Vol. 102, No. 1, 1982

Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions

William Leslie Pardon

Vol. 102 (1982), No. 1, 123–170
Abstract

The propose of this paper is to define numerical invariants of odd-dimensional surgery obstructions, computable in a way similar to that used to compute the index and Arf invariants of even-dimensional surgery obstructions. The main result is that a system of integral congruences (“numerical invariants”) suffices, modulo the projective class group, to determine whether or not an odd-dimensional surgery obstruction vanishes, when the fundamental group is a finite 2-group. In addition, the numerical invariants turn out to be Euler characteristics in certain cases of topological interest, including the existence of product formulas.

Mathematical Subject Classification 2000
Primary: 57R67
Secondary: 10C05
Milestones
Received: 3 January 1979
Published: 1 September 1982
Authors
William Leslie Pardon