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Let A be a strongly logmodular subalgebra of C(X),
where X is a totally disconnected compact Hausdorff space.
For s a weak peak set for A, define A;={feC(X): fls€ Al
We prove the following:

TueoreM 1. Let s be a weak peak set for A. If b is
an inner function such that b|; is invertible in A |; _then there
exists a function F' in A N C(X)™* such that FF =15 on s.

TueoreM 2. Let s be a weak peak set for A. If Ue(C(X),
{Ul=1 on s and dist (U, As) <1, then there exists a uni-
modular function U in C(X) such that U=U on s and
dist (T, 4) < 1.

1. Introduction. The purpose of this paper is to prove certain
properties related to strongly logmodular algebras.

In their study of Loecal Toeplitz operators, Clancey and Gosselin
[3] established one of these properties in a special case (H*) under
a highly restrictive condition. In {7], the author proved this property
for H* without any condition.

In the present paper, we obtain this and another property for
arbitrary strongly logmodular algebras. The proofs in [3] and [7]
use special properties of H* that are not shared by arbitrary strongly
logmodular algebra. In the present work we use new techniques.

Let A be a strongly logmodular subalgebra of C(X), where X
is a totally disconnected compact Hausdorff space. If s is a weak
peak set for A, define A; = {f eC(X): flseAls}. The main results
of this work are: Theorem 38.2. Let s be a weak peak set for A, and let
b be an inner function such that b{ is invertible in A|g. Then there
exists a function F in AN C(X)™* such that F =5 on s.

THEOREM 3.1. Let s be a weak peak set for A, and let u be in
C(X) such that |u| =1 on s and dist (u, Ay) < 1. There exists a
unimodular function % in CX) such that T =u on s and
dist (@, 4) < 1.

2. Preliminaries. Let X be a compact Hausdorff space. We
denote by C(X)[Cr(X)] the space of continuous complex [real] valued
functions on X. The algebra C(X) is a Banach algebra under the
supremum norm || f|l. = sup{|f(@)|: x e X}.

Let A be a function subalgebra of C(X). A subset S of X is
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said to be a peak set for A if there exists fin A such that f =1
on S and |f|<1off S. A set S is a weak peak set for A if S is
an arbitrary intersection of peak sets for A. ILet A~ denote the
group of invertible elements in A and log|A™*| = {log|f|: fe A"}

A function algebra A is called a strongly logmodular subalgbra
of C(X) if log|A™'| is equal to Cx(X). The reader is referred to
[2] and [4] for many of the basic properties of weak peak sets and
additional properties of function algebra and to [5] and [1] for dis-
cussions concerning strongly logmodular algebras.

Let A denote a fixed closed subalgebra of C(X) which containg
the constants. Let B be a closed subalgebra of C(X) which contains
A. We define B, to be the closed subalgebra of C(X) generated by
A and {f:feANB}. It is clear that Ac B,.c BCc(CX). If
B = B,, then B is called a Douglas algebra.

A function b in A is called an inner function if || = 1. For a
strongly logmodular algebra A on X, there is a useful characteriza-
tion of B, in [1, p. 8], which says that B, is the closed subalgebra
generated by A and {b ¢ B:b is an inner function}.

3. The main result. Throughout this section, A will denote a
fixed strongly logmodular algebra on X, where X is a compact,
totally disconnected Hausdorff space. Examples of such algebras can
be found in [5] and [6].

Let s be a subset of X which is a weak peak set for A. Define
As ={feCX): flseAls}. The algebra A; is closed in C(X) since
Alg is closed in C(X)|;. For u in C(X), we define distg(u, A) =
inf{|lu — h||s: he A} and dist (u, 4s) = inf {||u — h||.: b € A}, Where
lu — hlls = sup {{u(®@) — h(x)|: x€S}. It is not difficult to see that
dist (u, 4;) = distg (u, A) for any u in C(X).

Our main result is as follows:

THEOREM 3.1. Let s be a weak peak set for A, and let u be in
C(X) such that |u| =1 on s and dist (u, A;) < 1. Then there exists
a unimodular function @ in C(X) such that #=u on s and
dist (i1, A) < 1.

In the special case of A = H> (the Hardy space of the unit
cirele) the above theorem appeared in [7] which answers a question
raised in [3].

To prove Theorem 3.1, we need the following special case of [1,
Theorem 4.1].

THEOREM A. Let A be a strongly logmodular subalgedbra of C(X)
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and J be an ideal in C(X), where X is a totally disconmected com-
vact Hausdorfl space. Then the closure of A+ J is a Douglas
algebra.

Theorem 3.1 follows from the following fact, which is interesting
in its own right.

THEOREM 3.2. Let s be a weak peak set for A, and let b be an
inmer function such that bls s imvertible 'c"nL Alg. Then there exists
a function F in AN C(X)™ such that F' = b on s.

Proof. Step 1. There is a peak set EDs such that b, e 45"
If not, there is a ¢, € M(A;) such that ¢,(b) = 0. Since M(A;) C M(A),
which is compact we can choose a convergent subnet ¢, — ¢. Clearly
¢ € M(Ay), and ¢(b) = 0 by continuity, contradicting b|s e A5

Step 2. Let h peaks on s. Let geM(A), ¢(h) =1, and g be
the positive measure representing ¢ and supp # be its support. Since
|| <1 and ¢(h) = Shd,u =1, we have h =1 on supp . Because
h = 1 exactly on s, we have supp ¢#Cs. This shows that ¢ e M(A,).
Since blse As', 6(b) # 0. Thus 1 — & and b have no common zeros
on M(A), and thus by [2, p. 27], there are f,geA with fb +
gl — h) =1.

Step 3. Fix ¢ > 2||g|l~, where g is as in step (2). Let E =
{xeX:|1 —h|<1/6c}. There exists a clopen set W such that
sCWcE. On the set X\W we have |1 — k| > 9, for some positive
number 6. Let g,=(c/2)Xw+(11/6+¢)(1/6)Xx\w. Certainly, g, e C(X).
Since A is strongly logmodular, there exists G e A~ such that
log |g,] = log |G|. Thus |G| =¢/2 on W and |G| = (11/6 + ¢)(1/0) on
X\W.

From the identity fb 4+ g(1 —h) =1, we have the following
inequalities. On W: | f| = [1—g(1—h)| = 1—|g||1—h| = 1—¢/2-1/6c =
1 - 712 =11/12,andon X: [f| = 1+ gl — Al =1 +¢2:2 =1 + .

Let F=f— G@A — h). Certainly, Fisin A and F=f=15b on
s. Hence on W we have that

|F| = |fl — |G|l — R
> 11/12 — ¢/2-1/6¢ = 5/6
and
|F| =z |G|I1 — k| — | f]
= (11/6 + ¢)1/6)-6 — 1 + ¢)
=11/6+¢—1—¢c=5/6 on X\W.
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Thus Fe AN C(X)™'. This ends the proof of the theorem.

Proof of Theorem 3.1. Without loss of generality we can assume
that |#| =1 on X. 1t is easy to see that A; = A + J, where J =
{f eC(X): f(s) = 0}. Thus, by Theorem A, we have that A, is a
Douglas algebra. From the inequality, dist(u, Ay) <1, we have
lu — gb|l. < 1, for some g in A and some inner function b which is
invertible in A,. Consequently, Reitbg = 6, > 0, for some positive
number 4, (Re f denotes the real part of f). By Theorem 3.2, there
exists F in ANC(X)™" such that F=b on s. Since |F|=d,>0,
for some positive number §,, we have Re @b F/|F|Fg = | F|Re ithg =
0,0, > 0. Thus there exists a positive real number R > 0 such that
|R — #bF/|F|Fg|l. < R. Hence ||l — wbF/|F|Fg/R|l.<1. Set #=
ubF/|F|; then |#| =1, # =w on s, and the last inequality shows
that dist (#, A) < 1. This ends the proof of the theorem.

The following corollary is a generalization of Theorem 3.2.

COROLLARY 3.3. If s 18 a weak peak set for A and f in C(X)
such that f|s is invertible in Als, then there exists G in A N C(X)™*
such that G = f on s.

Proof. The hypothesis that f|; is invertible in A|; shows that
f(x) # 0 for all xzes. Let W be a clopen set of X such that f(z) = 0
for all z in W. The function fX, + 1 — X € C(X)™, so we can write
it in the form wg, where veC(X), |v| =1 and ge A™*. [This is pos-
sible because A is strongly logmodular]. Both the functions » and
7 are in A;. By Theorem A there exists % in A and an inner funec-
tion b which is invertible in Ay such that ||v — kb|l.. < 1. Since
7b € Ay and ||1 — 9bh|l. < 1, then by [2, p. 49] we have Tbh = en
for some u, in A;. By the definition of 4, there exists u in A such
that w =wu, on s. Thus v = bhe™ on s. By Theorem 3.2 there
exists =15 on s. Set G = Fhe™™g, then G is the required function.
This completes the proof of the corollary.
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