Vol. 103, No. 1, 1982

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Corona problem for Riemann surfaces of Parreau-Widom type

Mitsuru Nakai

Vol. 103 (1982), No. 1, 103–109
Abstract

It is shown that there exists a hyperbolic regular Riemann surface R of Parreau-Widom type that is not dense in the maximal ideal space (R) of the Banach algebra H(R) of bounded analytic functions on R.

Mathematical Subject Classification 2000
Primary: 30F20
Secondary: 30D55, 46J15
Milestones
Received: 13 January 1981
Published: 1 November 1982
Authors
Mitsuru Nakai