Pacific Journal of

Mathematics

p-ADIC ANALOG OF HEINE’S HYPERGEOMETRIC ¢-SERIES

NEAL I. KOBLITZ




PACIFIC JOURNAL OF MATHEMATICS
Vol. 102, No. 2, 1982

p-ADIC ANALOG OF HEINE’S HYPERGEOMETRIC
g-SERIES

NEAL KoBLITZ

Generalized complex analytic special functions of various
types, depending on a parameter 0<¢<1, have recently been
studied by R. Askey, G. E. Andrews and others [1-3]. The
purpose of this paper is to discuss a p-adic analytic con-
struction which is analogous to the classical theory of E.
Heine’s [7] g-extension of the hypergeometric function.

In the theory of hypergeometric series one denotes (), =
ala +1)--- (@ + k—1). The corresponding notation for g-series is
(;0), =1 —a)l —aq)---(L —ag*?). This “extends” the ordinary
(a), in the sense that for a=gq* b=¢’ we have lim, ., (a; 9),/(b; @), =

In the complex analytic theory of ¢-extensions one takes 0 <
g < 1 and defines the ¢g-gamma function as

(1) @) =1 — gt (qx;_q)m
(@ D)

and the g-hypergeometric functions as

a CECIEN') A

! " - (a; @) =+ (Cm; Q)5 i (i1 1= j

B @)= 2 ! (L —g)iqri iy
? (bl- .-b, > =0(g; @)3(bs; @) - -+ (ba; ); )

The functions [I', and ,¢, satisfy many relations which generalize
well-known identities for the ordinary gamma and hypergeometric
funections, and as ¢ — 1~ we have ' (x) — I'(x) and

a, - a, ls R
m¢n ; 4, f,U)——)an y X if a; :qai! bz :qﬁi -
b B Ba

These g-identities, many of which go back to Huler, Jacobi, Heine,
Rogers, and Ramanujan, have applications to combinatorics, Lie
algebras, orthogonal polynomials, modular functions, and other areas.

We shall be especially interested in one identity, the following
variant of Heine’s transformation rule for .4, [8]:

(2) 2651(“ b. q C/ax> _ (cla; @)le/2; @o 2¢l<a b/x; q c/a> .
e 7 (¢; @)(c/aw; @).. v

MR n

If we set = b, then the ,4, on the right becomes 1; and if we set
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a=q% b=4q" ¢c=q", and use (1) we obtain

b

¢ IO —a— )
3 294/ y 4, et = £ g
(8) ¢<(IT v ) Fq(7 - a)rq(7 - B)

which extends the well-known relation ,F(a, 8, 7;1) = I’'(M (7 —a—
AT — a)[(v — ).

In the p-adic analytic theory we work in the p-adic completion
2, of the algebraic closure of Q,, and we take ¢ =1+1¢, tef,
[t], < 1. We shall often assume that [t[, < p™/®, in which case
¢" = exp (v log q) is well-defined for ve®,, |v|, < p™* /¢, ie.,
on a disc strictly larger than the unit disc. In any case ¢ is
well-defined for v e Z, whenever [t|, < 1.

In defining the p-adic analog of 2¢1<acb; q, x), we shall take a,
b, c€ 2, and suppose that a =¢% b=¢’ with —a=a,+ap+---€Z,
-8 =by+ bp+--- € Z,. We shall usually further suppose that ¢ is
not in the compact set g%, and let ¢ = dist (¢, ¢%») = min;.;(leg’ —1],) > 0.

In this paper we shall prove identities analogous to (2) and (3)
for our p-adic ,4,. In particular, we relate the p-adic hypergeometric
g-series to the g-extension I',, [10] of Y. Morita’s p-adic gamma
funetion I", [12] and also to J. Diamond’s p-adic log gamma function
G, [4]. Then, in the special case ¢ = ¢, when p-adic convergence
of the series for ,4, becomes subtler, we introduce a g¢-extension of
Dwork’s modified hypergeometric function [6], prove convergence
and a formula analogous to (8) under certain conditions, and for-
mulate a conjecture on the validity of these results without the
“nonsupersingularity” conditions.

1. In [10] we defined a p-adic analog of I, by setting

(4) Iy =lm(~1) [ 1=¢

n—e i<mpri 1 — ¢

I, , satisfies a functional equation, reflection formula and multipli-
cation formula analogous to the formulas satisfied by the ordinary
gamma function, and [I",, approaches Morita’s function I, [12] as
qg— 1.

We now define a p-adic g-gamma function depending on a = ¢%,
b = ¢°, and ¢ ¢ q% by setting

¢ clab ) . (e/b; @)
5 r :q) = lim 82D  begh, cgq” .
) D, oy s 1) = e abern s

THEOREM 1. The limit (5) exists, is symmetric in a, b, and is
continuous in a, b, c.
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Proof. Let A, = (¢/b; q)./(¢; @).. Then

A, = lim (cq™; ¢),/(¢; @) = lim. (€5 )nim/ (65 D)nle; Dn 5
which shows that the definition (5) is symmetric in a, . Next,

A,V = lim (eq™"™; Qv = lim L—_Q(LLM 3
A, mes (ogh Qv memd ngi<iem 1 — ogf

Since ¢q’ is bounded away from 1 and ¢**" —1 as N — o, the last
product approaches 1 as N — o uniformly in m and %. This shows
existence of the limit and its continuity as a function of a, b, c.

It will also be useful to have a version of (5) which makes
sense when ceq?”. Now suppose e = dist (¢, ¢%) < |t]|, (where we
allow ¢ = 0, i.e.,, ceg?). Since ¢ < |t|,, there is a unique 0= j,<p
such that |ego — 1|, < |t|,. For a=¢q¢% —a=a,+ap+ ---, We
define the modified symbol ( )¥ by (¢/a; 9)F = II (1 — (¢/a)q?), where
the product is over 0 7 <k, Y a, + 5 — j,.. We then define

b . V¥
(6) r:(c clab, q) —tim LAY DL e g, dist (6, 4%) < 2], -
c/a cfb woa (65 Q)

THEOREM 2. The limit (6) exists, is symmetric in a, b, and s
continuous in a,b,c. If a =¢q% b= q° ¢ = q" €q?, then

(7) ['*< ¢ clab ) _ T, —a— B)
"\efa efb’ T, —a)l,, (v — )

’

where I', , s the function (4). Now suppose ¢ & ¢%» but still |cqio—1],<
[t],. Set a' = gq“a, b = g"b, ¢’ = ¢oc, where —oa =a,+ ap+ ---,

—B=0b,+bp+---. For simplicity suppose j, = @, Jo = b,. Then
r < ¢ clab )
(8) F*<c e >: L. deep T
"\e/a ¢fb’ 1 &(a, b) r < ¢ cla'b q”)
\e'la’ b’

where

e b)_{l if @+ b = Jo;
T L=t if a4 by > g, .

Proof. Existence, symmetry and continuity are proved just as
in Theorem 1. By continuity, it suffices to prove (7) when a= —mn,
B=—m and ¥ =1. Let [[; denote IJ;,;. Then the left side of
(T) is
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I -
limsji<i+min
I Q-4
l<i<i+n
by (6), and the right side is (see (4))
I'a—-q¢) II" O —¢) I aO-4)
g<i I<l+m+n — l+mzji<l+m+n

'@ —¢) II' @ — ¢9) II' @ —¢)
i<l+n i<t+m lsji<l+n

To prove (8), by continuity it suffices to take —a =n = a, +
pn', —B=m = b, + pm’. The left side equals

AL, (=™ r p<c ola, Q>
oot I—dy _ cla c/b
IIT @ — eq?) (1 — 'g?*t ™)
0s5<n 0sj<n’ if ay+bg<dp
Pri—jg 0S5 <n!+1 if ag+by>dg
( II @ —c'q”)
0<g<n’

<c clab )
r, ) q
- cla c¢fb
¢ ca't’
b [‘ D74
&(a, b) p<c,/a, o ,q)

(Note: if we had j, < a, or j, < b,, then ¢(a, b) would be a slightly
more complicated expression; in any case, we shall later be interested
in ¢ for which j,=p —1.)

This completes the proof of Theorem 2.

2. We now proceed to p-adic hypergeometric g-series. Let
g=1-+1t a=q% b= q° be as before. Suppose c¢qg?. We define

a b = 5 (@ 05 @i
2¢1”’< 9 90) "g" (¢; Oula; Q)kx

whenever the sum converges.
LEMMA. If |t], < p7™V/*™, then

(a; @)u(d; Q) "

c 0 as bk— o,
(¢; Dulg; Os

uniformly in a,b.

Proof. Since for any n =1 we have
1 — gnti ‘Kn—l-k——l)
» k

<5<kl — qv“'1

- ntg
oZi<k § + 1

=1,

? p
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it follows (passing to the limit as » — a) that |{(a; @)./(¢; 9], = 1,
and similarly |(b; 9)./(q; @):l, = 1. Hence it suffices to show that
(q; @)c*/(e; @), — 0. If |¢l, > 1, then [(¢; q)il, = |cli, and the assertion
follows because (q;q), clearly approaches 0 as &k — o. Suppose
lel, £1. We show that (g; 9)./(¢c; @), — 0. Let ¢ = dist (¢, ¢*») > 0.

Case (i). &= |t],-
Since

ifplj+1,

1 —¢", =10+ Dtl, = ep if pli+1,

while |1 — ¢¢?|, = ¢, it follows that

—1————1311— — 0.
0Zi<k 1 — ¢q?
Case (i1). e < |t],.
Choose %, = 0 so that |1 — ¢g™], =s. We set

1

C= e N
1 — c¢?

?
?

0< g kg
and we use the fact that
|1 — cqhti|, = [1 — ¢eq™ + cq™(1 — ¢’)|, = max (¢, |1 — ¢’|,)

(here equality holds in the non-archimedean triangle inequality
because strict inequality would mean that ¢ = |1 — ¢7|,>|1—cq*"|,
contradicting the definition of ¢). Thus,

— it - -
1—g¢g . <C 1—gq : =C 1II 11— d ,
ofj<k 1 — ¢eq? l» o<ik-kyl 1 — eg*ti 1p 0<i<k—ko &
11—q71p<e

which approaches 0 as &k — . This completes the proof.

THEOREM 8. Let q=1+¢, |t], <pV* . Then 2¢1’p<acb; q,w>

converges and 18 continuous for a,beq’, céq®, |x|, = |cl,. P,
satisfies the following tramsformation rule for x € q®r:

(9) 2¢1,p<acb; g, c/d%) =TI p( ¢ ol q> 2Bip (a b{x; g, c/a>-

\efa c¢/x ; clx

In particular, for x = b this gives

10 ) (ab_ /b)—F(c c/ab.>
( ) 291,17 ¢ :cha' - pc/a C/b,q .
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Proof. Since |¢/ax|, = |¢|, for a,xecqg”, the lemma ensures
convergence and continuity of each of the series in (9). Theorem

1 ensures convergence and continuity of F,, ‘(c;’a € c%f ;q). By con-
tinuity, it suffices to prove (9) for a = ¢™, b=q¢™, z =q7, i.e., to
prove that

& (@7 @™ D g pniiyk 1 — eq't*
C = —
'§> (¢ e @ ) odk<n 1 — cg®

() (@7 @)l q)
< a7 Q@™ Qs n\k
“ & T (odh 0T D e

But these are finite sums and finite products, and the formal identity
in Q(q, ¢) follows from Heine’s classical identity (2), which becomes
the same as (11) when we set a = ¢, .b =¢™, ¢ = q~*. (Of course,
this identity is initially over the complex numbers, but it gives an
identity of elements of Q(g, ¢).) This completes the proof.

REMARK. If a =¢% b=4¢% a,B€Z, and ¢c =q", V¢ Z,, then it
is easy to verify that

¢ clab _ o
(c/a o/b ,q)—Gp(7>+Gp(7 a—B)

- G,,(’Y —a) — Gp(7 — B>

lim log, I',

q-1

where G,: 2,\Z, — 2, is J. Diamond’s p-adic log gamma function [3].
As a corollary of Theorem 3, we then obtain the following relation
of Diamond [5]:

Ing Fp(a’ B’ 'Y; 1) = Gp(7) + Gp(7 —a— B) - Gp(7 - C()
- G,(v—pB), 7e2,\Z,, a, BeZ, .
Here
) — 2 (@)i(B); .
Fp(“y By 73 .’E) jz;;o “(7)]‘7' X’ .

3. We now want to extend the definition of ,4,, to certain
a, b, ¢ with ¢ €¢”, in particular with ¢ = ¢q. The case ¢ = g will be
the g-extension of Dwork’s [6] p-adic analytic continuation O(«a, g; x)
of the series

Fp(a, B, 1; {,l}) = Z“’ Mwl .
=0 gl*
Suppose that a = q, b= ¢, —a=a +ap+ - eZp’ -8 =

by +bp + - €Z, [cg? — 1], <|tl,, 0= 7o <p, and o’ = ¢%a, b’ =
q"b, ¢’ = g%¢c. Note that in the definition that follows we make a
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shift in argument x> cx/ab so that Theorem 8 involves evaluation
at 2 = 1 rather than at x = c¢/ab.

DEFINITION.

%( ¢ " x) 051%” (e; 0)4(g; 9); <ab>

12) = lim

el ar v
Ox ¢ ; a7, x?
if the limit exists.
Note that if ¢¢¢% and |z], < 1, then the limit (12) exists, and

. (@b ab ez a' b e
(13) 2¢1,p< ¢ y 4, {Ii) = 2¢1,p( ¢ y 4, ab>/2¢1,p( ¢ » a4, a’b’) .

The above definition of .47, is a natural g-extension of Dwork’s
hypergeometric functions in [6].

ab
, Pxt1 34, X
ab ¢
2¢ffp< ; q, x)
¢

THEOREM 4. Let |t], <p™V* Y, and let Z Cq% X ¢’ X D,
where D = {¢]|c — q|, < |t],}, be the largest set on which the limit
(12) exists and is continuous in a, b, c. Then for a,b,ce P

¢ clab )
/o c/b’q ’

where 't is defined im (8) and &(a, b) is defined in Theorem 2.

(14) 2Bl (a b; 2, 1) = &(a, b)l’ﬁ(
c c

Proof. Note that j, =9 —1 for ceD. 1If a,b ceg? X ¢ X
(D\ ¢%), then we use (13) with # = 1 together with (10) and (8) to
obtain (14). Since ¢% x ¢%» x (D\q¢%)C &7 is dense, the theorem
follows.

We now look more closely at the case ¢ = q.

THEOREM 5 (Dwork [6]). Let

FoX) = 3 BOGX e Q,[(X]), 120,

and let
(X)) = O(Z NB‘“(j)Xj .

Suppose that
(1) B®(0) =1, i =0;
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(2) [BYD/B“(ioDl, £1, 4,5 = 0;

(3) BO(G+1p")/B([j/p] +1p"") = B¥(5)/B“*([j/o]) mod p~,
1, 3,1 = 0.
Further suppose that the B9 () depend continuously on parameters
a, -+, a6, €R27 and satisfy (1)-8) for a, -+, a,€SCQr. Let RC
S x {xeR,||z], <1} be the subset on which

(15) |FO@")|, =1 for all i,k =0
(“nonsupersingularity condition”). Then

= lim F3h@)
f(z) = lim F )

extsts and is continuous on K.

REMARKS. 1. If, asin our case below, we have |B'(j) — [,[, <1
for some 01, < p, i.e., if the B"”(j) have residue classes in the
prime field, then (15) need only be verified for & = 0.

2. This formulation of Theorem 5 is somewhat different from
Dwork’s. Dwork further assumes that for some fixed r: B%*(j) =
B®(4) for all 4, . In that case (15) is only a finite set of conditions,
the set of x satisfying (15) (the “nonsupersingular” z) is quasi-con-
nected, and Dwork shows that f(x) is analytic there. We do not
want the periodicity condition, but we do want the continuous
dependence on parameters. An examination of Dwork’s proof in [6]
shows that the same proof applies without any changes at all under
our assumptions in Theorem 5.

THEOREM 6. Suppose that |g — 1], < p™'*™V, and set

O — RO cmy — a5 @)i(b; q); q\
BU@) = B0, b = LEDIED ()
fora=q¢, b=¢, —a=a,+ap+---€Z,, —B=b+bp+ ---¢€
Z,. Define a’ and B by —a =a;+ a0+ -+, —BY =b,+
by + -+, and let a® = ¢”’a'?, b =¢"*". Let BY(j)=B"(j;a",
b q*"). Then BY(j) satisfies conditions (1)-(8) of Theorem 5.
Suppose |z — 1|, < 1. Then condition (15) holds if and only if a,+
b, < p for all i, i.e., if and only if there is no carrying when —o
and —B are added.

Proof. Condition (1) is trivial. It suffices to prove conditions
(2) and (3) for ¢ = 0; then the conditions for ¢ will follow by replac-
ing a, b, ¢ by a®, b?, ¢*’. Setting j = j, + pj, 0= j, < p, so that
[7/p] = j,, we have
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(a;q); _ (@) if 5, < ap;

(a'; ¢");, (a; FA — a’q?y if j, > ay,
where we recall that

(a;0f = I (@ —ag".

0<k <], Dth—aq

Since |g/ab|, =1 and |1 — ag*|, = |k + «a], - |t|,, it follows that

1 if .7.0 = Ay, .7'0 = bo ’
. . |pj, + pa'l, if @, < go = b ;
BOGYBY (), =1 " . .
i @/ (])ip ijl + pﬁ"p if b, < J< a;

|93y + pa'l, - 1pg, + PS8, iG> a, >0
This proves (2).

To prove (3) it clearly suffices to take I = 1. For simplicity we
further assume that 7, < a, 7, = b,; the other cases are treated
similarly. Then, since both sides of (8) are p-adic units, it suffices
to prove that

(16) (@; QFov(b; OFirv(q; OF | (@0
(a; Q7 b; QF(g; Oftr (ab)””

By continuity, we may suppose that « = ¢ ™, b = ¢ ™. Now

1 — k
(@ Q2@ F sered b & T 9D)
(a; F(q; O o 11 1 -

F<k<g+pN,ptk+1

B L@L)
N j»nggj,m < L— g /o

But 1—¢"/1—¢"**") = 1mod p” if pt k. Since also (a'b")*""/(ab)*”
is of the form (¢*)*” for some p-adic integer z (namely, z = —a —
B+ a + 3, it follows that the left side of (16) is a product of
terms which are all congruent to 1 mod p¥, as desired.

Finally, suppose |x — 1|, <1, and let P be the maximal ideal
(open unit dise) in £2,. We have

= 1mod p" .

O — @?; g6 ¢, (@ Y
F1 (CU) o;;zw ((]Pi; qpiﬁ \a(z)bm )
-5 @6 g p
7!

0=j5<p

_ a;\ /b \
-2 (e
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Hence |F{%(x)|, = 1 if and only if a, + b, < .

THEOREM 7. Suppose that the conditions of Theorem 6 hold with
le — 1|, <1 and a;, + b, <p for all i. Then the limit (12) exists
and

ab qg qlab
1m 2¢1*:p( /N 1) :F;:( / ;Q> ’
q gl q/b

where I'} is defined in (6).

Proof. Existence and continuity in @, b of the left side follow
from Theorems 5 and 6. It then suffices to verify (17) for a = ¢,
b =g¢g™. In that case both sides involve finite sums and products,
and the proof is very similar to that of Theorems 2 and 3.

REMARK. Theorem 7 is a g-extension of Theorem 2 in [11].

Conjecture. Theorem T holds without the condition that a; +
b, <o for all 1. If a, + b, = p, then the factor &(a,b) defined in
Theorem 2 must be inserted on the right. If a + B 1s a nonpositive
integer, we require that both a and B be mnonpositive integers
(otherwise the limit (12) would give 0/0).

REMARKS. 1. The proof of Theorem 7 shows that the conjecture
holds whenever one of @ or 8 is a nonpositive integer (and the
other can be any p-adic integer).

2. Using Diamond’s method in [5], one can prove the conjecture
under a fairly weak assumption: that the p-adic absolute value of

4 ’
the partial sums |¢N<aqpb; q°, 1)1 grows strictly slower than p”.

In addition, Theorem 7 and the pconjecture can be generalized to

B <acb ; Q, 1) for ¢ # q. In our context, Diamond’s method involves
letting z ¢ ¢%» approach ¢ cg¢? and estimating the difference between
the ratio on the right in (12) (with # = 1) and the same ratio with

¢ replaced by z.
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