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The propose of this paper is to define numerical invariants
of odd-dimensional surgery obstructions, computable in a way
similar to that used to compute the index and Arf invariants
of even-dimensional surgery obstructions. The main result
is that a system of integral congruences (“numerical in-
variants”) suffices, modulo the projective class group, to
determine whether or not an odd-dimensional surgery obstruc-
tion vanishes, when the fundumental group is a finite 2-group.
In addition, the numerical invariants turn out to be Euler
characteristics in certain cases of topological interest, in-
cluding the existence of product formulas.

Let = be a group and Zr its integral group ring, with the
involution induced by g — ¢, gen. The even-dimensional surgery
obstruction group L,.(Zr) is, roughly speaking, the Grothendieck
group on isometry classes of hermitian forms over Zw, modulo the
subgroup generated by hyperbolic forms. A striking fact, discovered
by C. T. C. Wall ([56, §6]), is that the odd-dimensional surgery
obstruction group. L,,..(Zr7), is (again roughly) the commutator
quotient of the group of isometries of the stable hyperbolic form.
An important consequence of this result is that the obvious analogy
between L,, and L,,,, on the one hand, and K, and K, on the other,
can be used to translate techniques from algebraic K-theory to
unitary K-theory. This has been done by many authors.

In spite of this conceptual connection between L., and L,,,,,
however, there remains an important difference between them.
Classical invariants of quadratic forms, such as the index or Arf
invariant, have been easier to compute than any known algebraic
invariants of the unitary group; and, on the geometric side, the
braid diagram (in [56, §6]) necessary to construct the odd-dimen-
sional obstruction seems to contain more delicate geometric informa-
tion than the intersection and self-intersection forms of the even-
dimensional case. The purpose of this paper is to define algebraic
invariants of odd-dimensional surgery, by a procedure analogous to
the one furnishing the signature of a quadratic form.

To see what is meant by this, recall the ingredients necessary
for the computation of the signatures of a hermitian from over Zr.
Let 7 be a finite group and Rr its real group ring. Any element
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of L,(Zr) yields, by extension of scalars, an element of L,,(Rx)
which is determined by its collection of classical signatures, usually
called the multisignature ([56, p. 165]). In order to compute the
multisignature one needs to know, first, the matrix components of
the product decomposition

(0.1) Rz =[] M, (D;)

(furnished by the Wedderburn theorem) where each D, is a real
division algebra (only D,= R, C, or H are possible); and, second,
one must understand how the involution on Rz, induced by g — g73,
is translated to an involution

0.2) o: M, (D;)— M, (D)

on each of the factors in (0.1). With this information, the given
element of L,,(Rx) is projected into each factor L., (M, (D,)), is then
translated by “Morita theory” to an element of L.,(D,), where m = n
or n -+ 1 depending on o;, and, finally, the classical signature is
evaluated if D, = C or if m is even and D, = R or H. The subject
of this paper is the construction of invariants of L,,..(Z7) from
similar, but somewhat more delicate information about Qmx, where
7 is a finite 2-group. This is Theorem B below. A very special
case, © = Z/2, exemplifies the method.

Suppose given a degree—one normal map (f, b): (M**3 v) — (X, &)
(. X = Z/2, k = 1), for which the kernel groups K,(f) =0, 7 # 2k + 1,
and

(0.3) S: = K,,,(f) is odd torsion .

Let ¢: S X S—Q[Z/2]/Z[Z/2] be the linking form. (See [57]; we
neglect the self-linking form because S is odd torsion so that it is
determined by ¢.) It follows from [57, 5.6] that (f, b) is normally
cobordant to a homotopy equivalence if and only if there is a free
Z[Z/2)-module @ and an even hermitian form g: @ x Q — Z[Z/2] such
that there exists a short exact sequence, where @ = Hom (Q, Z[Z/2])
and d, is the adjoint of ¢,

0.4) 0-%,0-%.5

and such that if s,s,€S, ¢,qcQ satisfy j(@)=s, and neZ
satisfies ns;, = 0, then

(0.5) 381, 8o) = %g((dg)”(%ql), (d,)7(ngy) (mod Z[Z/2]) .

The pair (@, g) will be called a resolution of (S, ¢). (This is just
a translation of the geometric data: If (F, B): (W™ v) » (X X I,
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& x I) is a highly-connected normal cobordism of f to a homotopy
equivalence, then Q = K,, (F), Q = K,,.,(F, oF), and ¢ is the inter-
section form of H,,  (W**), restricted to K, ., (F). Thus, (0.4) is a
homology exact sequence and (0.5) is an easily derived relation
between linking numbers on the boundary and intersection numbers
in the interior of a manifold.) To test whether o(f, b) € L. .«(Z[Z/2))
is trivial, it suffices to analyze the obstruction to finding a pair (Q, g)
satisfying (0.4) and (0.5). (For the definition of L%, see (1.4).)

Let p.:Z[Z/2] — Z be defined by p.(a + bt) = ¢ = bt, where
a,beZ and () = Z/2. Applying p. to o(f,b), one obtains
(p)«0(f, b) € Liyo(Z), represented by (S., ¢.): = (S, ¢) QzzaZs,
where Z. has Z[Z/2]-module structure given by t-n = +u, neZ.
It is well-known that L!.,(Z)= 0, so that to each linking pair
(S:, ¢+) and (S_, 4_) we may associate a pair (Q,, g,) and (Q_, g_)
satisfying (0.4), (0.5).

Consider the cartesian square (pull-back diagram) of rings

Z[z/2] -2 z

(06) ?—l l’i‘z

Z -5 F,
where 7, is reduction mod 2. In terms of this diagram, we have
started with (S, ¢) over Z[Z/2] and found resolutions (Q., g.) of
(p+)«(S, ¢) over the anti-diagonal copies of Z. A standard (“glueing”)
argument now shows that a resolution (@, g) of (S, ¢) can be found

satisfying (9.).(Q, ¢9) = (Q-, g) if and only if the mod2 reductions
are isometric:

(0.7) (1)4(Q4, 94) = (1)(Q-, 9-) -

But, as cok (d,.) is odd torsion, (#,),.(Q., g.) is nonsingular over F,,
and so, possibly after a rank adjustment, (0.7) holds if and only if
the Arf invariants agree:

Arf ((1)4(Qs, 94)) = Arf ((1).(Q_, 9-)) -

Now a remarkable theorem of Levine ([29]) asserts that these Arf
invariants depend only on |S.|, the number of elements in S.:

(0.8) Arf ((1),(Q:, 92)) = 0 = [S.| = =1 (mod8).
Putting these results together yields
(0.9) PROPOSITION. o(f,b) =0 if and only if |S,|= x|S_]

(mod 8). (This has a more intrinsic formulation using the fact that
ISy = £|S_|=|S] = £[S_[}=[S| = £1 (mod 8).)
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From the observation that the map (v, p.): Z[Z/2] - Z X Z is
the inclusion of Z[Z/2] into a maximal Z-order (see [42]) in Q[Z/2],
one is led to generalize the construction leading to (0.9) as follows.
Let 7 be an arbitrary finite 2-group. A theorem of J.-M. Fontaine
[13] permits a description of the matrix algebras M, (D,) over division
algebras D, appearing in the product decomposition Qr = ] M, (D))
(compare (0.1)); and a more careful analysis yields a precise descrip-
tion of a maximal order _#; in each M, (D,) and of the involution
induced on it (compare (0.2)). Then

(0.10) =11 A

is a maximal order in Qn containing Zz. Also, Levine’s theorem
can be generalized to cover forms over certain rings of algebraic
integers.

To state the main theorem of this paper say a factor M, (D,)
of Qr has type (m, m,) if D, is the real subfield Q( + ) of Q¢,
where { = {,,, is a primitive 2"th root of unity, and if the in-
volution on M, (D,;) is matrix transpose. (In this case _# =
M, (Z( + ).) Suppose the factors corresponding to ¢ =1, ---, k
have type (m; m;). If S is any odd torsion Zz-module, define
b,eZ2, 1=1, ---, k, by

0 ’ if ]S ®Z:: ,_/,/Z;| = il (mod mizni—l-l)

b(S) =
(5) 1, otherwise.

Recall from [38] the definition of L%(Z7). (See also (1.4).)

THEOREM B. Let (f, b): (M**, v) = (X, &) be a degree-one normal
map where K(f) =0, 1+ 2k + 1, and S: = K,,.(f) 18 odd torsion.
Then o(f,b) € L (Zx) vanishes in L, (Zx) if and only if

b,(S) = b(S) = -+ - = by(S) .

Theorem B follows from Theorem A and the generalized Levine
theorem.

THEOREM A (for LZ,.(Zr)). If the integer k is as above, there
18 an isomorphism

L3, o(Z7) — (Z)2) .

Theorem A is found in (3.9) below, where LJ,,,(Zx) is also calculated.
There is a version of Theorem B in (8.16) for L%..(Zr), but it is
weaker since a large part of these groups seem inaccessible using
a generalization of Levine’s theorem.
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One weakness of Theorem B is the assumption that K,,.(f) be
odd torsion. At the end of §3, a method is given for converting
any unitary matrix giving o(f, b), to one for which K, (f) is odd
torsion. The method is easy to carry out in practice. A more
serious weakness, at least as Theorem B compares to the multisigna-
ture discussion above, is that (f, b) must be highly-connected. It
seems likely that, given an explicit degree-one normal map, one
may complete surgery to a Z/2-homology equivalence, keeping track
of the remaining odd torsion in K,(f). If this is so, then Theorem
B should be generalized by replacing the numbers |SQ _#;| by an
analogously defined Euler characteristic. Indeed, we will carry out
this procedure to derive a simple product formula in (3.22). Perhaps
the most serious drawback is that Theorem B detects only L?, not
L*, the group of greater geometric interest. However, since this
paper was written I. Hambleton and R. J. Milgram [16] have used
Rothenberg sequences and the calculations of L2,(Z7) to make fairly
complete calculations of L% (Zx).

The geometric considerations above motivated this work, but
methods themselves are entirely algebraic. Here is an outline of the
paper. In §1 definitions of the Witt groups are recalled, together
with the localization sequence and the notion of resolution of a form;
for the most part the reader is referred to [32] for details. In §2,
some qualitative relations between Witt groups of Z-orders, maximal
Z-order and their mod p reductions (p€ Z) are studied; this leads
naturally to the notion of Dickson and Arf invariants (mod2 re-
ductions) in (2.5). §3 begins with a statement of the theorem
which describes the factors in (0.10) above and tabulates their Arf
and Dickson invariants in (3.2). Assuming these results, the proof
of Theorem A is given in (3.9) and that of Theorem B in (3.16).
The product formula mentioned above is proved in (3.22). The
remaining §§4-7 are devoted to proving (3.1) and (3.2). In §4, (3.1)
is proved and (8.2) is reduced by Morita theory to calculations in
cyclotomic extensions of @, their subfields, and quaternion algebras
over them. Finally, these latter calculations are carried out in §§5-7.

Let us very briefly compare these results to those of other
authors. First G. Carlsson and R. J. Milgram have independently
proved Theorem A for Li(Zz) in [16]. Second, A. Bak has announced
computations of L}**(Zrx) in [4], where m has abelian, normal 2-
Sylow subgroup, and he has listed generators in many cases when
n is odd. Theorem A is relatively easy when 7 is abelian; also
Bak’s class of groups excludes, for example, dihedral groups, where
the semi-characteristics studied in [35] appear. However, Bak’s
list of computations is complete for L%*, groups which are not
reached in this paper. Another major program for computation of
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L-groups is [48]-[53]. In [53] Wall studies the “intermediate” L-
groups Li(Zn), Y = ker {K,(Zr) — K,(Qr)}. When « is a 2-group,
fairly general results are obtained in [53, 5.2], but the lack of a
good description of Y makes complete computations difficult. (Indeed,
our success with 2-groups comes about partly because we ignore
K- and K, -difficulties, which would have to be confronted to compute
L* or L*.) S. Cappell has pointed out to me that Wall’s technique
of lifting elements of L.(Zrx) back to L.(Zr — Z;x) corresponds to
our method of making K,(f) odd torsion. This is probably the way
to see the relation between Theorem B and Wall’s results.

Since this paper was written, several further results have been
obtained. As mentioned above the groups L', (Zrz), = a 2-group,
where studied in [16]. Working independently, A. Bak and M.
Kolster [5] and C. Wright [59] have further computed L% (Zz) and
L% (Zz) when 7 is 2-hyperelementary.

This work has been underway for several years and I have
profitted from conversations with several people, including Hyman
Bass, John Morgan, Andrew Ranicki, David Carter, Ted Petrie,
Julius Shaveson, and Sylvain Cappell. I also thank the referee for
many suggestions leading to the present complete revision of the
original version of this paper.

Notational conventions. The word “prime” will mean a prime
ideal or a valuation, unless otherwise specified. A dyadic prime is
one dividing the principal ideal generated by 2. A finite (infinite)
prime is one which is nonarchimedean (archimedean). If p is a prime
ideal in the ring R, then R, denotes completion at p, R, denotes
localization, and R/p is the quotient ring. F, denotes the field of ¢
elements. “{,” always denotes a primitive mth root of unity.

The symbol <a,b, ¢, ---> denotes the quadratic form whose
matrix is diagonal, with entries a, b, ¢, ---.

Direct sum is denotes by “+7”, unless @ is used to avoid con-
fusion; [*] denotes bibliographical reference to *; (*) denotes reference
to (*) in this paper.

1. Review of basic definitions, localization sequence, resolution
of forms.

(1.1) Let A be a ring-with-involution containing 1, where the
involution is denoted “—:a +b=a + b, ab =ba, 1 =1, for all
a,be A. All A-modules will be right A-modules, unless otherwise
specified. Let S Z A be a central multiplicative subset, S = S, con-
taining 1 and no zero-divisors. Let B: = A[S™'] be a semi-simple
ring containing 1/2 and inheriting an involution from A in the
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obvious way. A projective A-module M is called B-free if MK, B
is B-free, and has rank n, if M ®, B is B-free of rank u;

(1.2) DEFINITION. Let FW{A), FB{(B/A) denote the groups
defined in [32, 1.13] (denoted (op. cit.) WiA), WHXB/A)). By
replacing free modules of even rank (resp. S-torsion modules with
short free resolution) in [32, 1.18] by projective modules of even
rank (resp. S-torsion modules with short projective resolution) define
groups fWi(A), fWHB/A). By removing the even rank hypothesis
from the definition of fW$(A), define L? ;(A). Finally, by removing
the quadratic forms from the definitions of fWZ(A), fWXB/A), and
replacing hyperbolic forms by metablic forms [60] in that of fWHXA),
one obtains groups denoted fWiwm(A), fWiuw(BlA).

It is understood that all definitions above involving A alone
apply to B in place of A. The objects underlying fWH(A) or FWi(A)
(resp. fWHBJA) or FW{(B/A)) will be called n-quadratic forms over
A (resp., over B/A).

(1.3) DEeFINITION. Let FWZA) (resp. FWXB/A)) denote the
groups defined in [32, 1.23] (resp. in [32, 1.34]). By replacing in
[32, 1.84] S-torsion modules having short free resolution by those
having short projective resolution, define fWH}B/A); if A — B as in
(1.1), the group fW(A) is obtained by replacing in [32, (1.28-.34)]
torsion modules by projective modules of even rank using relations
(i)-(iv) (with projectives of even rank) in [32, 1.34] (cf. [32, 1.35]).
Finally, L3(A4) is defined as fW/(A), this time using arbitrary pro-
jectives, modulo relations (i)-(iv) in [32, 1.34].

(1.4) ReMARKS. (a) When x is a finite group, then

FWi(Zr) = L;_(Zz)

0 1
FWo‘(Zrc)/<<N O>> ~ Li(Zr)
for the groups L%(Zr) of [56, §17D]; and
SWi(Zr) = Li_(Zr)

for the groups L%(Zr) of (1.2) or [38].

(b) A triple (P, @, (a, 7)) is called a \-formation over A (see
[32, 1.80]) if P and Q are projective and (o, 7):P—Q + Q@ (Q =
Hom, (@, A)) is the inclusion of a subkernel [32, 1.13] (or sub-
lagrangian in [38]) into the A-quadratic hyperbolic form on @ + Q.
These are the objects underlying the groups fWi(Zr) and L3(Zrn),
and
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o manfnn (3 9, )= seeo

moreover, this group agrees with that of [38].
More precisely, the following holds.

(1.6) PROPOSITION. If A is a ring-with-involution, and there
18 a surjection of rings-with-involution, A — F,, then there is an
180morphism

LY(A) ® Z/2 — fFWi4)
where the Z[2-summand of fW}A) is represented by

=m0 )

Proof. It is left to the reader to show that 6efW}(A) has
order at most two (compute in FW}(A) using [32, 4.9]). Thus, there
is a sequence

Z/2 -2 FWHA) — L2(A)

which is claimed to be split exact. For by [39, 5.4], if o€ fW}(A)
vanishes in Lj(A), it is stably isomorphic to a graph formation [38],
v = (P, P, (@, Id)). Stable isomorphism corresponds to operations (i)
and (iv) in [32, 1.34]; in using stabilization the ranks of the projec-
tives used in the definition of ¢ may change from even to odd. If
P has odd rank, then add to v the a-formation (A4, A4, (1, 0)) (stabili-
zation): if P has even rank leave 7 unchanged. By an operation of
type [32, 1.84 (iii)], 7 is either

(@ Q,0,1d), or (POAPDA0DLIIDO)

where @ has even rank, and P has odd rank. By an operation of
type [32, 1.84 (ii)], the first type is trivial in fW7(A); the second
type may be written, for sufficiently stable P, as 6 + (R, R, (0, 1d))
where P= R@ A. Hence the sequence above is exact at fWi(A).
Define an inverse to ¢ by the induced fW(A) — fWXF,) = Z/2, where
the isomorphism is by [33, (4.1)] and the generator of fWX(F,) is
precisely 6.

(1.7) There are several reasons for the even rank hypotheses
in (1.2) and (1.3) above. The first is that the discriminant

(1.8) dis: fW{(B) — F*|NK*
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becomes a homomorphism for B a central simple algebra over K, F
the fixed field of the involution on K. In fact, define, for a -
hermitian form ¢: B* X B* — B,

dis (g) = (—A)"nr(G) € F'*

where G is a matrix for ¢ and nr: M (B) — F* is the reduced norm
([42, §9]). Since nr is a homomorphism and dis(¢g) e NK* if g is
hyperbolic, (1.8) is a well-defined homomorphism.

Also the Morita equivalences of (4.8) increase ranks in general,
while if the even rank hypotheses above are made, no change is
caused on the Witt group level. Finally, the rank distinction
between fWH(A) and Lj;(A) is essentially detected by the Dickson
invariant (2.5), which is central to the proof of Theorem A in §3.

(1.9) The groups fWi(A), fWi(B), ete. are essentially classical.
The following results show the same is true of fWZ(B/A), under
appropriate conditions. Let R be Dedekind ring, K its fraction
field; assume A (as in (1.1)) is an R-algebra, B a K-algebra, S =
R — {0}). Each S-torsion A-module M splits uniquely as a direct sum
of g-torsion A-modules, M,,, q€ Spec (R). It follows from [19, Thm.
B, p. 124] that M has homological dimension 1 if and only if each
M,, does, and from [20, App. 5, Lemme] if and only if each com-
pletion M, does. There are similar splittings B/A = [] (B/4), =
11 B/A, = II B,/A,, such that the involution on B/A induces one on
each B/A, and B,/A, if a =74, and on B/A + B/A;, and B,/A, +
B;/A; (switching the summands) if q #q. The following is now
clear.

(1.10) PROPOSITION. With the above notation, there are iso-
morphisms

FWiBIA) = [LFWi(BIAy) = [LIWi(B/A)

induced by localization, splitting and completion. (It is easy to
show there is mo contribution from those summands of B/A for which
q#q.)

(1.11) PROPOSITION. Keep the notation of (1.10) and assume in
addition that K is a number field, and q =q S R is a nondyadic
prime for which A, is a maximal R,-order in B. Then there is
a natural isomorphism

L2 (Ala) = fWXB,/A,) .
If, in addition, q ramifies in K/F, F = fixed field of the involution,
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then
SWiAB,JA,) = fWHB,/A,) .

Proof. The first statement for 7 = 0 and the trivial involution
is proved in [40, 4.2.83 (iv)] and the argument works for any in-
volution; for ¢ = 1, one must use relations (i), (ii) in [32, 1.34],
which is left as an exercise. The second statement follows from
“scaling” [3], if a skew-symmetric unit in B can be found. Let
S, = ring of integers in F,, where q lies over p < S = ring of
integers of F. By [44, 1. 6] R, = S,V/%’, for some uniformizer 7’
of p. Setting 7 = V7" yields 7 = V7 = —Vv7' = —r, so that 7T/x
is a skew-symmetric unit of E,.

For any ring-with-involution A4, let W(A) denote the group
studied in [60], where symmetric bilinear forms are replaced by
hermitian forms. Then completely analogous arguments work, under
more general circumstances, to prove the following.

(1.12) PROPOSITION. With the notation of (1.10), there are
natural isomorphisms

(a) W(A/9) = fWian(B,/A,), G finite

(1) S Wien(B/A) = 11, sntte f Wierm(B,/A,).

Here is a result which will be used often and is stated here
for the reader’s convenience.

(1.13) PROPOSITION [50, Lemma 5]. Let A be a ring-with-involu-
tion and IS A an involution invariant ideal such that A is complete
in the I-adic topology. Then the map A— A/l induces isomorphisms

FWe(4) = fWA) .

(1.14) The localization sequence. The following is a variation
on Theorem (2.1) of [32]. The proof given there was for FW}
(denoted op. cit. “W}”); except at one very important point it is
routine to modify to work for the groups fW2. Namely, Sharpes
normal form [46] used in [32, §5] must be replaced by a projective
version, due to Ranicki [39, 5.4]. Or one may refer to Ranicki’s
proof in [40].

(1.15) THEOREM. Let A be a ring-with-involution and B a ring
of quotients as in (1.1). Then there is a long exact sequence of
abelian groups

oo

2
1

B~ Z{ 9% T
+ — fWHA) — fWIB) — fW(BJA) — fWi(4) —
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o2 .
& Zy

FWAB) % FWHBIA) s FWHA)Y — s FWHB) —r -+

(1.16) The map <% in (1.15) has to be discussed in detail (see
[32, §3]). Let g: B™ x B** — B be M-hermitian. There is a projec-
tive A-submodule (integral lattice) L < B**, L K B = B>, such that
gL Xx L) A (in fact, g|L X LeSesq, (L), c.f. {2, 1. 3.3]). Let
L': = {xweB™|q(L, x) = A} (the dual lattice), S: = cok (L — L'), R: =
the resolution of S, {L — L’ LR S}, and z: = g|L/ x L': L' x L — B.
Then the class [(S, ¢, ¥)] e fWHB/A) is by definition Z[B*™, g]),
where ¢: S X S — B/A and +: S — B;(A) are defined by

1.17) é(gm, jn) = t(m, n) mod A4 , w(gm) = (m, m) mod S,(A4)
where S;(A): = {aecAla =b + b, be A}.

(1.18) DerFINITION. If the )\-quadratic form over B/A arises as
above from (B’™, g) and L, then (L, g) (or equivalently (R, 7)) is
said to be a resolution of (S, ¢, v). (This notion is also studied in
[12], where “lifting” is used for “resolution”.)

(1.19) PROPOSITION. With the mnotation above, a M-quadratic
form over B[A, (S, é,q), 1s resolvable if and only if [S, ¢, +le
im (0.

Proof. “Only if” is definition; so suppose given [V, g]e fWHB)
such that V = B** and

ZilV, 9} =18, ¢, 4] .

Choosing an integral lattice L, it follows that there is a resolvable
form (S, ¢, ") such that (S, &, ) L (H, gy ) = (S, 6, 9) L
(H,, ¢, vrs), where the (H,, ¢, +,) are kernels ([32, 1.13(b)]). Since
kernels are resolvable (see [32, 5.2]), one can take H, = 0. The
proof is finished by taking K = subkernel of H, in the following
lemma.

(1.20) LEMMA. Suppose given (T, v, 1t), a resolvadble n-quadratic
form over B/A, and K T such that v|K x K=0= py|K and K
has a short projective resolution. Then the naturally induced form
on K*/K 1is resolvable.

Proof. Let (R, 7) be the resolution, R = (L— L' % 8), r: I’ X
L' — B, and let : S — S/K be the quotient map. Defining M: =
ker (k7), it follows from the hypotheses on K that (M xX M)<S A
and LC M M' C L’. It is now easily shown that M'/M = K+/K
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and that (M > M’ - K*/K, 7| M’) is the desired resolution.

2. Qualitative properties; Arf and Dickson invariants.

(2.1) Let A be a maximal Z-order in the semi-simple Q-algebra
B. Then

TS+ 1 fWHA) — fWB) + fWi(A[24)

is injective, where 2%;* is from (1.15) and 7, is induced by A4 —
A2A.

Proof. 1f peZ is prime, then modulo its (nilpotent) radical,
A/pA is semi-simple, whence, by (1.13) and [33, 4.1], Lj(4/p4) =0
if p is odd. By (1.10), fWAB/A) = fWXB/A,) = fWXB,/A,). Thus,
there is a commutative diagram

FWAB A ) — FWHA) 22 pWiB)

1 |

FWHBJA) £ sWia)  |re

=

FWHA2A)

from which the result follows if B is injective. But fWHXA4,) —
SWYB,) is surjective, because [33, 4.1] gives representatives for
the elements of fW{(B,;); and the maximality of A, means that if
B, =[] <&, is a product of simple algebras, then A, = [[ % where
each .97 is maximal in <%, so that representatives can be pulled
back.

(2.2) REMARK. When A is not maximal, .2%7* + », is no longer
injective. In fact, there is an exact sequence

BYZ)2; K_(A) = FWiA) — fWHB) + FWi(AJ24)

valid when A is any Z-order in B; and ¢ is nontrivial, for example,
when A = ZQ,, Q, = the generalized quaternion group of order 16
and » = —1.

The following sort of result is important in Petrie’s theory
[37] and was also useful in [35].

(2.3) Let A be a Z-order in the Q-algebra B. Then for any
prime p, the map
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’I’p! FW]Z(A(I,)) — FW]_Z(A/pA)
is injective.
Proof. Suppose o = (3 g) e UA(A,,) is given, representing

[ole FWXA,), and o,: = (fz/” ’gf’)e Ul(A/pA) represents zero in
FWXA/pA). It follows from the normal form of [46] that after
multiplying ¢, (on the left and right) by matrices X,, X_, and w},
n even (see [32] for this notation), it becomes H(p), for some
P0€GL,(A/pA) (it may also be necessary to stabilize). But each
matrix of type X,, X_, or w? can be lifted to a matrix of the
same type over A,; this uses the fact that S_;(4,,) — S_,(A/pA) is
surjective. Thus, one may assume ¢ has the property that o is
invertible mod p; by Nakayama’s lemma, this means « is invertible.
By [2, II. 2.5(b)], [¢] = O.

The next result is central to the present style of computation.

(2.4) COROLLARY. Let A be a Z-order in the Q-algebra B =
A[S™], S=Z — {0}. Let fWXB/A[1/2]) S fWXB/A) be the subgroup
consisting of forms supported on odd Z-torsion A-modules, and F =
FWHXB[A[1/2]) the subgroup generated by resolvable forms. Then
2% (from (1.15)) induces an isomorphism

fWé(B/A[-;—]) /g? = Ker {ry: fFWHA) — FW-HAJ2A)}

and by (1.6) this equals L*;(A) if there is a surjection A—F, of
rings with involution.

Proof. By definition, if (S, 4, 4) is a A-quadratic form over B/A,
then IS, ¢, ¥]1 =[P, Q, (o, V)]: =[o] where cok{a: P—Q}=S. Thus
7[o] has corresponding « (denoted a, in the proof of (2.3)) invertible,
so by [33, 3.1, 4.1] represents zero in fW;*%A4/24). Conversely,
noting that, if P is A-projective, then S,(P)— S;(P/2P) is surjective,
and replacing the use of Sharpe’s normal form in (2.3) by [39, 5.4],
it follows that if »Jo] = 0, then ¢ = (P, @, (¢, 7)) may be assumed
to satisfy cok(ay)=0. Again by the definition of 2%, [¢] =
S, 6, ¥), where S is odd torsion. Thus,

ker 7, = im <9§|W$<E/A[%]>> .

By (1.19), the proof is complete.
The preceeding results (2.3) and (2.4) show there are no non-
trivial invariants to be found by reducing representatives of fWXZr)
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modulo odd primes, 7 a 2-group (even through for p odd the groups
SWXF,z) are, ingeneral, nontrivial—c.f. [35, 3.9], [33, 3.1]). For
suppose [o] € fWi(Zr) has nontrivial image in fWXF,z), p an odd
prime. By results of Swan [10, 77.2], (2.3) applies to show [g,] # 0.
By [35, (8.1), (8.9)], [c ® Q] # 0 € fWXZr); but this contradicts the
main result of [18].

To single out mod 2 reduction, the following definition is made.

(2.5) DEFINITION. Let B be a finite-dimensional @Q-algebra,
A C B a Z-order or any localization, completion or quotient of such
an A. Given ze fW2(A) its mod 2 reduction 7,(x) in fW2i(A/24) is
called the Arf imvariant of x if * = 0 and the Dickson invariant
if = =1.

Modulo its radical, 4/2A is a product of matrix rings over finite
fields of characteristic 2. By Morita theory and reduction (1.13),
to compute fW2i(A/2A) the following suffices.

(2.6) PROPOSITION. Let F, be the field with q elements. Then

Z/2, if the involution 1s trivial
0, af the involution is nontrivial ,

SWiF,) =
where the nonzero representative is that given in (1.6), if * is odd.

Proof. If + =1, results follow from [33, 4.1]; if * = 0 and the
involution is nontrivial this is the Arf invariant; if * = 0 with non-
trivial involution, see [60, p. 117, Ex. 1].

REMARK. In his study [11] of the orthogonal group of a
quadratic form over a finite field F, char (F') = 2, Dickson proved
(among many other things) that fW3(F') = Z/2 and derived a “normal
form” (the generalization of which was used in (2.4)). The invariant
of [33] is a generalization of Dickson’s to the case of semi-simple
algebras with involution. An interesting historical point is that
Dickson also classified quadratic forms over F, using what is now
called the Arf invariant. This was 40 years before Arf’s work.

3. Proof of Theorem A and B.

(3.1) THEOREM. Let 7w be a finite 2-groun. There is an involu-
tion-invariant maximal order _/,
It S #Z < Qrm, A = 1I_z#Z

where each _#; is involution-invariant and maximal in some simple
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component of Qn (from which it inherits its involution) and has
one of the following four forms

(1) Mn(ZLyn), some m =0, n=1

(I1) Mom(Z(Cr — Cid)), some m =1, n = 3

(II) Mym(Z(Ln + Ci)), some m =1, n =2

(IV) Mn(A7%), some m = 0, n = 2, where 4, is a maximal order
in the quaternion algebra (—1, —1/Q(Lm + L)) (see [25] for this
notation). ‘

Each type has a uniquely determined involution, which need not
be specified until the theorem is proved in (4.16). The following
table summarizes the calculations found in (5.8), (5.4), (6.18), (6.19),
(7.14), (7.15), (4.3), and (4.16). Notice that, because of (2.4), the
second column is the kernel of the Dickson invariant. Thus, the
Arf and Dickson invariants over the _; in (3.1) are precisely what
is needed to compute LI(Zx).

(3.2) Table.

Properties 2l 1 / i
ro: FWAAL) = fWAY2A) IWe = I D #
A, (c.f. (2.4)
(1) Mm(Z0) W) — Zj2 trivial
(I1)  Mpm(Z(C — C) | fWHA) — Z)2 trivial
ivial, 2=1 .
(D) Mol + ) | W) — Zi2( 0 trivial
surjective,
i=-1
n=2: fWH17)—0 "= {tZ/Z ‘+IZ/22, 11: -1
e rivia y =
(IV) Mym( A7) R trivial, 1=1 s -
128 fWHA) = 22 sective, | s g (@ =1
= - " Wrivial, 1=1

(3.3) PROPOSITION. For rings A, B as in (1.1), let <& B/A)
denote the set of isometry classes of M-quadratic forms (S, ¢, ) over

BJ/A.
180MOrPphism

If n, # and _# are as in (38.1), then there is a set

e 1) —n =L

(S, ¢) — {(S/u ¢J/i)}

where S_,;: = SQuc My 0.0y =0Q A and F= #QQ is the
simple component of Qn containing _#;. (Since S and the S_,, are
odd torsion, the quadratic part + of (S, ¢, ) is omitted from the
notation here and below.)
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Proof. By [42, 41.1], 2°.# < Zr, 2* = |x|. Thus, inclusion
induces Z[1/2]7 = [1/2]: = # @ Z[1/2], from which the result is
immediate.

Given x € L¥(Zr), let (S, ¢) denote the corresponding coset (cf.
(2.4)) in fW;YQr/Z[1/2]n)/<#, and (S., é.,) the elements of
& (B,|_#;) corresponding to (S, ). Let Sp, (z) denote the number
of factors in .# of type (8.1) (IV). (These are of type Sp, in the
language of [48].)

(3.4) PROPOSITION. With the above motation, there is a surjec-
tion

Lf(Zn‘) .__Ri_) (Z/2)2595(z) + Z (Z/Z)gn—zspn(ﬂ)
n>2

such that R(x)=0 if and only if [S .., 6.1=0 in fWiZi| #][1/2])|.2,
for each i (i.e., each (S ., ¢_.,) 1s resolvable).

Proof. R is defined by taking the class [S,,é.,] in
SWi (7, #]1/2]))] < and using the Table. It is well-defined because
of (3.8) and the fact that if (S, ) is resolvable over Zz, then each
(S ., ¢..,) is resolvable over _#;; it is surjective because of (3.3).

If |z| = 2°, then 2°.# < Zr by [42, 41.1]. The following is a
Cartesian square of rings-with-involution, the “conductor situation”
of [1, p. 535].

Zr — A (=1I_#)

(3.5) l 17-2«
Zn|2 A —— %A (=I]_A)2 A .

It is not difficult to show that for some #, 2"Zx < 2°_#, from which
it follows there are surjections

Zr|2* # — Zr|2"Zn — Fy;r — F,

where the last map is the augmentation. The kernel of the compo-
site is nilpotent by [47, 4.8] and because 2°.# < 2:Zx. By reduction
(1.13), the induced map

TWHZz|2 A ) — FWHF) — Z[2

is an isomorphism. Thus, the isometry class of a nonsingular -
quadratic form over Zz/2' # is determined by its rank and Arf
invariant.

(3.6) PROPOSITION. Referring to the rings and maps of (3.5),



THE EXACT SEQUENCE OF A LOCALIZATION FOR WITT GROUPS II 139

the isometry class of a N-quadratic form over Zw|2 . # or _#Z|2° #;
18 determined by rank and Arf invariant; +f _#; is of type (3.1)
(AV) with n = 2, then the Arf invariant is always trivial. A non-
singular M-quadratic form over Zzw[2° .7 has nontrivial Arf
wnvariant iff its image does, in each component _#;|2°_#; of A |2° _+#,
except for those of type (3.1) (IV) with n = 2.

Proof. The first statement for Zz/2°.# was proved above; for
)2 #; it follows from the Table. Let (N, g, q) be the nonsingular

r-quadratic form over N, a free rank 2 Zz/2°_#-module, where if

N has basis {e, f}, g has matrix (1 ')t A 1 i N) and q(e) = 1 = q(f).

Clearly, both it and its image in _#;/2°_#; have Arf invariant 1, for
each 1.

(3.7) DEFINITION. A nonsingular -quadratic form over
N2 A = II_#]2°_#; is said to have equal Arf invariants if either
the Arf invariants of its components in each _#Z;/2°_#; are all zero;
or are all equal to 1, except in components of type (3.1) (IV) with
n = 2.

(3.8) DEFINITION. Let 7w be a finite 2-group. Define O(x) to be
the number of components in _Z of type (3.1) (III), and Sp(x) to be
the number of type (3.1) (IV) with »n>2.

(3.9) THEOREM A. Let @ be a finite 2-group, and let R be as
wn (3.4). Then there is an isomorphism

(a) E: L? (Zn) — (Z/2)0
and a split short exact sequence

(b) (227 — Li(Z7) — (ZI2)™" + 3,(Z/2)" 75

Proof. By the Table (3.2), given ze€fW(Qn/Z[1/2]r)/#
(=L?.(Zr), by (2.4)), the corresponding coset (S, ¢y, S an odd Z-
torsion Zz-module, is such that each (S ,,, 4., is resolvable for all
1, say, by (L, g;) over _#,. By [55] (or exactness at fW}(<Z) in
(1.15)), (L, 9;) is uniquely determined by (S ,,, ¢..,), up to orthogonal
sum with a nonsingular (+1)-quadratic form over _/Z,.

Each (L, 9,)» 1is nonsingular because, by construction,
cok (Ad(g,)) =S, is odd torsion. Thus, the mod2' reduction
7,5(Ls;, 9;) s nonsingular over _#;/2°_#;. By the result of Wall referred
to above, together with the data in the first column of (3.2), the
Arf invariant of 7,(L,, g;) is determined by (S, ¢..,) if and only
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if _# is of type III in (8.1); otherwise it ean be changed by adding
to (L,, g,) a nonsingular form over _#,, whose Arf invariant is 1,
without changing the form (S, ¢_.,) being resolved.

Let 4: Z/2 — (Z/2)°*™ be the diagonal inclusion, and define E(x)e
(Z/2)°"/im 4 to be the coset in (Z/2)°® whose components are the
Arf invariants of the. »,(L;, g;) for _#; of type III. Thus E(x) =0
iff the forms 7,(L,, g;) have equal Arf invariants, for all 1.

Finally, by (3.6) and a theorem of Bass [2, III. 2.2], E(z) =0
iff the collection of forms (L,, g,) (for all 7) lift back to a form (L, g)
over Zz, in which case it is easily seen that (L, g) resolves (S, ).
This means & = (S, ¢) represents zero in fWXQx/Z[1/2]))|# = L*(Zx).

Exactly the same argument, applied to ker B, replacing type
(8.1) (III) factors by type (3.1) (IV) factors of _#, shows ker R =
Sp (z). A splitting will be exhibited in (38.16).

The esthetic and practical difficulties in the proof of Theorem A
are evident. What will be shown next is that, in the construction
of K (3.9) (a), the Arf invariant of a form resolving (S, ¢...) (4
of type (3.1) (III)) depends only on the number of elements |S_,,| of
S ,;; in particular, it is indepndent both of the structure of S ,, as
an _#;- or Zz-module, and of the hermitian form ¢. This generalizes
a well-known theorem of Levine [29].

(3.10) LEMMA [28, 2.7]. Let R denote the p-adic completion of
ZIC 4+, L =Cnm =2, where p is its unique dyadic prime. The
map R — R*/R** defined by r — 1 + 4r, r € R, induces an isomorphism

j: Z|2 = RJp = ker a,

where o R*/R** — (R/AR)(R/AR)** is induced by reduction mod 4.
There 1s a commutative diagram of isomorphisms.

FWHR) -2 kera,

(1.13)J(Q g[j

TR 2L Z)2

ExamMpLE. When # = 2 in (3.10), R = Q,, the 2-adic rationals.
Let g: Z" X Z® — Z arise as g|L x L in the construction of (1.16)
and suppose ¢u: (Zy)" X (Zo)" — Z, is nonsingular. Then (Z7, g)
resolves (in the sense of (1.18)) a symmetric form (S, ¢), ¢: S X S—
Q/Z, where S is odd torsion (because g, is nonsingular). It is well-
known that dis g = +|S|, where |S| is the number of elements in
S (because S is the cokernel of Ad (g): Z" — Hom (Z", Z), the adjoint
of g). As kera, is represented by the class of 5 in Z,*/Z;%, and
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a € Z, is a square if and only if ¢ = 1(mod 8), Lemma (8.10) asserts
that the Arf invariant of (Z", ¢g) is nontrivial if and only if [S| =
+5(mod 8). This is the theorem of Levine referred to above.

Another way of starting Levine’s result uses the fact that for
ne€Z, n = +5(mod 8) if and only if the Legendre symbol (2/n) = —1.
Lannes [28] generalized this replacing Z by a ring of integers in
a number field, 2 by an arbitrary unramified (over Z) dyadic prime,
and the Legendre symbol by the Artin symbol. In the case of
present interest, of course, the ring of integers Z({ + ™), { = &,
is totally ramified over (2) € Z, so that the generalization of Levine’s
result given below in (3.13) seems to be new.

(3.11) LEMMA. Let R, = Z({ + (™), { =lxy, n = 2, where P is
the unique dynamic prime of Z({{ + (). Let N:R,— Z, be the
norm. Then

(a) NRHE < (1 4 27Z,)~

(b) If N:R;|R:*— ZF[(1 + 2""Z,)*
is the induced map, then N|ker a, is injective, where a,: R}/R* —
(R, /AR /(R,/AR,)* is reduction mod 4.

Proof. (2) Since N = N;o::-:oN,_,oN,, where N,: R — R}, is
the norm, since R}* = (1 + 4x,R,)*, where x, is the uniformizer of
R, ([31, 63:1a]), and since 7,, the uniformizer of R, = Z,, is (2), it
suffices to show that

(3.12) N1 + 2ur,) = 1(mod 2'x,_,) ,
for each ue R, 3<k<mn,and l =Z2. By [44, V. 3, Lemma 5],
N1 + 2'ur,) = 1 + N, (2wur,) + Tr, Qur,)(mod Tr, (4'z%)) ,

where Tr,: B, — R,_, is the trace. It follows from [44, V. 3, Lemma
4], that

Tr,(2ur,) € 2, _R,—, and Tr@4nd)e2 'r, R, .

Evidently N,(2'ur,) = 4'win,%, € 4'w,_,R,_,. These facts prove (3.12)
and hence part (a).

Part (b) follows from the fact that ker @, = Z/2 (see (3.10)), is
represented by 5, and has norm N(5) = 5% # 1(mod 2"*).

Let A=ZC+¢Y, {=0(n n=2, and let g: A" X A"— A be a
symmetric form such that g € Sesq, (4) (i.e., g = h + & = h + k¢, for
some sesquilinear %), and g.: 4% X A% — A is nonsingular. By
the construction of (1.16), (A", g) resolves some hermitian form
(S, ¢) where S is a nondyadic torsion A-module. Let [S| denote
the number of elements in S.
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(3.13) THEOREM. With the motation above, the Arf imvariant
of (A", g) is trivial if and only if |S| = *+1(mod 2"*"), and is non-
trivial if and only if |S| = 2" & 1(mod 2"*).

Proof. By [44, I, §5], |S| = =N (dis g), where N: Ay — Z,, is
the norm. By (8.10) and (8.11) the first statement is proved. The
second follows from [58, 7.2.4].

Unfortunately, the ring of integers Z({ + ') does not itself
appear as a factor of the maximal order .# containing Zz in (3.1).
However, its Morita equivalent, M,~(Z( + ¢™)), does, so (3.13) will
be translated to this context.

Let _# be a component of _# of type (3.11) (III) where _#; =
Mn(ZE+C7Y), L=y n=2. Let (S, é..,) bea hermitian form over
B,/_+;, where B, is the corresponding simple component of Qz and
S, RZ, =0 (S,, is odd torsion). Suppose (_#:", g) is a resolution
of (S,, ¢..). Let |S,;| denote the number of elements in S ,,.

(8.14) THEOREM. With the above notation, the Arf invariant of
(A", 9) is trivial if and only if |S ,,| = £5(mod m2"*).

Proof. From [3], the inverse to the isomorphism m(B/A) of (7.3)
is given (without the quadratic form +r since S is odd torsion) by
[S, 6] =[S, A, ¢'] where (S, ¢) is A-hermitian over B/4, S is odd
torsion, S®, A" is given an M,~(4)-module structure, ¢’ is A-
hermitian over M,«(B)/M,x(A), and A= Z({{ + ("), B=Q + ™).
In particular, |S|= +1(mod2 ") if and only if |S@,A™| = x1
(mod m2"*); and the Arf invariant of a form resolving (S, ¢) is
trivial if and only if its Morita equivalent form over M,»(A) (which,
by the construction of m(B/A), resolves (S@, A*, ¢')) has trivial
Arf invariant. This completes the proof.

Before stating the main result of this paper, Theorem B, fix
the following notation. Let x € L3(Zxw) be given where 7 is a finite
2-group. Using (2.4) suppose x = D:y), yefW,.XQr/Z[1/2]x),
where y is represented by (S,¢) and S is odd torsion. Let

7t .-, A" be the components of the maximal order .# which
are of type (8.1) (III), and _#7, ---, #" those of type (3.1) (IV)
with n=38. Then _#£7'=ZMmn(ZE+C), C=Cm 1SiZFE,
m; =20, n,=2; and #;' = Mym;_,(13), A, maximal in (-1, —1}
QL+ L), £ =10y my =1, m, = 3. Define bi(S) € Z/2 by

(3.15) Bi(S) = 0, |SQ #|= *1(mod m2+)
- U 11 , otherwise .

(3.16) THEOREM B. Let 7 be a finite 2-group. Then (8.15)
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defines homomorphisms
b} LY Zx) —> Z/2

such that

(a) when n= —1, xeLi(Zx) is zero if and only if b7 (x) =
bi'(x) = + -+ = bi'(®).

(b) when N =1, the homomorphism (b}, ---, b}): L¥(Z%) — Sp (%)
splits (3.9) (b).

Proof. Assume n = —1. Recall from the proof of (3.9) (a) that
E(x) =0 if and only if the resolutions of the form (S ,, ¢..,): =
(S, ¢) X _#; have equal Arf invariants, _#; of type (38.1) (III). (Arf
invariants for other types can be chosen as desired.) By Theorem
(3.14) these Arf invariants equal the corresponding b;? defined above.

The proof in case » = 1 is left as an exercise.

REMARK. (a) Given a geometric context, i.e., x € L",(Zx), (3.16)
gives a gairly strong necessary condition for the vanishing of =.
For example, since K,(ZD,) = 0 where 7 = D, is the dihedral group
(see (7.4) (a) and [14]), LY (Zzn) = L%i(Zz). If Q, is generalized
quaternion ((7.4) (¢)), K.(ZQ, = Z/2 by [14]. In general, it is
necessary to understand the maps in the Rothenberg sequence to
know how strong (3.16) is in any given case. For this, see [16].

(b) Given «¢€Li(Zx), how difficult is it to find (S, ¢)e
fWiX@Qr/Zr) such that 2,7X(S, ¢) = x and S is odd torsion? Suppose

x € Ly(Zr) is represented by ¢ = <f‘; g) e Ul (Zr) (see (1.4)). Let a,

v, denote the image of «, v under the map ZEBEZ%FQ, the
mod 2 augmentation. Since fWAF, = Z/2, represented by w?! =

(g (1)> € U(F,), either ¢ or ¢ L w! has the property that there is a

symmetric matrix ¢ € M, (F,) having zeros on the diagonal such that
v, + Pa, is invertible. (Finding @ in practice is not too difficult
since one works over the field F,.) Choose any pe€ M,(Zx) such that
0 is (—\)-quadratic and o, = @. This is also easy. Since 7, + pa,¢€
GL,(Z,), cok (v + pa) is odd torsion. This cokernel is S (see the
construction [32] of &,7%), whose Zr-module structure (actually just
the order of SR _#%, . #* of type 8.1) IV) _#" of type (8.1)
(ITI)) is what is needed to apply (3.16).

(3.17) If the reader is familiar with the difficulties encountered
in finding the surgery obstruction of a nonhighly-connected surgery
problem, he will recognize that the reduction to odd torsion used
above allows him to hope for a simple definition of the surgery
obstruction of such a problem. Moreover, the fact that in the
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analysis above, the Zz-modules involved (not the quadratic forms
on which they are supported) alone determine the surgery obstrue-
tion, leads to the conclusion that an Euler characteristic invariant
ought to work. This will now be made relatively precise. Since
we will give no applications of the product formula (3 22), the
proofs will only be sketched. .

(3.18) DEeFINITION. Let 7w be a finite group. G,(Qx/Z[1/2]z) is
the free abelian group on isomorphism classes [M] of odd torsion
Zn-modules M, modulo the subgroup generated by elements [M'] +
[M'"] — [M], whenever there is a short exact sequence M’ > M — M.
GUXQr/Z[1/2]r) is the quotient of G(Qr/Z[1/2]x) by the subgroup
generated by [M] for which there is a nonsingular A-form M x M —
Qr/Z[1/2]x.

(3.19) PROPOSITION. Let @ be a 2-group. Then

_((Z2re, A= —1

2
GU Qn’/Z[l/Z] (Z/Z)Sp(n') , A= 1 .

Next, let K be a finite complex with 7, K = w. Denote by
L¢ZvA(KY the cobordism group of normal maps (g, b): (N, ON; vy) —
(Y, X; &), and maps @: Y — K where g|oN is a homotopy equivalence
and the homology kernels K,(g) with z,K-coefficients are odd torsion;
cobordisms are to have the same restriction on homology kernels.
(For a precise definition see [33, 1.6]. This group is computed in
[33, §§6, 7], replacing Z by Z[1/2].)

Let n be odd, and if M is an odd torsion Zz-module let {M}
denote its class in GU}Qrn/Z[1/2]x). I1f (g,b) is a normal map as
above, define (its Euler characteristic)

X(9) = 3, (~D{KL9)} -

(3 20) PrOPOSITION. Let 7, K = 7w. Then X defines a homomor-
phism

X: LYZ(K) —s GUg—”’“(Qn/z[%]z) .

Proof. X is clearly additive so it suffices to show X(g) = 0 if
(g9,b) is null-cobordant. If (G, B) is a normal cobordism with
boundary (g, b), then from the exact sequence of the pair (G, g) it
follows that X(G) X(9) + X(G, g9), or X(g) = X(G) — X(G, g). Since
K(G, 9) = Ky11_{(G)" and M + M~ always supports the hyperbolic
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form, X(g9) = 0 as claimed.

To use these results, recall the product pairing L%(Zrw) X 2.(0) —
L. .(Z[x x p]). Supposing n = 2] and p is a finite 2-group, a given
class in 2,(0) may be represented by M* — K(p, 1) where H, (M)
has no odd torsion (for example by doing surgery on M% — BSO X
K(p, 1) to make it an (I — 1)-equivalence, where M — BSO classifies
the normal bundle of M). If m = 2k + 1 and = is a afinite 2-group,
then any element of L%(Zx) can be represented by normal map (g, b)
with K,(g) =0, 7+ k; and K,(g) odd torsion (see remark following
(8.16)). Thus, if (f,¢): =(g X 15, b x 1, ) is the product normal
map and M is the universal cover of M,

K(f) = Ki9) ® H,_(J) ,

an odd torsion Z[w X p]-module. Since K,(g) is odd torsion, K,(f) =
K.(9) ® H,_,(M; Z[1/2]) Here H,(M; Z[1/2]) is a Z[1/2]p-module. If
[-] denotes its isomorphism class, then an Euler characteristic
X(J; Z[1/2]p) € G(Z[1/2]p), the Grothendieck group of Z[1/2]o-modules,
is defined by X(I1; Z[1/2]p) = 3L, (— 1) H,(M; Z[1/2])]. The usual
argument using the equality of the Euler characteristic of a chain
complex with that of its homology shows

Y

(3.21) PROPOSITION. For M as above,
o _1_ _
x(M, Z[ : Jp) = XM)R

where X(M) is the (usual) Euler characteristic of M and R € G(Z[1/2]p)
18 the class of Z[1/2]o.

(3.22) THEOREM. With the notation above, suppose the surgery
obstruction o(g, b) € LY..(Zw) is nonzero in L. (Zw) and 1 is even.
Then o(f,c) is zero in Liy..(Z[x X p]) if and only if X(M) is
even.

Proof. (Sketch) Notice first that Z[1/2]xr appears as ring factor
of Z[1/2][x x p], so that the invariants of (3.9) or (3.15) for (g, b)
appear for the product (f, ¢) as well. By (3.21) and the fact that
(with obvious notation) X(f) = Ki(g) - X(M; Z[1/2]p), these invariants
are multiplied by the Euler characteristic of M. Since the invariants
are of order two, the proof is complete.

4. The structure of the rational group ring of a 2-group
and the existence of an involution-invariant maximal order in it
(Proof of Theorem 3.1). Let the ring-with-involution C be a
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product of matrix algebras, C = ] M,,(D,). The involution either
takes a given factor of C to itself, or interchanges two factors; if
it preserves a given factor M,(D), denote it b — b*. According to
a theorem of Bass [2, I. 8.3] (generalization of a theorem of Albert)
there is an involution ¢: D — D and h e GL,(D) such that, for each
beB

(a) b = h('b)h™, 'b° = o-conjugate transpose

4.1
(1) (b) h=7(r), p==+1.

The involution ¢ is uniquely determined by 7z, but in general, 2 and
7 are not.

(4.2) Morita theory asserts that there is a (1 — 1)-correspondence
between isometry classes of rank », A-quadratic forms over (M,(D), o)
and rank nr, (\)-quadratic forms over (D, z). (The involution is
included in the notation for emphasis.) Suppose n is even. Then
because of the even rank conventions in Def. (1.2) and (1.8), there
are induced isomorphisms m(D): fWi(M,(D), ) = fWXD, o). Let
D=A as in (1.1). Using the notion of covering from [32,
1.17], it is routine to show there are isomorphisms m(B/A):
FWIM (B)M,(A), v) = fWI*(B/A, o) induced by Morita equivalences;
in fact the whole localization sequence is compatible with Morita
equivalence.

(4.3) THEOREM. (a) With the notation above, there is a com-
mutative diagram of localization sequences,
oo o= fWHML(A)—f WHM(B))—f W (M.(B)M,(A))— fW (M, (A))—- -
glm(A) zlm(B) glm(B/A) gl
coe— fWIHA) — fWIAB) — fWiABJ/A) —— fWIHA) —---.

(b) The Arf and Dickson invariants are compatible with Morita
equivalence: there is a commutative diagram

FWHML(A)) " fWL(M,(A/24))
glm(A) glm(A/2A)

TWPA) 5 fWIAJ24) .

This theorem will be applied to the simple factors of Q7 (x a
finite 2-group) and to involution-invariant maximal orders in them,
the construction of which will be taken up next.

To set notation, define groups
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@) D,={xyle”=1=9,yzy =2, n=2 (dihedral)

() 8D, ={x,yla"" =1=y,yay ="}, n=3
(semi-dihedral)

=y, =1lLyry =2, n=2
(generalized quaternion)

@ C,=2z/2"={x|z*=1}, n=0 (cyclic).

4.4
Y0 Qe o yla

These two-groups are precisely those having a cyclic subgroup of
index two.

To describe Qr, where 7« is in (4.4), define the “twisted group
rings” (including Q{,» for completeness):

@) 4:=Qly=Lyy7"=(", (=0n, n=2
by S4,: ==L yly"'=—-C%, (=0, =3
) I':=Qyllw'=-1Lyy"' =", (=0, n22
(d) Qln,m=0 (we set Qf» =Q when n =0).

(4.5)

It is now not difficult to construct isomorphisms (for example by
tensoring the cartesian squares in [14] with @):

(@ QD =[T4xQxQxQxQ

(b) QSD,,H;I:ISAixAszxQxQxQ
(c) QQn+1EF7L X Q-Dn
(&Qq;gmw

(4.6)

(4.7 THEOREM (Fontaine). Let m be a 2-group and M o Qr-
irreducible. Then there exist subgroups H <] G of @ and an ir-
reducible Q[G/HJ-module N such that

(@) G/H is in (4.4) and

(b) if N is viewed as a QG-module, then there is an isomor-
phism N Qo Qr = M.

Finally, each simple component of Qrn is a matrix algebra over one
of the algebras in (4.5). (l.e., the “induction” in (b) does not change
the center.)

Fontaine’s theorem will now be extended to include a descrip-
tion of the involution on the components of Qm, in the following
sense.

(4.8) DEFINITION. A matrix algebra-with-involution (M,(D), 7)
satisfying (4.1) will be described by the quadruple (M,(D), g, h, B).
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(4.9) PROPOSITION. Let Id denote the trivial involution, and
“~" the involution induced by L — Lt on any subfield of Qlyn. Then
the following is a description of the algebras (4.5), as algebras-with-
involution (4.8):

(a) 4, = (MQL + ™), 1d, h, 1), where £ = Lo

(b) 84, = (MQL —-L™M), ~,9,1), where { = L

() I',= (-1, —1/Q( + ¢™), the usual quaternion algebra over
QL+, {a+bi+ej+dkjtt=—1=7, 9= —741,1=F; a,b,c,
de QU + ¢}, with involution © = —i, 7 = —3; here = Cpm.

(¢), If p is the unique dyadic prime of @y + (5)) and n = 3,
or if b 18 any such nondyadic prime, then

(I, = (MAQE +C),, 1d, by —=1), =10
The algedbra I'y = (—1, —1/Q) s mot split at the prime 2.

Proof. A Q-algebra B is split (isomorphic to a matrix ring over
its center) if and only if it is so with respect to every completion,
by the Brauer-Hasse-Noether theorem (see [42]). A matrix algebra
over C is always split, because C is algebraically closed. Next
B & R is a matrix algebra over R, C or H (see [45, p. 123]), where
the induced o: (R, C, or H) — (R, C, or H) in (4.2) is, respectively,
trivial, complex conjugation, or the usual involution on H (see [45,
p. 122]).

By a well-known argument [33, 4.8] each Rr-irreducible supports
a nonsingular, hermitian, Rr-valued form, for any =. It follows
easily that, since each algebra in (4.5) occurs as a factor in some
Qr, it cannot happen that any real completion of the algebras (a)-(c)
contains the product of two matrix algebras interchanged by the
involution. Since the center of S4, is Q( — (™) with nontrivial
involution (induced by { — (™) and it has degree four over its center,
the above discussion shows that the only possibility is S4, @z R =
M,C), K=QC — ). In case (a), the center is Q¢ + (™), totally
real field with trivial involution. One checks that the fixed point
set of the involution on 4, has dimension 3 over its center, so
4,.. QR # H. Thus 4,.,Q R = M,(R), for every real completion
of Q¢ +¢™". Finally, since Q= Q( + ¢ (v —1), it follows
easily that I', = (—1, —1/Q + ™), {=Cx. The involution is
trivial on the center, and I, ® R = (—1, —1/R): = H.

Now it is known that 4,, S4,, and I, are all split at nondyadic
primes (see [42, 41.7]). Thus, since there is only one dyadic prime
in any subfield of Q,» ([58, §71), and since an algebra can be non-
split with respect to at most a finite, even number of valuations
(by reciprocity, see [42, §41]), it follows that 4, and S4, are every-
where locally split, hence split. Sinee the irreducibles over 4, and
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S4, support nonsingular hermitian forms [33, 4.8], the descriptions
(a) and (b) follow from [2, I. 8.8].

Since Q(ln + &) is totally real, it has [Q((» + (&): Q] real
valuations. This number is even if and only if #n =3, so the
reciprocity argument above yields the splittings at dyadic p in (e),.
Finally, since the fixed point set of the involution on I”, is the
center, Q + ™), and dimg,-1I" = 4, it follows that » = —h’ in
©),-

Next is the question of existence of maximal orders (in the
algebras 4,, S4, and I',), which are preserved by the involution.
To motivate this rather tedious analysis an example is given which
shows it is necessary. That this phenomenon could occur was first
pointed out in [43].

(4.10) Example of an involution-invariant order (in a matrix
algebra-with-involution) which cannot be extended to an involution-
invariant maximal order.

Let £ = ¢, be a primitive mth root of unity, m > 2, and let &
be the twisted group ring

(4.11) T = ZLZ[2: = {Z{[ylly* = 1, yly = (7}

To imbed & in M, + (™), note that {1,1 — {} is a basis for
Z{ as a free, rank 2, Z({ + {)-module. Now view ¢ as a ring
of Z({ + {)-endomorphisms of this module by setting
y-C=01, y-z2=2zeZ), r-s=1rs(reZl & &,scZ0).
With these conventions, one easily finds that

(4.12) J1 & — Endyes-(20) = M(Z( + 7))

is injective and hence that f&® Q is an isomorphism; it defines an
involution on M,(Q( + ™)), trivial on the center and satisfying
h=~hr"in (4.8). Straightforward computation shows that, setting
T=2—- L+,

(1)—(1 0 _(1 75> NP
f ‘01>’ s =1y e Ja-0=|] ﬂ>,
w_ [ T = o -0 0

sa—cy= (70, ma se-n=( ], 0 )

Now assume that m is an odd prime p. It is not difficult to
deduce that (see [20]), setting B: = im (f),

R nR »
B=<R R>, R=ZC + 0.
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By [20, 2(3i)] and [42, 40.18], B is hereditary. Now complete at
the prime 7#R. From [42, 39.18(v)]

R R R
L:(” ﬂ) and Iz=<R & )
R R R 7R

are the two 2-sided maximal ideals of B, and
M, = {we My(QUC + TY)|al, < B}

are the two maximal orders containing B. A computation shows that
M;, = {x e MQ(Z + (™) Lz < B}. Now suppose that I, = I,. Then
M, ={Fe MQC +{™)el,S B} = e M(QC + )| IZeB =B} =
M,,. So it remains to show I, = L.

First, by [42, 39.16], J:=I, NI, is Rad B and B/J = B/I, x
B/I, = F, X F,, with idempotents represented by (6 8), (8 (1)> e B.

Thus, it suffices to show (8 (1)> is taken to itself by the involution.

But fC—w=(_7 32, ad FC-w=sC=w=("T %)
which both become, mod .J, (8 g)
Define, for { = {;«, Z-orders

(a) &4,): = ZLylly' = L, yly = '} 2 4,
(4.18) (b) 2(84,): = Z{yl{y* =1, yly = =} S 84,
() oT):=Zylly'= L yy* =S T,.

None of these orders is hereditary (or maximal) by [42, 40.13],
sinee the unique dyadic prime in Z({ + ™) or Z({{ — ™) is wildly
ramified in Z¢.

(4.14) THEOREM. The ovder 2(4,) (vesp. <7(S4,), (4,)) ex-
tends to an involution-invariant maximal order in 4, (resp. S4,,
4,).

Assume this theorem for now. It is easy to deduce from the
discussion of Cartesian squares in [14] that, under the isomorphisms
of (4.6), £°(4,) is the image of ZD,,, in

ZD,,,— QD,,, —> T[4 X QX QX Q x Q—> 4, ;

similarly for SD,,, and @,,,. From this and (4.14), it follows easily
that

(4.15) THEOREM. If 7 is one of the groups in (4.4), then
Zr C Qrn extends to an involution-invariant maximal order in Qr.
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Proof of (4.14). Consider first the inclusion £°(4,) — 4,. Recall
from Example (4.10) imbedding (4.12)

frod,)— My(R), R=2Z{(x+ ).

Using the same procedure, change only the basis of Z{,. over R,
taken here to be {1, {}. Then for { = {m,

0 -1 I e e+
f(C)—(lHC_I), f(C)—< . 0>, f(y)—<0 ", >

The involution on M,R) induced by f from that of £°(4,) is com-
plicated; to simplify it, let ¢ = %, and define

A = _1( 2 —E+¢
o\ +CY 2
Then det A =1, A= A% and all its entries lie in R. (L.e., 2¢77,

(€ +ZYHp*eR.) The same is true of A-'. Let f’ be the composi-
tion

>, p=1i1l—-C".

I A

7= o) L me) ™5 mry,

where mA™ is left multiplication by A~!. Then one checks that
Q) =@ and (F@)=rf@ .

But since { and y generate £7(4,), this implies that the involution

inherited by M,(R) is the transpose (i.e., c=1d,hn = (6 (1)> in (4.8)).
It is now clear that the desired maximal order is M,(R).
The procedure for 7(84,) S S4, is similar and left to the reader.
Finally, consider &, )& I',. When n =2, 45 =, +
1/2A + 1+ 7+ k)Z,) is maximal in I, by [42; Ex. 2, p. 152];
it is clearly involution-invariant. For n = 3, setting { = {,», define

Agu=0l)+aol,), a=0101+0)71+y).

Then the following equalities hold:
(@ a=a+@C+7—-2)=
a—1, n=3
{a + 0, p€p = the dyadic prime of Z{{ + (™), n > 3.
(b) af —Cla =y
) aly) —EYae=CA+TN1 -y~ 1D—C and A+/1-09)
is a unit in Z({ + ™).
(d) e+a=1.
From (d) it follows that ._#7 is involution-invariant; and from (a)-(c)
it follows that _#7 is Z-finitely generated, hence a Z-order.
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Given be._y; denote by b its class in /b, peZ( + ™) the
dyadic prime. Define a map f: +;/p — M,(A/p), A = Z({ + () by:

f@=fly f@=€1% f@=Ggy

1 1 1 0
10 B
and
1 1 ~ 01 N 1 0
f@=%0% f@=%1» f@=@1%
10
ﬂw—% J, n>3.

Using the equations (a)-(d) above and making M,(A/p) the algebra-

with-involution <M2(A/p), Id, <(1) é), 1) (notation of (4.8)), one easily

checks that f is an isomorphism of algebras with involution.

Now by [42, 41.1}, &(I",), is already maximal for q nondyadic;
hence so is (.#7),. But since (I,), is split when p is dyadic, the
isomorphism f shows (_#7), is also maximal. Thus, ¢} is every-
where locally maximal, hence maximal.

Here is the main result of this section.

(4.16) THEOREM. Let 7 be a finite 2-group. Then there is an
involution-invariant maximal order _#,

It S #Z S Qxn

such that # = Il_#; where each _#; 18 maximal in some simple
component of Qr and has one of the following four forms, as an
algebra-with-involution in the sense of Definition (4.8).

(I) (My(ZCp), C—CLf, 1), m=0, n=1.

(II) (Mn(Z(Cpn — C), £—C7%9,1), m=1, n=3.

) (Mm(Z(C + &), 1d, 2, 1), m = 1, n = 2.

(IV) (M2m(&/Vr;), a, I2'”’ 1): m = 0’ n = 2:
where 4, 18 a maximal order in I,, and o: 4, — 4, s the
restriction of the involution on I',.

In addition, type (AV) completed at mondyadic a; or at the
dyadic prime p for n = 3, becomes

IV), (Mym+i(Z(Cen + &), 1d, R, —1) .

Proof. The theorem follows from (4.7), (4.15) the proof of [6,
(5.2)] and [30, §1, Lemma 3]. Details are left to the reader.
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5. Arf and Dickson invariants over Z{;» and Z((x — ().
Throughout this section, A = Z{;» (n = 2), or Z({» — i) (0 = 3),
and K is the fraction field of A; the (nontrivial) involution is induced
by { — (™, complex conjugation.

First recall that if p = p is a finite prime of K, then a theorem
of [26] states that the discriminant induces

(5.1) dis,: fWH(K,) — F7/NKZ

where F, denotes the completion of the fixed field of the involution
with respect to the prime under p and N: K — F is norm. Thus,
from the commutative diagram, where <! is from the localization
sequence,

Z

AL (),

fWy(K) — Lf Wi(K,)

ldis ll dis,

F*|NK* — 1L F/NK;

LS WHEK,JA,) — fWHEK[A)

(1.10)

it follows that ker (dis) S ker (&7'). The argument of [60, III. 5.2]

shows that the inverse of the isomorphism fW:(K)/ker (dis) iFX/NK x
is given by 6(f) = {f, —1). These remarks furnish the commutative
diagram, whose top line is a version of the Artin reciprocity law
(see [27, X. 3. Thm. 4] and [7, p. 177]),

FNK* L5 1 FyNEx 1 772
»=%

1L 8,, 9 finite; trivial, p infinite
1L fWHK,)
p=p

p finite

R
53

(5'2) 1L ()

L fWi(K,/A,)
p finite

-~

FWHEK) ker (dis) =, FWUEIA) 2 rWia) |
(5.3) THEOREM. The Dickson invariant induces

FWHA) > fWHAJ24) = Z/2 .
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Proof. Since (4/2A)/Rad = F, (A has a unique dyadic prime,
which is totally ramified), the surjectivity follows from (1.6) and
(2.6).

Let » = —1. Referring to (2.4), it suffices to show that, given
(S, ¢) (representing an element [S, ¢] of fW{(K/A)) where S is non-
dyadic-torsion A-module, there exists x € fW{(K) such that <& (x) =
[S, ¢]. Since K/F is unramified at nondyadic primes, fWi(4,) =0,
p = p nondyadic: fWi(A,,)—% fWi(A/p) by reduction (1.13) and this
vanishes if * = 0 by [60, p. 117], by [33, (4.1)] if = = 1. Thus, for
such p, (&Y, is an isomorphism, by the localization sequence. From
(6.2) it follows that there is {f,} € Il F,;/NK such that o{f,} = [S, ¢].
If »{f,} =0, a diagram chase completes the proof. If not, then
change {f,} at a ramified infinite prime. Then 0{f,} is unchanged.

In case M =1, and A = Z{,., “scaling” [3] with ¢ = —%, shows
JWHA) = fW(A). In case A=Z(—C™), then ({--{™*) generates the
ramified dyadic prime of Z({ — {™*) and satisfies ({ — ™) = —({ — ™).
Since the argument for )\ = 1 used only fraction fields (or their
completions at nondyadic p) and nondyadic torsion modules, it too
can be scaled to give the result in this case.

(5.4) THEOREM. The Arf invariant induces surjections

TWHA) — fWHA2A) = Z/2 .

Proof. The values of fWJ(A/2A) follow from reduction and the
fact that (A/2A)/Rad = F,. Surjectivity for » = —1 uses the com-
position Z— A — A/2A — F, and the usual representative for the
Arf invariant over Z. If A = Z{ and A = 1, use scaling, as in (5.3).

To prove the assertion if =1 and A = Z({ — "), observe
first that (227, fWH(A,) — fWHK,) is injective, where p is the
dyadic prime of A. For by reduction (1.13) and (2.6), fWi(4,) —
SJWHA/p) = Z/2, with nonzero representative ((4,) ¢, ¢) where g has
matrix (‘% _%) and ¢(e) = 1 = —q(f) for a basis {e, f} of (4, The
image of this element in fW}(K,) has discriminant 5 and (by (5.1))
dis: fWU(K,) — FX[NK; = Z/2. Thus to prove that (.5}, is injective,
it suffices to show 5¢ NK*. By [31, 63.10], this is so if and only
if the Hilbert symbol

5 € =077\
5.5 23 = -1,
©:5) ( QT+ >v
since K = Q¢ — (™) is obtained from the fixed field F = Q(* — (™)
by adjoining V-7 =¢ - But (- =0+("—21s
the generator of the unique dyadic prime in Z(* + (™) and 6 =1 +
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4(1) has quadratic defect 4A, so (5.5) follows from [31, 63.11a].

Now it remains to prove that there is a (+1)-quadratic form
over A whose image in fW;(K,) is nontrivial. This can be done by
the reciprocity arguments of (5.3). Namely, referring to Daigram
(5.2), let {f}ell,—; FY/NK; be given by

5, q=p dyadic
fi=1{—1, q=some fixed ramified prime
1, otherwise.

Thus, in (5.2), #{f,} = 0 = I, (&%), (11, 6,){f.}, so we can find a (+1)-
quadratic form (K" g¢g) such that <£Y(K", g) =0 and dis, (K", g) =
5¢ FY/[NK;. Exactness in the localization sequence furnishes a (+1)-
qguadratic form (P, h) over A such that 27(P, h) = (K", g). This
completes the proof.

6. Arf and Dickson invariants over Z({» + (). Throughout
this chapter A = Z({,» + (&), n = 2, K is its fraction field, and the
involution on 4 and K is trivial. A is totally real and has exactly
one dyadic prime, which is totally ramified over (2) & Z.

To begin, consider the diagram of localization sequences (cf.
(1.15), and [60, IV. 3.4])

ol

; : 7t
FWHA) o FWUK) s fWHEIA) — FWA)
(6.0) Pb(A) J: lh(x/m
‘z/‘ﬁeful ’(L/ﬁerm
fWﬁerm(A) - fWk%erm<K) - fWﬁerm(K/A> .

Since fWiY(K) =0 by [33, (4.1)], &' is surjective; since the ideal
class group & of A has odd order [17, Satz 38'], &5k is surjective
by [60, IV. 3 4]. Thus there is an exact sequence

6.1) FWA) 2L, s (4) o VK A) — FW(A)

where
V(K/A): = ker (W(K/A)) , L: = ANim (fWiem(4) — fWH(K)) .

To motivate the following procedure, recall that W(K) (=the
Witt group of symmetric bilinear forms over K, without rank
restriction) is studied in [60, II. 5] by a filtration process, due
essentially to Pfister (for any field K): the authors begin with the
rank homomorphism W(K)— Z/2, and observe that the diseriminant
becomes a homomorphism on its kernel I(K); next the sum of the
Hasse-Witt invariants becomes a homomorphism on the kernel I*(K)
of the discriminant; and, finally, the signatures (divided by 8) are
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defined on I%K), the kernel of the Hasse-Witt map (but the signa-
tures are already a homomorphism on the larger W(K)). Thus, they
obtain

(6.2) PROPOSITION. There is a decreasing filtration of W(K),
where K is a number field,

WEK2QIK)2IK)2IK)20
with successive quotients and isomorphisms given by the above in-

variants (rank, discriminant, Hasse-Witt, signatures) W(K)/I(K) =
Z/2, IK)/I"(K)= K*|K**, IK)/I*K) =11, tniee Z/2, IK) =11, rea1 Z.

infinite

Denote by 0, the composition (see (1.12) (a))

“glierm
(6.3) 0, = {W(K) —— fWiern(K/A) — W(A/D)}
which by (1.12) equals the composition
(y}}erm>p 1 =
0, = (W(K) — WEK) == fWiern(K,JA) 53 WA

where the maps are the obvious ones., The following result was
proved in [60, pp. 86, 96].

(6.4) PROPOSITION. (a) 4,|I%(K) = 0; (b) 0,(I*(K)) S I(Afp) and
I(A/p)(—li“:'(A/J[))X/(A/p)><2 = Z/2 if b is nondyadic, and is zero other-
wise; (¢) 0,|IMK): INK)— W(A/p) may be identifield with Hasse-

Witt  invariant at P, for b nondyadic; (d) the induced map

rank

0, (K)/I(K)— W(A/p)/I(A/p)—;—»Z/Z may be identified with the
parity of the p-adic valuation, v,(dis ¢), of the discriminant of a
Jorm &.

rank

Since fWHK) = ker {W(K)—> Z/2} and [fWiwm(K,/A,) =
FWHK,/A,) for p=Dp nondyadic, the following is an immediate con-
sequence of (6.4).

(6.5) PROPOSITION. For p mondyadic, the result analogous to
(6.4) holds, where W(—) is replaced by fWi(—) and Fhm by &

It will turn out (see (6.17)(b)) that (<5'),, unlike (Fim), detects
the p-adic Hasse-Witt invariant when b is dyadic

Lannes’ idea is to filter <4'|V(K/A) so that <&&' restricted to
successive quotients is computed by invariants of V(K/A), as was
done in (6.5) for nondyadic p. The reader is reminded that fW;
excludes the rank invariant.
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Begin by observing that one may make the identification
V(K/A) = V(K/A,) , p dyadic .
It is therefore sufficient to filter V(K/A,,)).

(6.6) [28, p. 543]. Let p be dyadic, and define a surjective
homomorphism z: V(K/A,,) — Z/2 by

T(S’ 9759 "#) = TkA/v(S/‘pS) H

where (S, ¢, 4) is a (+1)-quadratic form over K/A. The map 7 is
closely related to the Dickson invariant.

(6.7) PROPOSITION. There is a commutative diagram

VK/A) 2o f W A)

¢ FW(AJRA)
%(1.13)
FWAD)

f2a

Z[2 (2.6)

Proof. 1t is clearly sufficient to prove commutativity with A,
in place of A. So let [S, ¢, v]e VIK/AL), let (A,)" 2 (Ay,)" 2> S be
a resolution, and let z:(4)™ X (4, — K be chosen to satisfy
(1.17) (see [32, 1.17, 1.18]). Then by definition Z[S, ¢, 4] is the
class of the formation 6 = ((4,,)™, (4,,)™", (¢, 7)) (see [32, §4]). By
[33, (8.1), (4.1)], ®w is defined on »0 to be 7k, (cok (#/p)) mod?2,
where #/p denotes the reduction of ¢ mod p. Since 4, is a principle
ideal domain, 7k,,(cok (¢/p)) = 7k, (S/pS), so the diagram commutes.

(6.8) Next let
V{K[A,): = kerT

and define a homomorphism 4 on it as follows. By (2.3),
FW(A) ngfl(A/pA) is injective so by (6.1) with A, in place of
A, Z}im {(fWian(A) — fWHK)} maps surjectively to V(K/A).
Thus suppose (P, g) is a nonsingular hermitian (i.e., bilinear) form
over A, and (P, g) = x€ V(K/A,). Setting 4(x) equal to the
mod 4 reduction of dis (P, g), defines a surjective homomorphism
([28, p. 544])

(6.9) 4 VIE/A) — (A/AA)[(AJ4A)* = (A /A40) [(Aw/4An) " .
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(6.10) Now let
(6.11) VAK/A): = ker 4 .

There is a natural inclusion A/pA,, — K/A,, given by a—a/z,
where 7 is a generator of p £ A,,. Using this, each quadratic form
over A, /pA, = A/pA gives rise to a (-+1)-quadratic form over
K/A,. The resulting homomorphism fW(A/pA)— fWHK/A,) is
shown to induce an isomorphism [28, Prop. (2.2)],

(6.12) Jt FWiAIPA) = V(K[A,) .
The following theorem summarizes the above discussion and extends
the filtration (6.4) of Wi.m(K/A).
(6.13) THEOREM (Lannes). The homomorphisms WK/A), =, 4,
and J define a filtration of fWHK/A)
FWHKIA) 2 V(K/A) 2 VIK/A) 2 VH(K/A) =20
and isomorphisms of the successive quotients with

IWian(K[A) , fWI(APA), (AJAA)[(A/4AY®, FWi(A[PA).

Set V. = the set of real valuations of A, h(x)(€Z/2) = the
Hasse-Witt invariant of ¢ fWi...(K) at the prime p (see [60]) and
o,(x) = the signature at ve V..

(6.14) THEOREM (Lamnmnes). Let the map &7 of (1.15) induce L
in (6.1) and let V(K/A) be filtered as in (6.13). Then there are
commutative diagrams with exact rows and columns,

SWHA) WD) L V(KA
SWi(A) N IM(K) ST Wian(4) N IYK) VA(K/A)
(6.15) ;ldis %'P
AXJAS —f'; (AJAA)[(AJ4A)*°

and
FWHA) N IEK) — fWiem(A) 0 IE) 15 yox)a)
lu (00/4) ln Guld + By glj-l
(6.16) I Z —_— 11 Z+ Z/)2 —_— Z)2

veV o VE VY oo

I I

Z/2 = Z/2
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where the maps in the second rows of (6.15) and (6.16) are the
obvious ones, and r, and r, are sums in Z[2 (“reciprocity maps”).

Proof. From [28, (4.8)], ker a, = Hom (¥/%”, Z/2), which van-
ishes since % has odd order [17, Satz 88']; by the Dirichlet Unit
Theorem, rkr(A*/A*") = 2"%, which equals rkyz((A/4A)X/(A/4A)X2) by
[31, (63.8)]. Thus «, is an isomorphism. The map this is an iso-
morphism by an argument similar to, but simpler than that of
[28, Prop. 1.12]. The commutativity of (6.15) follows from the
deseription of 4 in (6.8).

The exactness of the second column of (6.16) is from [60, IV.
4.5], that of the first from [28, Thm. 5.1]. The commutativity of
the upper right square in (6.16) follows from the discussion in [28,
2.9].

(6.17) REMARKS. (a) The maps », and =, are essentially
restrictions of Hilbert reciprocity to V., and V.UV, (b) It is
interesting to observe that (6.16) shows that ¢%' contains the
dyadic Hasse-Witt invariants, while from (6.4), ¢3.... does not.
Nondyadic Hasse-Witt invariants do not appear in (6.16) because
they persist under both &' and 54 to fWHK/A) (see (6.4), (6.5)).
Thus, they cannot appear in fWi..n(4) or fWi(A), by exactness of
the localization sequence.

(6.18) COROLLARY. The Dickson invariant induces an 1somo-
phism

FWHA) = fWXAJ24) .

Proof. L{(fWi.n(A) S VY(K/A) by the discussion in (6.8). This
and the diagrams (6.15), (6.16) give the result if » = 1.

The discussion of fW,(A4) is elementary (i.e., nonarithmetic).
Namely, skew-symmetric forms on nondyadic A-torsion modules are
always hyperbolic: the proof is essentially the same as for skew-
symmetric forms over fields of characteristic = 2. Further, if
(S, ¢, ) is a (—1)-quadratic form on a dyadic A-torsion module, we
claim it is also hyperbolic. For S may be assumed to be p-torsion,
for some fixed dyadic p, and hence is an A,-module. In [54, §4],
Wall classifies skew-hermitian forms (S, ¢) over Q/Z by an argument
which easily generalizes to A,: and it is a consequence of the defini
tion that (because of the presence of +) ¢(z, ) = 0, for all z€S.
Thus, by [54, Lemma 7], (S, 4, +) is hyperbolic, so that fW;(K/A)=0.
(However, fWiL.(K/A) # 0 and is detected by de Rham invariants
[54, §4].) From [33, (4.1)], fWXA) —» fWYK) = Z/2 is surjective
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(by lifting back a nonzero representative), hence by the localization
sequence an isomorphism. Using the nonzero reprentative in (1.6),
the proof is complete.

(6.19) THEOREM. The Arf invariant
(a) fWi(A) — fWi'(AJ24A) = Z/|2 1is nontrivial.
(b) [fWiA) — fWi(AJ24) = Z/2 is trivial.

Proof. The isomorphisms follow from reduction (1.13) and (2.6).

Part (a) is obvious. To prove (b) observe first that if p is
dyadic, the (+1)-quadratic form ((4,)% g, ¢), used in the proof of
(5.4), has nontrivial image in fW{(A/p), and discriminant 5 which
is nontrivial in A/AX* by [31, 68.2] and the fact that it is nontrivial
in (Ap/4pA,)*/(A,/4pA,)**. Thus, it suffices to show that no element
of fWi(A,) has discriminant, which, in A} is congruent to 5 mod A)°.
But by (6.15) all such discriminants vanish.

Next it is necessary to work out the filtration of (6.13) for
application in Chapter 7. First some lemmas.

(6.20) LEMMA. Let p be the dyadic prime in A. Then the
Hilbert symbols

P

Proof. b5 is the sum of two squares, so the first symbol is 1 by
definition [31, 63.10]. Since Q¢ + N -1)=Q¢, N1 - =2 —
€+ ", where N:QC* - Q( — {™)* is the norm. By [31, 63:10]
the second value follows and the proof is done.

(6.21) LEMMA. The map c: A*/A*" — AJAL® in injective (P the
dyadic prime) and its cokernel is Z|2, generated by the class of the
b-adic unit 5.

Proof. By the Dirichlet Unit Theorem, 7k (A*/A**) = 2"~%, while
by [31, 63:9], rkr(AS/AS")=2""+1. Since a, in (6.15) factors
through ¢, the proof is complete.

(6.22) Let S: A*/A** — I1,er, {Z1} be the map which assigns to
a € A® its signs at real completions. Then S is an isomorphism.

Proof. By [17, Satz 38'], S is surjective; it is an isomorphism
because the ranks are equal, using the fact that K is totally
real.
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(6.23) PROPOSITION. Let A=ZL + ("), { =y, » =3 and let
p denote the dyadic prime. Then

(a) V*K/A) = Z/2 with generator <31, 1, —xw, —7) where T is
some gemeralor for p.

(b) VK/A) = VIK/A) D (VIK/A)VIKIA) = Z|2 + (Z[2)",
where V/V?® has basis £ —1, w,y, {u;} a basis for A*/A** over F,.

() V(KJA) =VXKIA)D (Z/2)" D Z/4 where the third term is
generated by the class of the (+1)-quadratic form (A/4A, ¢, ) where
(g, 9) =1/4e K/A, (g) =1/4e€ K/2A and g is the generator of A/4A.

Proof. Since (—1)e K.*, nondegeneracy of the Hilbert symbol
implies there is a nonsplit quaternion algebra (—1, u/K,) (see [25,
6.2.16]) for some u e K*. Using (6.20) and (6.21), it is posible to
assume u = v(2 —  + (), ved*. Set w=v@2 — (€ + ). The
norm form of (—1,7/K) is, by definition (see [25, p. 56]), the
quaternary form ¢ = (1,1, —x, —n) € fW(K). Clearly dis (¢) € K*’;
and the Hasse-Witt invariant

-1, T\ _
@ = (=) =1,

for nondyadic finite g, by [31, 63:11a]. Hence ¢cI*K) (by con-
struction), ¢ €im {fWim(A) = fWien(K)} (by (6.0) and (6.4)), and
h,(¢) = (—1,/K,) = —1. Thus, by the commutativity of the upper
right square of (6.16), <4'(¢) is the generator of V*(K/A) = Z/2.

(b) Immediate from (6.13) and (6.15).

(¢) Clearly, by (6.6), T(A/4A4, ¢, ) = rk(A/4A R Alp) = 1.

(d) Evidently <4L..({(—1, 7)) is the generator of fWi.n(K,/A,) =
SWian(A/P) (see (6.4)(d)) and 2451, ) = LH(—1, -1, x, ) =
generator of Vi K/A).

7. Arf and Dickson invariants over the maximal order _7/
in I",. In this chapter I", and .7, will denote the quaternion algebra
(—1, —1)/Q + ") and an involution-invariant maximal order in it,
respectively, where { = {pn, n = 2.

Begin (as in §6) by considering the commutative diagram

—1 —1 —1

Iy £ 0
SWa(er7) — W) — Wl f47) — fWH A7)
(7.1) 1;1 l: l
O verm B
STWibm(17) — fWatem(I,) — Wik A7)

At the end of this chapter we prove

(7.2) THEOREM. _$7.l. 18 surjective in (6.1).
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This fact, together with the facts tem 1S injective (by [o,
1.1]) and fFWXI',) =0 (by [33, (4.1)]) furnish an exact sequence,
derived from (7.1):

A8) W) T FWt( 42 =2 VT t) — FWHAT)
where

(7.4) V(] A7) = kex {fWi (o) A7) — fWitem( L af A7)} -

(7.5) THEOREM.
Z2 + Z[2, n=2
V(. »7) = s
LAY = g2y + 24, nz3.
Proof. Write I, =TI", +, = _#. Since hermitian and quadratic
forms on nondyadic torsion modules can be identified,

VI|7) = VL[ A7) = VUTW[A7)

where p is the unique dyadic prime in the center Z({ + ™) of .47

Let n = 8. Replacing (I, +") by I, .+;), since (I',, 4;) =
(M, (Q + ¢™),), M(Z(& + ¢%),)) with involutions described in (4.4)
and (4.16), the diagram becomes by Morita theory (4.3) isomorphic
to (60), where (K, A) = Q¢+, Z( +¢™),); applying (6.23)
completes the proof in this case.

If =2, then I, is a division algebra so by [61] the
discriminant induces

JWeT',) = fWhea(I',) = Q5 [(QF) = (Z[2)" .

Thus, a set of generators is {{&+ 27, i), G+ 7+ k ¢+ 2j),
{t,1 + j>}. Since the reduced norms of their entries lie in Z, the
first two generators are in im (fWikn(.4;) — fWita(l,)) by [42,
12.51; <4, i + jy is not and must therefore map to the generator of
SWitn(,]47) = Z]2 under 45l,. Finally, letting (m) denote the
unique maximal 2-sided ideal of _# it is generated by (1 — ), a
direct calculation or [42, 14.3] shows

(7.6) Af(m) = F,,
where F, has the nontrivial involution. By (1.18), and (2.6),
(7.7) SWir;)=0.

Putting these facts into (7.1) where (I, _#") is replaced by (I",, _+;)
yields V(I'/_¢") = Z/2 + Z|2 as required.

(7.8) DEFINITION. Let p be a (discrete) prime in the center
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QL+ ¢ of I',, £ = En, and suppose (I',), issplit. SetI', =I. If
e fWi () = fWakn(l), its p-adic Hasse Witt invariant is the image

in the composition FW:(I") — fWiAT,) S FWMAQE + £-1),)) 202,
JW(QEC +C™),) L Z/2, where h, is the Hasse-Witt invariant of [60].

(7.9) COROLLARY. (a) One Z/2-term im (1.5) is generated by
7 x), where x© has nontrivial dyadic Hasse-Witt invariant, n = 3.

by If n =3, VU, /N )ifW‘(/I/)-%le(/l//Z/V) Z{2 s
nontrivial.

Proof. The corollary is immediate from the analogous facts,
where skew-hermitian forms over (I,, .#.) are replaced by sym-
metric forms over (Q( + ™), Z{L + ), and the fact that the proof
of (7.5) used Morita theory to translate the latter context.

(7.10) THEOREM.

( 0—0, n =2
H: fWiH17%) — fWika(13) = ((Z[2)" 77— (Z[2)" % + Z[2,
l(inclusion into first term) n =3 .

The Z/2 not in im (H), n =3, can be represented by a form
with trivial discriminant and nondyadic Hasse-Witt invariants, and
nontrivial dyadic Hasse-Witt invariont.

Proof. Let 4= 4., ' =1I,. According to [23, p. 138] the
kernel of the completion-induced map

(7'12) C f hcrm(r) I H fWhum(F ) ’

(where the sum is over all valuations of the center of I) is trivial
if and only if at most two I', are nonsplit; otherwise it is an
elementary 2-group of rank |S|— 2 where S is the set of places
where I', is a division algebra. Thus, if n = 2, C is injective, and
since I' is split at nondyadic g€ Z (see (4.9)), by Morita theory (4.3)
(g is odd),

he rm

fWherm(F ) - fWherm(['q/Jf/‘)

| |

FWiem(Q,) Fhern, FWhen(Q,/Z,) .

Thus if zeim { ZFroin: fWiem(A") = fWakw(I')} all Hasse-Witt in-
variants vanish at odd ¢ (by (6.4)(b)). On the other hand, the
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discriminant of x must be a positive integer and a unit, hence equal
to one. Since the right side of (7.12) is detected by the discriminants
and Hasse-Witt invariants if I", is split (p odd) and by the discrimi-
nant if p=2 (by [61]), 2=0. Since .J#5;l. is injective
SWita(#") = 0. The argument just given, together with (7.7),
(1.13) and (2.1), shows fW;*(_#") = 0.

Now let n = 3. The argument just given also shows kerC &
JWitm(#7). By the “Existence of forms with prescribed local
behavior” (7.17), there is xe fWii.(I") with dis(x) =0, h,(x) =0,
for q # p, the unique dyadic prime, and A, (x) = 0. By (6.4)(a) and
Morita theory, otn(x) = 0, so x €im (F1.l.). But x ¢ ker C, because
h,(x) = 0. Thus, we have

(7.13) ker C + Z/2 S fWikm(147) ,

where the Z/2 is represented by x with &,(x) # 0, h,(x) = 0, q non-
dyadic, and dis (z) = 0.

Conversely, if € fWikn(#"), then dis(x)e Z({ + )" and is
positive at all real valuations (see (1.7)). Thus by (6.22) it is a
square. Also, the usual Morita arguments together with (6.4)(b)
show h,(x) =0, for q nondyadic. This shows kerC + Z/22
SWiem( A7),

It will be shown in (7.15) that fWy(_¢") —»fWs (A 72.4") is
trivial. This together with (2.1), shows H is injective. The
arguments above show ker C & fWi%(_#"); this is equality because
by (6.4)(b), <5 (x) + 0, where x represents the Z/2 in (7.9).

The next result is an immediate corollary of (7.5), (7.9), and
(7.10). Observe how it contrasts with (5.8) and (6.18), where the
Dickson invariant detected essentially all of fW}XA).

(7.14) THEOREM. (a) For all n = 3, there is a nonsplit exact
sequence

(Z[2)" " > fWHA7) —> fWH(A3[2.47) ;

and fWH_AN[2.47) = Z]2 if n = 8, and is trivial if n = 2; fWHA45) =
Z2 + Z)2.
(b) fW:.17) =0, for all n.

To prove (b), Morita arguments (by now routine), together with
the proof of (6.18) and the splittings (1.10, show that fWi([I,/.+,) =0,
n=38. When n =2, a theorem of [40] shows fFWX({,). =0, and
by (1.7), fW*(.77).) =0. Hence, by the localization sequence,
wir, ) )=0, n=2. Since fW;XI',)=0 by [33, (4.1)], the
localization sequence yields b).
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(7.15) THEOREM. (a) [fWHN 1. /2.47)=Z2 if n=38, and 1is
trivial if n=2. (b) [fWHNA) — fWH . 2.17) is nontrivial if
and only if n =3 and N = 1.

Proof. When n =2, (a) follows from (1.13) and (7.7). For
n = 8 it follows from the fact that I', is split at the dyadic prime,
Morita theory, and (6.19).

For (b) consider the following diagram, where A = Z({ + ™),
K=Q + ("), K = the group of nonzero, totally positive elements
of K, v+ =_+,, ' =T, and p is the unique dyadic prime in K

—1

W )—~—> WD) =25 K2 K
SWeH A7) SWeKI',)
lMorita lMorita
FWHA,) — FWHK,) —> KiK.

Since im (dis-.27;") € A*/A*" consists of totally positive units, this
image is trivial by (6.22). Now the proof of (6.19)(b) shows fW}(A4,)
is detected by its discriminant; but A}/A* — K*/K;* is injective (A,
is integrally closed), so (b) is proved in case » = —1.

If » = 41, consider the diagram

1

FWil*[17) 2, FWHN) = FWAT)

o| B
fWI(Fu////)——)ffWJ(L/I) = )‘p>fWo(r)

=~ | Morita giMorlta
SWeHZE + ), FW7@QEC + 7)) =0

reduction
SWHZ(E + CTH/p) .

The map C is surjective by (1.10). From this and the well-known
fact that there is an element in fW;(Z({ + {™'),) which is nontrivial
after reduction mod 2, there exists « € fWi(_+#;) with nontrivial mod 2
reduction and (9£3),(x) = 0. If (ZV),&) = «, TefWXIT',/.+;), then
- C %) e fWH_+") is nonvanishing in fW(_+72.47).

It remains to prove Theorem (7.2): that ¢4:l, is surjective in
Diagram (7.1). To do this, a version of the “local-to-global theorem”
of [31, §72], is needed, where the number field there is replaced
here by the quaternion algebra I,.

o

i
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(7.17) THEOREM - (Existence of forms with prescribed local
behavior). Let K=QUC + (™), C=Cpn, n=2, = (-1, —-1/K), S =
the set of primes at which I' is mot split. Let {0,} € I, snue KX/ K"
and {7} €Tl,.s{x1} be given. Then there is a skew-hermitian form
g: ' x I'*— I" such that h,(g) =7, and dis,(g) = d, for all b if and
only if

(a) there exists a totally positive d€ K* satisfying d, = 0,, p
finite, and

(b) almost all v, = 1.

REMARK. Observe that the {v,} are not required to satisfy the
“product formula” [[v, =1, as in [31, §72].

Proof. First recall some results on the Galois cohomology of
(classical) algebraic groups (for details see [23]). For an algebraic
closure K of K all skew-hermitian forms of fixed rank » say, over
I' ® K(=M/(K)) become isometric. Let U= U(K) denote the
isometry group of this form. The reduced norm induces a homomor-
phism U — Z/2, whose kernel is denoted SU. There is a Z/2-covering
of SU, denoted Spin, and there are exact squences '

(7.18) 1—SU—U—Z2—1
and
(7.19) 1— Z/2— Spin— SU— 1.

(7.20) LeEMMA [23, pp. 14-15]. There is a 1-1 correspondence

1sometry classes of rank n
H(K, U) — y classes of :
skew-hermitian forms over I’

Using this, the map HYK, U) — HYK; Z/2) = K*/K*® induced by
the second map in the sequence (6.18) can be identified with the
discriminant and H'(K, SU), with forms of discriminant 1. If I,
is split, the connecting map in the cohomology sequence induced
from (7.19), HY(K,, SU) — H*(K,; Z/2) = Bry(K,) = Z/2 can be identified
with the Hasse-Witt invariant of (7.8).

In general, H(K, U), H(K, SU), etec., are not groups, only
pointed sets because U, SU are not abelian. However, by con-
sidering first the case where n = 1, so that SU becomes a torus,
hence abelian, an argument of [23, p. 137] essentially identifies the
map (induced by completions)

C: H(K; SU)— [l HY(K,, SU)
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With_ﬂne map L in the Artin reciprocity sequence for the extension
KV =1/K = QCu/Q(Lyn + Cn) used in (5.2). Combining these remarks
results in the exact commutative diagram [23, p. 136]

dis
/4_’__\
Z[2— HYK;SU)— HYK;, U)—> HYK; Z/2) = K*K**
ld lC lD lP
11Z2-11 H(K,, SU)— I;[ HYK,;U)— 11 H(K,; Z/2) = K| K}*

peES » »

lr
Z/2 l;[dls;
where S = the (finite) set of primes p at which I" is not split and
4 is the diagonal inclusion.

The interpretation given above of the sets and maps in this
diagram yield Theorem (7.17). Details are left to the reader.

REMARK. Chasing in the diagram, one also gets the failure of
the Hasse-principle: D has kernel consisting of 2'5'* elements.

Proof of (7.2). Consider the commutative diagram

g—l

herm

S Wiaea(l) — fWite(L'[ ")

J’ (Fhorm jg
T S Wikenll) 2 T1 FWikeal ' H7)

p finite
lMorita l

II W)+ I fWiem(K,) — Hs,f Wiee( L/ 473) + H FWien(K,/A,)

pe s’ pes’
finite finite

where S’ is the set of finite primes at which I" is not split. (When
K=Qlx +4H), n=8, S =@.) Consider also the commutative
diagram

K¥/K* == K*/K*

1 b

IL K2/K: =5 11 (Z/2)

l

G|z

where 9, is the v,-adic valuation mod 2, and & is the class group.
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Since % has odd order [17, Satz 88'], j is an isomorphism. This,
together with the interpretation of fWi.m(K,) — fWi.n(K,/4,) in
(6.4) and Theorem (7.17), shows &3:i. is surjective. The argument
for » = 2 is left to the reader.
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