Pacific Journal of Mathematics

INTERPOLATION IN STRONGLY LOGMODULAR ALGEBRAS

RAHMAN MAHMOUD YOUNIS

Vol. 102, No. 1

January 1982

INTERPOLATION IN STRONGLY LOGMODULAR ALGEBRAS

RAHMAN YOUNIS

Let A be a strongly logmodular subalgebra of C(X), where X is a totally disconnected compact Hausdorff space. For s a weak peak set for A, define $A_s = \{f \in C(X): f|_s \in A|_s\}$. We prove the following:

THEOREM 1. Let s be a weak peak set for A. If b is an inner function such that $b|_s$ is invertible in $A|_s$ then there exists a function F in $A \cap C(X)^{-1}$ such that $F = \overline{b}$ on s.

THEOREM 2. Let s be a weak peak set for A. If $U \in C(X)$, |U| = 1 on s and dist $(U, A_s) < 1$, then there exists a unimodular function \tilde{U} in C(X) such that $\tilde{U} = U$ on s and dist $(\tilde{U}, A) < 1$.

1. Introduction. The purpose of this paper is to prove certain properties related to strongly logmodular algebras.

In their study of Local Toeplitz operators, Clancey and Gosselin [3] established one of these properties in a special case (H^{∞}) under a highly restrictive condition. In [7], the author proved this property for H^{∞} without any condition.

In the present paper, we obtain this and another property for arbitrary strongly logmodular algebras. The proofs in [3] and [7] use special properties of H^{∞} that are not shared by arbitrary strongly logmodular algebra. In the present work we use new techniques.

Let A be a strongly logmodular subalgebra of C(X), where X is a totally disconnected compact Hausdorff space. If s is a weak peak set for A, define $A_s = \{f \in C(X): f \mid_s \in A \mid_s\}$. The main results of this work are: Theorem 3.2. Let s be a weak peak set for A, and let b be an inner function such that $b \mid_s$ is invertible in $A \mid_s$. Then there exists a function F in $A \cap C(X)^{-1}$ such that $F = \overline{b}$ on s.

THEOREM 3.1. Let s be a weak peak set for A, and let u be in C(X) such that |u| = 1 on s and dist $(u, A_s) < 1$. There exists a unimodular function \tilde{u} in C(X) such that $\tilde{u} = u$ on s and dist $(\tilde{u}, A) < 1$.

2. Preliminaries. Let X be a compact Hausdorff space. We denote by $C(X)[C_R(X)]$ the space of continuous complex [real] valued functions on X. The algebra C(X) is a Banach algebra under the supremum norm $||f||_{\infty} = \sup \{|f(x)|: x \in X\}.$

Let A be a function subalgebra of C(X). A subset S of X is

said to be a peak set for A if there exists f in A such that f = 1on S and |f| < 1 off S. A set S is a weak peak set for A if S is an arbitrary intersection of peak sets for A. Let A^{-1} denote the group of invertible elements in A and $\log |A^{-1}| = \{\log |f|: f \in A^{-1}\}.$

A function algebra A is called a strongly logmodular subalgbra of C(X) if $\log |A^{-1}|$ is equal to $C_{\mathbb{R}}(X)$. The reader is referred to [2] and [4] for many of the basic properties of weak peak sets and additional properties of function algebra and to [5] and [1] for discussions concerning strongly logmodular algebras.

Let A denote a fixed closed subalgebra of C(X) which contains the constants. Let B be a closed subalgebra of C(X) which contains A. We define B_1 to be the closed subalgebra of C(X) generated by A and $\{f^{-1}: f \in A \cap B^{-1}\}$. It is clear that $A \subset B_1 \subset B \subset C(X)$. If $B = B_1$, then B is called a Douglas algebra.

A function b in A is called an inner function if |b| = 1. For a strongly logmodular algebra A on X, there is a useful characterization of B_1 in [1, p. 8], which says that B_1 is the closed subalgebra generated by A and $\{\overline{b} \in B: b \text{ is an inner function}\}$.

3. The main result. Throughout this section, A will denote a fixed strongly logmodular algebra on X, where X is a compact, totally disconnected Hausdorff space. Examples of such algebras can be found in [5] and [6].

Let s be a subset of X which is a weak peak set for A. Define $A_s = \{f \in C(X): f \mid_s \in A \mid_s\}$. The algebra A_s is closed in C(X) since $A \mid_s$ is closed in $C(X) \mid_s$. For u in C(X), we define dist_s $(u, A) = \inf \{||u - h||_s: h \in A\}$ and dist $(u, A_s) = \inf \{||u - h||_{\infty}: h \in A_s\}$, where $||u - h||_s = \sup \{|u(x) - h(x)|: x \in S\}$. It is not difficult to see that dist $(u, A_s) = \operatorname{dist}_s(u, A)$ for any u in C(X).

Our main result is as follows:

THEOREM 3.1. Let s be a weak peak set for A, and let u be in C(X) such that |u| = 1 on s and dist $(u, A_s) < 1$. Then there exists a unimodular function \tilde{u} in C(X) such that $\tilde{u} = u$ on s and dist $(\tilde{u}, A) < 1$.

In the special case of $A = H^{\infty}$ (the Hardy space of the unit circle) the above theorem appeared in [7] which answers a question raised in [3].

To prove Theorem 3.1, we need the following special case of [1, Theorem 4.1].

THEOREM A. Let A be a strongly logmodular subalgebra of C(X)

and J be an ideal in C(X), where X is a totally disconnected compact Hausdorff space. Then the closure of A + J is a Douglas algebra.

Theorem 3.1 follows from the following fact, which is interesting in its own right.

THEOREM 3.2. Let s be a weak peak set for A, and let b be an inner function such that $b|_s$ is invertible in $A|_s$. Then there exists a function F in $A \cap C(X)^{-1}$ such that $F = \overline{b}$ on s.

Proof. Step 1. There is a peak set $E \supset s$ such that $b|_E \in A_E^{-1}$. If not, there is a $\phi_E \in M(A_E)$ such that $\phi_E(b) = 0$. Since $M(A_E) \subset M(A)$, which is compact we can choose a convergent subnet $\phi'_E \rightarrow \phi$. Clearly $\phi \in M(A_S)$, and $\phi(b) = 0$ by continuity, contradicting $b|_S \in A_S^{-1}$.

Step 2. Let h peaks on s. Let $\phi \in M(A)$, $\phi(h) = 1$, and μ be the positive measure representing ϕ and $\operatorname{supp} \mu$ be its support. Since $|h| \leq 1$ and $\phi(h) = \int h d\mu = 1$, we have h = 1 on $\operatorname{supp} \mu$. Because h = 1 exactly on s, we have $\operatorname{supp} \mu \subset s$. This shows that $\phi \in M(A_s)$. Since $b|_s \in A_s^{-1}$, $\phi(b) \neq 0$. Thus 1 - h and b have no common zeros on M(A), and thus by [2, p. 27], there are $f, g \in A$ with fb + g(1-h) = 1.

Step 3. Fix $c > 2||g||_{\infty}$, where g is as in step (2). Let $E = \{x \in X: |1-h| < 1/6c\}$. There exists a clopen set W such that $s \subset W \subset E$. On the set $X \setminus W$ we have $|1-h| > \delta$, for some positive number δ . Let $g_1 = (c/2)\chi_W + (11/6 + c)(1/\delta)\chi_{X\setminus W}$. Certainly, $g_1 \in C(X)^{-1}$. Since A is strongly logmodular, there exists $G \in A^{-1}$ such that $\log |g_1| = \log |G|$. Thus |G| = c/2 on W and $|G| = (11/6 + c)(1/\delta)$ on $X \setminus W$.

From the identity fb + g(1 - h) = 1, we have the following inequalities. On W: $|f| = |1-g(1-h)| \ge 1-|g||1-h| \ge 1-c/2 \cdot 1/6c =$ $1 - \frac{1}{12} = \frac{11}{12}$, and on X: $|f| \le 1 + |g||1 - h| \le 1 + c/2 \cdot 2 = 1 + c$. Let F = f - G(1 - h). Certainly, F is in A and $F = f = \overline{b}$ on

s. Hence on W we have that

$$F| \ge |f| - |G||1 - h|$$

 $\ge 11/12 - c/2 \cdot 1/6c = 5/6$

and

$$egin{array}{ll} |F| &\geq |G| |1-h| - |f| \ &\geq (11/6+c)(1/\delta) \cdot \delta - (1+c) \ &= 11/6+c - 1 - c = 5/6 \ \ ext{ on } \ X ackslash W \,. \end{array}$$

Thus $F \in A \cap C(X)^{-1}$. This ends the proof of the theorem.

Proof of Theorem 3.1. Without loss of generality we can assume that |u| = 1 on X. It is easy to see that $A_s = A + J$, where $J = \{f \in C(X): f(s) = 0\}$. Thus, by Theorem A, we have that A_s is a Douglas algebra. From the inequality, dist $(u, A_s) < 1$, we have $||u - g\bar{b}||_{\infty} < 1$, for some g in A and some inner function b which is invertible in A_s . Consequently, $\operatorname{Re} \bar{u}\bar{b}g \ge \delta_1 > 0$, for some positive number δ_1 (Re f denotes the real part of f). By Theorem 3.2, there exists F in $A \cap C(X)^{-1}$ such that $F = \bar{b}$ on s. Since $|F| \ge \delta_2 > 0$, for some positive number δ_2 , we have $\operatorname{Re} \bar{u}\bar{b}\bar{F}/|F|Fg = |F| \operatorname{Re} \bar{u}\bar{b}g \ge \delta_1 \delta_2 > 0$. Thus there exists a positive real number R > 0 such that $||R - \bar{u}\bar{b}\bar{F}/|F|Fg||_{\infty} < R$. Hence $||1 - \bar{u}\bar{b}\bar{F}/|F|Fg/R||_{\infty} < 1$. Set $\tilde{u} = ubF/|F|$; then $|\tilde{u}| = 1$, $\tilde{u} = u$ on s, and the last inequality shows that dist $(\tilde{u}, A) < 1$. This ends the proof of the theorem.

The following corollary is a generalization of Theorem 3.2.

COROLLARY 3.3. If s is a weak peak set for A and f in C(X) such that $f|_s$ is invertible in $A|_s$, then there exists G in $A \cap C(X)^{-1}$ such that G = f on s.

Proof. The hypothesis that $f|_s$ is invertible in $A|_s$ shows that $f(x) \neq 0$ for all $x \in s$. Let W be a clopen set of X such that $f(x) \neq 0$ for all x in W. The function $f\chi_w + 1 - \chi_w \in C(X)^{-1}$, so we can write it in the form vg, where $v \in C(X)$, |v| = 1 and $g \in A^{-1}$. [This is possible because A is strongly logmodular]. Both the functions v and \bar{v} are in A_s . By Theorem A there exists h in A and an inner function b which is invertible in A_s such that $||v - h\bar{b}||_{\infty} < 1$. Since $v\bar{b} \in A_s$ and $||1 - v\bar{b}h||_{\infty} < 1$, then by [2, p. 49] we have $v\bar{b}h = e^{u_1}$ for some u_1 in A_s . By the definition of A_s , there exists u in A such that $u = u_1$ on s. Thus $v = \bar{b}he^{-u}$ on s. By Theorem 3.2 there exists $F = \bar{b}$ on s. Set $G = Fhe^{-u}g$, then G is the required function. This completes the proof of the corollary.

ACKNOWLEDGMENT. I would like to thank D. Luecking for a helpful discussion, and referee for helpful comments.

References

1. S. Axler, Subalgebras of L^{∞} , Thesis, University of California at Berkeley, 1975.

^{2.} A. Browder, Introduction to Function Algebras, W. A. Benjamin, Inc., N. Y., 1969.

^{3.} K. Clancey and J. Gosselin, On the local theory of Toeplitz operators, Illinois J. Math., 22 (1978), 449-458.

^{4.} T. W. Gamelin, *Uniform Algebras*, Prentice-Hall series in modern analysis, Prentice Hall, Inc., N. Y., 1969.

5. K. Hoffman, Analytic functions and logmodular algebras, Acta Math., 108 (1962), 271-317.

6. K. Hoffman and H. Rossi, *Extensions of positive weak*-continuous functionals*, Duke Math. J., (1967), **34** 453-466.

7. R. Younis, Extension results in the Hardy space associated with a logmodular algebra, J. Functional analysis, **39** (1980), 16-22.

Received May 5, 1980.

The University of Wisconsin-Milwaukee Milwaukee, WI 53201

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, California 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR AGUS University of California Berkeley, CA 94720 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

R. FINN and J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

R. Arnes	E. F. BECKENBACH	B. H. NEUMANN	F. Wolf	K. Yoshida
----------	------------------	---------------	---------	------------

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Thkyo Japan

Pacific Journal of Mathematics Vol. 102, No. 1 January, 1982

ri
S. Agou, Degré minimum des polynômes $f(\sum_{i=0}^{m} a_i X^{p^{(i)}})$ sur les corps finis de caractéristique $p > m$
Chi Cheng Chen, On the image of the generalized Gauss map of a complete minimal surface in \mathbb{R}^4
Thomas Curtis Craven and George Leslie Csordas, On the number of real
roots of polynomials
Allan L. Edelson and Kurt Kreith, Nonlinear relationships between
oscillation and asymptotic behavior
B. Felzenszwalb and Antonio Giambruno, A commutativity theorem for
rings with derivations
Richard Elam Heisey, Manifolds modelled on the direct limit of lines
Steve J. Kaplan. Twisting to algebraically slice knots
Jeffrey C. Lagarias. Best simultaneous Diophantine approximations. II.
Behavior of consecutive best approximations
 Behavior of consecutive best approximations
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>PI</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209
 Behavior of consecutive best approximations
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of IIGL(n _l) 221 Localia Wilson Mangerma infinitely determined with respect to right left
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of $\Pi GL(n_i)$ 221 Leslie Wilson, Mapgerms infinitely determined with respect to right-left 225
Behavior of consecutive best approximations 61 Masahiko Miyamoto, An affirmative answer to Glauberman's conjecture 89 Thomas Bourque Muenzenberger, Raymond Earl Smithson and L. E. Ward, Characterizations of arboroids and dendritic spaces 107 William Leslie Pardon, The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions 123 Bruce Eli Sagan, Bijective proofs of certain vector partition identities 171 Kichi-Suke Saito, Automorphisms and nonselfadjoint crossed products 179 John Joseph Sarraille, Module finiteness of low-dimensional <i>P1</i> rings 189 Gary Roy Spoar, Differentiable curves of cyclic order four 209 William Charles Waterhouse, Automorphisms of quotients of $\Pi GL(n_i)$ 221 Leslie Wilson, Mapgerms infinitely determined with respect to right-left equivalence 235
 Behavior of consecutive best approximations