, 8,€8 such that yeUr,VE*. Therefore, there exists an 14
such that ye V2 cU#~. O

Added in proof. Professor H. Ohta proved that a positive answer
to Problems 3 and 4 above is equivalent to the non-existence of

2 To show that this is a cover of EX, we use the local finiteness of {Fi}ses.
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measurable cardinals. He also—independently—obtained some of the
results in this paper. The interested should consult his paper: (1)
The Hewitt real-compactification of products, Trans. AMS 263 (1981),
363-375; (2) Local compactness and Hewitt real-compactifications of
products II, to appear; (8) Topological extension properties and pro-
jective covers, to appear; and also his Ph. D. Thesis at the University
of Tsukuba, 1979.

For new results involving I7,-embeddings, the reader is referred
to the paper by A. Wasko, Extension of functions defined on product
spaces, to appear in Fund. Math.
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