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It is proved that if a Banach space admits a nontrivial
uniformly continuously differentiable function with bounded
support then it is superreflexive. Several applications to
approximation theory and existence of solutions to differ-
ential equations are discussed.

A Banach space E is said to be U'-mooth if there exists a
uniformly continuously differentiable real-valued function on E with
bounded support. It is of considerable importance to know whether
a given Banach space £ is U'-smooth since certain real-valued
functions on E cannot be approximated by smoother functions if F
fails to be U'-smooth. Results of this type are of considerable
interest in global analysis on infinite dimensional manifolds, see
Eells [6], and Lang [11]. Motivated by these considerations and
the connections of U'-smoothness with Banach spaces with norms
of class C'-away from 0, with Lipschitzian derivatives, Wells [16],
Moulis [12], Heble [8], and Aron [1], among others, discussed this
problem and related concepts. In [16], it is shown that the Banach
space C, fails to be U'-smooth, while in [1] it is proved that the
Banach spaces C(X), K an infinite compact Housdorff space are not
U'-smooth. The primary purpose of this paper is to completely
characterize Banach spaces which are U'-smooth in terms of the
geometry of the space. The main result stated in the Theorem 3
here, implies that the class of Banach spaces which are not U*-smooth
is very extensive modulo isomorphism, includes a class of reflexive
spaces, and the results in [1] and [16] are deduced as corollaries of
the main theorem.

The plan of the paper is as follows. In §1 few known results
and definitions relevant to the discussion here are recalled. In §2
the main results are established. Applications to approximation
theory, differential equations on a Banach space, and related results
are discussed in §3.

1. In this paper, unless otherwise specified, the same symbol
Il || is used for the norms of various Banach spaces that enter the
discussion as this does not entail any confussion. If E is a Banach
space, the open ball, center 0, and radius » is denoted by U.(0).
The region {z | < ||2|| < #} in E is denoted by R(\, 1), for 0 < » < £.
If U is any open set, the boundary of U is denoted by oU. The

487



488 KONDAGUNTA SUNDARESAN

support of a vector-valued function f is the set {x|f(x) + 0}. Thus
in this paper if f is a continuous function defined on a topological
space X into a Banach spaces H, then its support is an open subset
of X. If E, F are Banach space, then the Banach space of continu-
ous linear operators on E into F with the supremum norm, is
denoted by L(E, F').

If E, F are Banach spaces F is said to be finitely represented
in F, in symbols F < F, if for each finite dimensional subspace X
of K, and positive number ¢, there is a subspace Y of F, depending
on X and ¢, such that there is an isomorphism T on X onto Y with
HT| |7 £1+e. A Banach space F is said to be superreflexive
if B« F implies F is reflexive. For fundamental work on super-
reflexive spaces see James [10], and for a comprehensive account of
these spaces the interested reader is referred to the recent monograph
of Van Dulst [15] on the subject.

An useful concept in the theory of finite representation is the
concept of an ultrapower of a normed linear space. Let S be an
infinite set and I be a nontrivial (free) ultrafilter on S. If f is a
bounded real-valued function on S let lim, f(s) = sup[n|{te S,
fit) >a}er'l. Nowif (K, || |) is a normed linear space, and f is a
bounded E-valued function on S, let |f| = lim, ||f(s)]|. Itis verified
that | | is a seminorm on the vector space V of bounded E-valued
functions on S, and the quotient space of V modulo the kernel of
| | equipped with the quotient norm is known as the ultrapower of
E associated with the pair (S, I"), and is denoted here by E(S, I').
It is known that if F is a Banach space, then E(S, I") is a Banach
space, and F € F if and only if E is isometric with a subspace of
an ultrapower F(S, ') of F. For an account of ultrapowers, see
Stern [14].

A Banach space (E, || |) is said to be smooth if for all = = 0,
re K

(1) lim ||x+ty1’_HxH:Gx(y)
t

t—0

exists for all ye E. If the limit in (1) exists at a x % 0, for all
y€ E,then it is known that G,e E*, the dual of E, and ||G.| = 1.
A smooth Banach space E is said to be uniformly smooth if the
limit in (1) is attained uniformly for all z, v, ||z||=1=||y]|. It
follows from the homogenity of the norm that a Banach space E is
uniformly smooth if and only if the norm is uniformly continuously
differentiable on regions R(), f), in particular on bounded sets at a
positive distance from the origin. The following theorem of James
and Enflo is useful in the discussion to follow.
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THEOREM 1. [James and Enflo]. A Banachk space E is super-
reflexive iof and only if E is isomorvhic with an uniformly smooth
Banach space.

For a formal proof, see [15]. See also in this connection [10],
and Enflo [7].

Before concluding this section, the interested reader is referred
to Dieudonné [5], Bourbaki [4] and [11], for various results in
differential calculus in Banach spaces of which free use is made
here.

2. In this section, the main results of the investigation are
presented. The main result stated in Theorem 4 here completely
characterizes the class of Banach spaces which are U'-smooth in
terms of the geometry of the space. For convenience the term
“uniformly continuously differentiable” is often abbreviated as U.C.D.
A few elementary lemmas essential in the subsequent discussion are
presented to start with.

LeEMMA 1. Let E be a Banach space and f: E— R be an uniform-
ly continuously differentiable function, and let Df be the differential
of f. Then

(@) if U is a bounded subset of E, then the restriction f|U is
Lipschitzian i.e., there is a positive number M such that for x, y € U,
[f@) — f(y)] = Mlle — |,

(b) if the support of f is bounded, then [f 1is globally
Lipschitzian, in particular f is uniformly continuous.

Proof. (a) Let U,0) be an open ball such that U.(0)DU.
Since f is U.C.D. and U,(0) is bounded, sup,ey,« || Df(®)]| < . Thus
if M is the preceeding supremum the mean value theorem implies
that |f(z) — fly)| = M|z — y|| for z, ye U,(0).

(b) is a consequence of (a).

LEMMA 2. If Eis an U'-smooth Banach space and N\ is a posi-
tive real number, then there is an uniformly continuously differenti-
able real-valued function f on E with f(0) =1, and flx) =0 if
2] = .

Proof. Since E is U*-smooth there is an U.C.D. real-valued
function ¢ such that g #+ 0, and the support of ¢, say U, is a
bounded subset of E. Let ac U, and a be a positive number such
that a(U — a) c U,(0). Define flx) = (1/g(a))g(x/a + a). It is verified
that the support of fc U,(0), and that f is an U.C.D. real-valued
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function with f(0) = 1.

Lemma 3. If fand g are two uniformly continuously differenti-
able real-valued functions on a Banach space H, and the support of
Jor g is bounded, then the product function fg is an uniformly
continuounsly differentiable function with bounded support.

Proof. For definiteness let the support of f, say U, be bounded.
Let 4 be any positive number and V = {&|d(x, U) < 4} where U is
the closure of U, and d(x, U) is the distance of x# from U. Then
V is a bounded open set and Uc V. From Lemma 1 it sollows that
there is a constant M > 0 such that

(+)  Max {sup|fl@)], sup |¢(e)}, sup | Df () |, sup | Dg(@)|l} = M .

Now if ¢ > 0, since Df, Dg, and the restrictions f|V, ¢|V are uni-
formly continuous, there is a & > 0 such that 0 < 6 < 1/24, and if
lz —yl| <d then [ Dfix)— DAyl <& [Dgla)— Dg(y)|| <e for
zv,ye B, and |flz) — fly)| <&, |gl@) —gly)|<e if z,yeV. Now
noting that

1 D(fg)(@) — D(fg)y) | = || Df@) || | 9(@) — g(y)| + | fy) ||| Dg(x) — Dg(y) ||
+ || Dg(x) ||| fle)— S| + g || Df(w) — Dfy) || »

D(fg)(x) =0 for we U, ||x —y||=4>6 if e U and y¢ V, and ap-
plying (*) it is verified from the choice of 4, that if ||z — y|| <o
then ||D(fg)(x) — D(f9)(y)|| £ 4Me. Hence it follows that fg is an
U.C.D. function with bounded support.

Levma 4. If H, F, G are three Banach spaces, f: E— F, and
g F—>G are two untformly continuously differentiable functions
such that the derivatives Df, Dg are bounded mappings on K —
LB, F), and on F— L(F, &) respectively then their composite gof:
E— G is uniformly continuously differentiable.

Proof. The lemma follows by noting that

1D(ge fi@) — Dlge f)w) s = | Dg(f) . | DAw) — Df(y) ||
+ 1 Df) [ | Dg(f (@) — Dg(f ().
where || |, ¢=1,2,3 are respectively the norms in the spaces

L(E F), L(F,G), and L(E, ), and the fact that f is uniformly
continuous since Df is bounded.

LEMMA 5. If E is ¢ uniformly convex and uniformly smooth
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Banach space, then the restrictions of the wuniformly continuous
differentiable functions on E to any closed ball U.(0) is dense in the
space of uniformly continuously differentiable functions on U,(0)
with the uniform topology.

For a proof of this lemma, see Nemirovskii and Seminov [13].

REMARK 1. Before passing to the next lemma it is noted that
if K is uniformly smooth space, so that the norm of E is uniformly
continuously differentiable on regions R(\, t), it follows by composing
the norm of E with suitable C'-funection on E — R and using Lemma
4 that E is U'-smooth. Now applying Lemmas 2 and 4, and using
the fact that the norm of E is U.C.D. on R(», ), it is verified that
if £ is uniformly smooth space, and », ¢ are two positive numbers,
then there is an U.C.D. function f: £— R such that, 0 f<1,
S =1 on U0, and f vanishes outside U, .(0).

The next lemma is crucial in proving the Theorem 6 in this
paper. The lemma follows from the preceeding remark, and Lemma
5. A proof of the lemma is sketched. Before proceeding to the
lemma it is noted that a super-reflexive Banach space could be
equipped with an equivalent norm which is uniformly convex, and
uniformly smooth, [7].

LeMMA 6. If G is a nonempty open subset of a super-reflexive
space E, then there is an U.C.D. funection fr E— R, 0= £ <1, with
support of f = G.

Proof. In view of what is noted in the preceeding paragraph
in proving the lemma, it can be assumed that E is as in the lemma 5.

As a primary case let G be an open bounded set, and C = F ~ G,
and g: F— R be the function g(x) = d(x, C), where d(x, C) is the
distance of z from C. Let >0 be such that GcGcU,,®0).
Consider the restriction of the uniformly continuous funection ¢ to
the ball U,(0). By Lemma 5, there are U.C.D. functions f, on K — R,
for integers # =1, such that sup,cy, |fu(2x) — g@)| < 1/n. Now
using Remark 1, there is an U.C.D. function ¢: E— R, ¢ =1 on
U,»0), 6= 0 outside U,(0). Let 2, =4¢-f,. Let a, be C'-functions
on R — R, with support a, = J1/n, o[, such that «,() =0 if ¢ < 1/n,
a,t)y=1if t is in [2/n, [, and 0 £ a, = 1, for integers » = 1. Let
g. = a,(h,). Now if g=>,..,1/2"¢g,, g is an U.C.D. function on
E — R, with support of g =G, and 0 < g £1, completing a proof
of Lemma 6 if G is bounded.

Now if G is an arbitrary open set then G = U,..G,, Where
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G,=U0NG, n=1. Sinece each G, is a bounded open set, from
what has been proved above, there is an U.C.D. function 0 £ f, <1,
with support f, =G,. Let f=>)...1/2"f,. Then f has all the
desired properties.

The next two results show that U' smoothness is finitely in-
herited.

THEOREM 2. If E is U'-smooth, then every ultrapower E(S,I")
of E is U'-smooth.

Proof. Let the norms of E, and E(S, I') be respectively | ||,
and ||| ||| Since E is U’-smooth there is an U.C.D. function f,
f+#0, on E— R with its support in the unit ball of E, see Lemma
2. Let Zc H(S, I'), and {x(s)},.s be a representative of & Since
f is a bounded function lim, f(x(s)) exists. Let {y(s)},.s be another
representative of #. Now f is uniformly continuous by Lemma 1.
Hence if ¢ >0 there is a 6 >0 such that |z —y| <J implies
[f(x) — f)| <e. Further since {x(s)},es» {¥(8)};es represent the
same equivalence class Ze E{S, I'}, there is a J;eI" such that
la(s) — y(s)|| < & if seJ,. Hence |f(x(s)) — f(y(s))| < e for all seJ,.
Thus lim; f{x(s)) = lim, f(y(s)). Hence if f*(&) = lim, f(x(s)), f* is a
real-valued function on FE(S, I'). Since the support of f is in the
unit ball of E, f*(&) # 0 implies that there is a set JeI" such that
le(s)|] £ 1 for all seJ. Thus |||Z]|| 1. Hence the support of f*
is in the unit ball of E(S, I').

Since Df: E — E* is an uniformly continuous mapping with bound-
ed range, by proceeding as in the proceeding paragraph it is verified
that if % §e E(S, I'), and {x(s)},esy {¥(s)}.es are representatives of
%, ¥ respectively, then lim, Df(x(s))(y(s)) is independent of the
representatives {x(s)}, {(¥(s))} of & and ¥. For %, §e E(S, ") define
(%) = lim; Df(x(s))(y(s)). It is verified that I3 is a continuous linear
functional on E(S, I'), since Df is bounded. Now if ke E(S, I'), and
{h()},es€ ki, then

FX@E + k) = lim; fla(s) + h(s))
= lim, { f(x(s)) + Df(x())(f(8)) + Ouia(R(s))},

where it is noted that, since f is an U.C.D. function that given
e >0, there is a 6 > 0 such that [6,(y)| = ¢eljy|| if ||y] £6 for all
xe E. Let now |||k]]] £8. Then there is a set Je I such that for
all sed, |0,,(h(s))| <¢lli(s)]. Hence limr|6,u(h(s)| < elllh]l] if
l|%]|| £ 6 and f* is differentiable at # with Df*@) = I;.

Since Df is an uniformly continuous map on E — E*, it is
verified that the map Df*: E(S, I') — (E(S, I'))* is uniformly continu-



GEOMETRY AND NONLINEAR ANALYSIS IN BANACH SPACES 493

ous once again working with suitable members of I' as has been
done in the preceeding parts of the proof. Thus E(S, ') is U'-
smooth.

COROLLARY 1. If E 4is U'-smooth, and F < E, then F is U'-
smooth.

Proof. The corollary follows from the preceeding theorem
together with the fact that F € F if and only if F is isometric
with a subspace of some ultrapower E(S, I') of E.

REMARK 2. Since a superreflexive Banach space is isomorphic
with an uniformly smooth Banach space, and U'-smoothness is
invariant under isomorphisms it follows that if a Banach space E
is superreflexive, then it is U'-smooth.

THEOREM 3. If E ¢s an U'-smooth Banach space, then it is
reflexive.

Proof. Let 0 < 6 < 1. Lemma 2 assures that there is an U.C.D.
real-valued function f on FE such that f(0) =1, and flx) =0 if
lz|| = 6/4. Since fis U.C.D. if 0 < ¢ < 1, there is a positive integer
M such that if he E, ||h]| < 1/M, then

(A) |fl@ + h) — f(z) — Dfl@)(h)| = €|l -

If possible let E be nonreflexive. Then by a theorem of James,
see Theorem 7 in [9], it follows that there is a set X containing
the set W of positive integers, and a subspace L of the Banach
space B(X) of bounded real-valued functions on X with the supremum
norm, isometric with E, admitting a sequence {z,},»,, such that for
n=1

2,(1) =86, 15150, e W,

2,0)=0, i>n, 1eW,
and

l2,)| =1 for teX~W.

Let x,, = 1/22,, ,, = —1/4z, for n = 1, and =,,, = 3/4z, — 1/4z,,, if
n=1, k=1. Clearly ||z,,.|| =1 for all the pairs of integers (u, k)
for which «, , is defined. Consider the polynomial path Pc L defined
by

oM —1
P = LJO (9020 a5 Xov_i 1,041
i
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where M is the positive integer chosen to satisfy the inequality (A)
in the preceeding paragraph. Consider the derivative Df(0) of f at
0. By our choice of x, ;, Df(0)(x,x ) = 0 if and only if Df(0)(z,,.x) = 0,
and Df(0)(zx,r,) is positive (negative) if and only if Df(0)(x,.v) is
negative (positive). Since P is connected there is a £e¢ P such that
Df(0)¢) = 0. If

e [xﬂ[—io,io, xz»‘f_io—1,i0+1] ,

then
s<j>=—;~a if 1<j<2'—i—1, gjeW,
s<j>=—%e, if 2", +1=<j<2", jeW,
s(j)e[——i—&%} i j=2" i, jeW,
and

e 1.

Thus if £(4,)1/26 for some j,e W, 1 < j, < 27 (which is the case if
&gy el—0/4, 6/2[ or &(j,) = —6/4), then &(j) = —1/46 for all je W,
Jo+1=7<2¥. Now if 2¥ —¢,—1=2"", choose & = &M, otherwise
g = —¢&/M. The & thus chosen has the properties, ||& | < 1/M,
Df(0)(g,) = 0, and &(j) = 0/4AM for at least 2% values of je W,
1527,

Next consider the derivative Df(¢,). Then as before there is a
& € P such that Df(¢)(&) = 0. From the properties of & noted in the
preceeding paragraph, since &, = +&/M, the restriction of & to the
set @ = {j|1 £ 7 = 2"} c W, has range either in the set {6/2M, —6/4M}
or {—0/2M, 0/[4M} except possibly for one value of je Q. These ob-
servations imply either (i) (&, + &/M)(5) = 20/4AM or (ii) (&, —&/M)(j) =
26/4M for at least 2”* integers je@. Let & = ¢&/M or —&/M ac-
cording as (i) or (ii) is the case. Repeating this procedure inductively
it follows that there is a sequence {¢}Z, in L such that ||& || < 1/M,
Dt e)(E) = 0, Sk, &(9) = k0/AM for 1 £ k< M. From our choice
of f, M, {¢}L,, &, together with the inequality ||>%, & || = k0/4M it
follows that

M

1+ |f(28) ~ 0] s 5]7(2e) - A(Se) - pA(Sa)e

ell&ll=e<,

IA

M
>
k=1

M
>
k=1

a contradiction, completing the proof of the theorem.
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The next theorem provides the characterization of U-smooth
Banach spaces.

THEOREM 4. A Banach space E is U'-smooth +f and only +f E
18 superreflexive.

Proof. From Corollary 1, and Theorem 3 it follows that if E
is U'-smooth, and F' « E, then F is reflexive. Thus £ is super-
reflexive. The converse follows from the Remark 1.

Since the Banach spaces C,, C(K), K an infinite compact Haus-
dorff space are not superreflexive (not even reflexive) it follows
that the theorems of Wells [15] and Aron [1] follow as corollaries
from the preceeding characterization.

COROLLARY 2. If E = C,, or C(K) with K as above, then E is
not U'-smooth.

3. In this section several applications of the results in the §2
are discussed. Before proceeding to the applications of approxi-
mation theory and differential equations, a characteristic property
of uniformly continuously differentiable functions, valid when the
domain and the range are suitably chosen, is obtained.

THEOREM 5. If E is a nonsuperreflexive Banach space, and F
1s a superreflexive Bamnach space, and f: E— F is an uniformly
continuously differentiable function then for every bounded open set
UCH, f(oU) s dense wn f(U). Further of f,, [, are two uniformly
continuously differentiable maps on E— F, coinciding on oU then
fi=f, on U.

Proof. Let xe U. If possible let f(x)¢ f(0U), the closure of
f@U). Then there is a ball U, with centre at f(x) and an open set
G2 f(eU), such that U NG = @. Since F is U'-smooth, Lemma 2
assures that there is an U.C.D. real-valued function + on F' with
support in U,, and (f(x)) = 1. Let g: E— R be defined by g¢(z) =
(f(z)) if ze U, and g = 0 on the set E ~ U. Since + vanishesin a

neighborhood of f(0U), it is clear that ¢ is a C'-function. Now con-
sidering the halo V={z|d(z, U)<4} for some 4>0, and the inequality

1 Dg(y) — D) [, = | Dy (fw) |l | DAy) — D) s
+ 1DF@) |ls | Dy(A(y)) — Dyp(S(2)) |l

where || ||;; 7 =1, 2, 8 are respectively the norms in the spaces E*,
F*, and L(E, F'), and arguing as in the proof of Lemma 3 it follows
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that ¢ is an U.C.D. real-valued function on E with its support in
the bounded set U. Thus E is U'-smooth. Hence by Theorem 4,
E is superreflexive contradicting the hypothesis on E. Thus f has
the density as stated. The second part of the theorem is a direct
consequence of the first part.

The following two propositions assert that certain smooth ap-
proximations are not possible. Similar results are known in the
literature, see for example [1], however for very special cases, and
the results in [1] follow as corollaries from the propositions here.

PrROPOSITION 2. Let E, F be two Banach spaces and E be non-
superreflexive, and F be superreflexive. If v: E— F is a function
such that p(x) — 0 as ||x|| — o, then there is no nontrivial C*-func-
tion f with bounded second derivative on E — F' such that || f(x)|, =
Ip®)|l, where || |, and || |, are respectively the norms in the
spaces E and F.

Proof. Let f:E— F be a nontrivial C*function such that
lf@) |, < ||p)|l,. Let x,e F with f(x,) # 0, and R be a positive
number such that if ||z — 2,|| = R, then ||p(®)|, < 1/2]| f(x,)|;- From
Theorem 5 it follows that if U = {z|||x — «,|| < B} then f(oU) is
dense in f{U) but this contradicts the fact that ||f(@)|. = [[p@) ], =
1/2]| f(x,) ||, for e o U, completing the proof.

PROPOSITION 3. Let E, F be as in the preceeding proposition,
and p: E— F be a bounded function with p(x) — 0 as ||x]| —co. If
fis a C-function on E— F, and if f is not a C*-function there does
not exist a C*-function g on E into F' such that (a) ||f(x) — g@) |, =

o), and (b) | D*f(x) — Dg(x) || = |p(@) |, where, || || and || |,
are the norms of E and F, and | |, is the morm im the space
L(E, L(E, F)).

Proof. If possible let there be a function g: £ — F of class C*
satisfying the inequalities (a) and (b). Since f is not of class C?
f#¢. Thus it may be assumed that ||f(0) — g(0)], = a > 0. From
(a) and (b) it follows that (f — g) is a nontrivial differentiable func-
tion with a Lipschitzian derivative. Since p(x) — 0 as |[|z]|| — oo,
the inequality ||f(x) — g(x)|, = ||p®)|], contradicts the preceeding
proposition, completing the proof.

A well known theorem of Anderson and Kadec, see Bessaga and
Pelezynski [2], asserts in part that all separable Banach spaces are
homeomorphic. However the next corollary implies the nonexistence
of U.C.D. homeomorphisms between certain Banach spaces, separable
or not.
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COROLLARY 3. If E, F are Banach spaces with F superreflexive
and if there is an uniformly continuously differentiable homeomor-
phism on E into F, then E is also superreflexive.

Proof. Let f: E— F be an U.C.D. homeomorphism. If possible
let E be nonsuperreflexive. Hence E is not U'-smooth. Consider
the open balls U, = {z|||z]| < #} in E. The hypothesis on f implies
f(eU), and f(oU, are disjoint. However from Theorem 5 it is
inferred that f(0) e f(OU,) N f(0U,) since fis an U.C.D. homeomorphism,
a contradiction, completing the proof.

The preceeding results on smooth approximations have interesting
applications in the context of differential equations on Banach spaces.
In the next example the essential part in one such application is
indicated.

ExamMpLE. Consider the problem of finding solutions F for the
equation D*F(x) = a(||z||)Q(x) where F' is a real-valued function on a
Banach space E, with F(x)—0 as ||z||— =, a is a nontrivial
continuous function on R — R with its support in a compact set, @
is a bounded continuous function on K into the space of continuous
symmetric bilinear forms on FE, such that «(||z|)Q) = 0 for at
least one point x¢ K. Let K be a nonsuperreflexive Banach space. If
possible let the equation admit a solution F. Since sup,., || D*F(x)||<
oo, and |F(x)| — 0 as ||z|| — o, it follows from Proposition 2, that
F must be 0 identically. Since D*F(x) == 0 for at least one z, the
equation does not admit a solution vanishing at infinity, if E is not
a superreflexive space.

The paper is concluded with the following theorem concerning
partitions of unity and superreflexive spaces.

THEOREM 6. If E is a superreflexive Banach space, and <& is
an open covering of K, there exists a locally finite family of U.C.D.
functions which is a partition of unity subordinated to &.

The proof of Theorem 6 is completed by using Lemma 6. Once
Lemma 6 is available, by using standard techniques of point set
topology to establish locally finite partitions of unity, the proof is
completed.

The converse of Theorem 6 follows at once from Theorem 4 here.
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