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A topological property & is called a Hausdorfl extension
property if each Hausdorff space X can be densely embedded
in a space x. X such that (1) £~X is a Hausdorff space with
property ., (2) if Y is a Hausdorff extenmsion of X with
Z, then there is a continuous function f = x~X — Y such
that f(x) = « for each x€ X, and (3) if X is H-closed, then
r»X=X. Both necessary conditions and sufficient conditions
are given to characterize Hausdorff extension properties.
Certain types of Hausdorff extension properties are shown
to divide into classes such that each class has a largest
member. In the latter part of the paper, for a Hausdorff
extension property < satisfying one additional property,
the lattice of “-extensions of a fixed space X is related to
£»X\X with a modified topology; this yields a theorem
parallel to a similar result for the lattice of Hausdorff
compactifications of a locally compact space X and AX\X
obtained by Magill.

1. Introduction. A topological property 7 is called a Tychonoff
extension property if each Tychonoff space X can be embedded as a
dense subspace of a space 8.X with the following properties:

(1) pBsX is a Tychonoff space with .

(2) A continuous function f: X — Y between Tychonoff spaces
X and Y has a continuous extension F: 8.X — B.,Y.

(3) If X has &, then X = g.X.

In 1967 Herrlich and van der Slot [6] obtained the following charac-
terization of those topological properties & that are Tychonoff ex-
tension properties:

(a) All compact Hausdorfl spaces have 7.

(b) Closed subspaces of spaces with .&° have .

(¢) Products of spaces with &7 have 2.

In 1975 the second-named author [20] developed systematic means
of defining and classifying Tychonoff extension properties.

In this paper the corresponding problem concerning extensions
of Hausdorff spaces is systematically studied. The two major models
of Hausdorff extensions are the Katetov extensions [9] which generate
the class of H-closed spaces and thd Liu-Strecker extensions [10]
which generate the class of almost realcompact spaces. Based on
these models, it is straightforward to find the common characteristics
that Hausdorff extension properties should have; (1) and (2) are
modified by replacing “Tychonoff” by “Hausdorff”, (2) is modified by
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replacing “continuous function” by “dense embedding”, and (8) is
modified by replacing “compact Hausdorft” by “H-closed”. Topologi-
cal properties satisfying these modifications of (1), (2), and (3) are
called Hausdorff extension properties (a precise definition appears in
2.1). In this paper “Hausdorff extension property” is shortened to
“extension property” unless there is a possibility of confusion.

In the remainder of this section we give a brief summary of
known results. In §2 a partial solution to the problem of charac-
terizing Hausdorff extension properties is given (along the lines of
conditions (a), (b), and (¢)). In addition, certain types of extension
properties are classified into broad groups with each group having
a largest element, and methods of defining extension properties are
developed; this work is similar to the investigations of Tychonoff
extension properties carried out in [20]. In the third section the
lattice of “FP-extensions of a fixed space is investigated for certain
extension properties <. Results analogous to those of Magill [11]
that relate the lattice of compactifications to the Stone-Cech com-
pactification remainder and to the generalizations of Magill’s results
by Mack, Rayburn, and Woods [12] and Porter [13] are obtained.

All hypothesized topological spaces throughout the paper are
assumed to Hausdorff, thus, the word “space” will mean “Hausdorff
topological space”. A topological property is identified with the class
of spaces possessing it, e.g., if % is the class of compact spaces,
that X is compact is also indicated by writing “X e . 2#7. The cardi-
nality of a set S is denoted by [S|. If % is a set of sets, then
U {S: S€.9”} will be denoted by U .~

Many of the concepts defined below are also discussed in [15];
the reader is referred to this as a useful source of background
material.

DEFINITION 1.1. (a) A space Y is an extension of a space X if
X is a dense subspace of Y. If Y possesses a topological property
&P then Y is a FP-extension of X. If Y is an extension of X we
denote by 1y, the inclusion map- which embeds X as a dense sub-
space of Y.

(b) If Y and Z are extensions of X then a continuous function
f: Y — Z extends the identity map on X if f|X =1y ,. Evidently
f extends the identity map on X iff f fixes X pointwise.

We omit the easy proof of the following well-known result.
LEMMA 1.2. Let Y and Z be two extensions of X and let T be

an extension of Y (and hence of X). If g: Y—Z and f: Z— T are
continuous and extend the identity map on X then:
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(a) foglx =1y
(b) g is a homeomorphism from Y onto g[Y] that fixzes X

pointwise.

Two extensions Y and Z of X are equivalent if there is a homeo-
morphism from Y onto Z that leaves X pointwise fixed. This is an
“equivalence relation” on the class of extensions of X. Henceforth
we identify equivalent extensions of a space. With this identifica-
tion the class &(X) of extensions of X is a set. We next define a
partial order on &(X).

DEFINITION 1.8. (a) Let Y and Z be extensions of X. Then Y
is projectively larger than Z (denoted Y = Z) if there is continuous
funection from Y to Z that fixes X pointwise.

(b) Let & be a set of extensions of X. An extension Y of X
is a projective maximum for & if Ye & and Y = Z for all Ze <~

It is well-known (see, for example, [15]), and follows from 1.2,
that #(X) is partially ordered by =. A major theme of this paper
is to investigate those topological properties & for which the set
of F-extensions of X has a projective maximum. We give examples
of such properties below (see 2.3).

DEFINITION 1.4. A filter (resp. filter base) on the lattice of open
sets of X is called an open filter (resp. open filter base) on X. A
maximal (with respect to set inclusion) element in the set of open
filters on X is called an open ultrafilter. The set MN{cly F: Fe &} is
called the adherence (in X) of the open filter base &, and is denoted
ady (& ). An open filter base F on X is fized if ady (&) +# O,
otherwise it is free.

DEFINITION 1.5. A space X is H-closed if X is closed in each
Hausdorff space in which it is embedded. The set of H-closed exten-
sions of X will be denoted by S#(X).

The following characterizations of H-closed spaces will be useful;
see, for example, problems 17K and 17L of Willard [19].

THEOREM 1.6. The following are equivalent for a space X:

(a) X is H-closed.

(b) Each open wltrafilter on X is fized.

(c¢) Each open filter on X is fixed.

(d) If € 1is an open cover of X there is a finite subfamily F~
of € such that U & 1s dense in X.
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Recall that a subspace A4 of a space X is regular closed (resp.
regular open) in X if A = cl, V for some open subset V of X (resp.
A = int; F for some closed subset E of X). If &2 is a topological
property such that regular closed subspaces of spaces with & have
&, we say that & is regular closed hereditary. We omit the easy
proof of the following facts.

PROPOSITION 1.7. (a) The property of being H-closed is regular
closed hereditary.

(b) Continuous images of H-closed spaces are H-closed.

(¢) Regular H-closed spaces are compact.

DErFINITION 1.8. (a) Let X be a space and let X* = XU {%":
7 is a free open ultrafilter on X}. For each open subset U of X
let Oy = UU{z e X*\X: Ue %}. X* with the topology generated
by the open base {O}: U open in X} is denoted by ¢X and called
the Fomin extension of X (see [7, 16]).

(b) X* with the topology generated by the open base {U: U
open in X} U{{z}U U: % ¢ X*\X and Ue %} is denoted by £X and
called the Katetov extension of X (see [9]).

We summarize the basic properties of £X in the next theorem.

THEOREM 1.9. (a) kX is a projective maximum for 7 (X).

(b) IfY is an extension of X there is a continuous function
f1eX— kY that extends the identity map on X, explicitly, if
ackX\X then f(a) = N{ely V:Veal

(¢) If XS T < kX then £T = £X.

d If XSTC kX and Y is an extension of X, then T= Y
ift FITISY, where f: kX — kY extends the identity map on X.

(e) If A is a regular closed subset of X then cl.x A = KA.

Proof. (a) See [7] and [14].

(b) This follows from (a) and the fact that £Y is an H-closed
extension of X.

(¢) See Theorem E of [5].

(d) Let f: kX — kY extend the identity map to £ X. If f[T]CY,
then f|T maps T to Y and fixes X pointwise, so T = Y. Conversely
if T = Y there exists a continuous function g: T — Y fixing X point-
wise. Let f: kX — kY be the extension of the identity map. Then
fIT and g both map T into the Hausdorff space £Y, and agree on
the dense subspace X. Thus f|T = ¢ and so f[T]cC Y.

(e) This follows from Theorem F of [5] and Theorem 3.4 of
[22]. O



EXTENSIONS OF HAUSDORFF SPACES 115
2. Hausdorff extension properties.

DEFINITION 2.1. A topological property & is called an extension
property if each H-closed space has .Z7 and if, for any space X, the
set of .F-extensions of X has a projective maximum. This projec-
tive maximum is denoted by x.X.

PROPOSITION 2.2. Let .&° be an extension property and let X be
a’space. Then:

(a) X kX< kX

® £ X=N{T-XST<C kX and T has F°}.

Proof. (a) Since £X is a FP-extension of X there is a continuous
function ¢:£-X— kX that fixes X pointwise. As x(k-X) is an
H-closed extension of X, by 1.9 there is a continuous funection
f:6X— k(k-X) that fixes X pointwise. By 1.2(b) g is a homeo-
morphism from £_X onto g[k,X] that fixes X pointwise, so £, X
and g[x.X] are equivalent extensions of X, and thus are identified.
As X C g[k.X] £ kX the result follows.

(b) Since kX has & it sufficies to show that if XS 7T C kX
and T has & then £.XZT. As T is a “F-extension of X there is
a continuous function j:x,X— T that fixes X pointwise. But
1;.x°7 and 1, .y both map # X into £X and fix X pointwise. Thus
these maps are equal, and so . X & T. O

ExAMPLES 2.3. (a) The property of being H-closed is an exten-
sion property; £X is the projective maximum of the set of H-closed
extensions of X.

(b) An open filter # has the closed countable intersection
property (C.C.I.P.) if the intersection of the closures of each count-
able subfamily of % has a nonempty intersection. A space X is
almost realcompact 1f no free open ultrafilter on X has C.C.I.P.
Almost realcompactness is an extension property; an explicit con-
struction of the maximum almost realcompact extension of a space
is given in [10].

(¢) Let & be an extension property and let . be a dense-
hereditary topological property (i.e., if X is dense in T and T has
% then X has Z). Define the topological property 7V .7# as
follows: Xe PV .# if Xe or Xe.&. Then FPV.Z# is an
extension property. To prove this, if X is a space define the space
X, as follows: X.,., =X if Xe. &, and X..,..=k.X if X¢.A.
Evidently X... . is a &V #Z-extension of X; we will show that it
is the projective maximum of the set of .&7 v “#Z-extensions.

If T is a PV FH-extension of X, then Te. & or Te#. If



116 JACK R. PORTER AND R. GRANT WOODS

T¢ < then Te # As X, is either £-X or X, there is a con-
tinuous funection f: X, — T that fixes X pointwise. Thus X_,,=T.
If Te &2 then Xe &2 so 1, maps X, ., to T and fixes X pointwise.

We will consider the following two special cases of (¢) in some
detail in 2.16 and 2.17.

(d) If & is “H-closed” and &2 is “Tychonoff”’, then Xe &V &2
iff either X is H-closed or X is Tychonoff. We denote &V &2 in
this case by &,.

(e) If &7 is “H-closed” and <2 is “contains an isolated point”
then we denote &V % by .

In the remainder of this section we attempt to develop a sys-
tematic theory of extension properties similar to that developed for
Tychonoff extension properties in [6] and [20]. Unfortunately prop-
erties such as &, and 2 defined above turn out to be quite “badly
behaved”; as a result the theory of Hausdorff extension properties
is not as well structured as the corresponding theory of Tychonoff
extension properties.

The authors would like to thank J. Vermeer for bringing the
existence of &% and &7, together with their properties as discussed
below, to their attention.

We now define several properties that a topological property can
have. These properties will be of importance when we study the
structure of extension properties and ways of generating new exten-
sion properties.

DEFINITION 2.4. Let & be a topological property.

(a) & has the k-inversion property (respectively, weak k-inver-
sion property) if, whenever Y is a F-extension of X and f: kX — kY
extends the identity map, then f-[Y] has & (respectively, there
exists a “F-extension T of X such that XcTcf[Y).

(b) & has the k-epimorphism property if, whenever X & T &
kX, Y is an extension of X, T = Y, and T has &7, then Y has .

(¢) & has the k-intersection property if, whenever (T.);.; is a
family of “#-extensions of X with X & T, € £X for each 1¢ 1, then
N{T::1cI} has &~

(d) & is determined by demse subspaces if, whenever X has &
and X is a dense subspace of T, then T has ..

THEOREM 2.5. The following are equivalent for a topological
property 2.

(a) P is an extension property.

(b) All H-closed spaces have P, Fhas the k-intersection prop-
erty, and Z has the weak k-inversion property.



EXTENSIONS OF HAUSDORFF SPACES 117

Proof. (a)= (b). By definition each H-closed space has & if &°
is an extension property. Let (7)., be a family of .Z”-extensions
of X with XS T, S kX. Let T=)e;T;; then XS T C kX so by
1.9(c) £T = kX. Thus by 2.2(a) TC k. T CkX. If T+ £.T then
there exists 4,€ I with TCT; Nk, TSk T. As T, is a S -extension
of T, there is a continuous funection f:x T — T;, such that f|T = 1,.
This is obviously impossible, so T = £ T and T has .&7. Hence &
has the k-intersection property. Finally let Y be a .Z-extension of
X and let f: kX — £Y extend the identity map to £X. There is a
continuous function g:k, — Y such that ¢g|X =1,. Since X C
£-X C kX, it follows that flek. X =g¢. Thus X<k X< f[Y] and
kX has . Z2. Hence & has the weak k-inversion property.

(b) = (a). For each space X let &(X)={T: X< T < kX and
T has .Z°}. Since each H-closed space has .27, Z(X) =+ @. Let
Z=N{T:Te&z(X)}. As & has the k-intersection property, Z has
2. We now claim that Z is the projective maximum of the set of
Z-extension of X. Let Y be a.“’-extension of X, and let f:X—>£Y
extend the identity map on X. As .&” has the weak k-inversion
property there is a space W with & such that XS W < F[Y].
As Wez(X), Z< W. Thus f|Z maps Z continuously into ¥ and
extends the identity map. Thus Z = £.X and & is an extension
property. |

There is a “Tychonoff analogue” of the x-inversion property as
follows: if & is a Tychonoff extension property, Y has . &, f: X —> Y
is continuous, and f%: X — BY is the extension of f to the Stone-
Cech compactification, then (f#)-[Y] has .&#. This, in fact, is true
of all Tychonoff extension properties (see [6]) and is used extensively
in developing the theory of Tychonoff extension properties (see [20]).
Unfortunately not all Hausdorfl extension properties have the g-inver-
sion property (see 2.16 below). However, regular-closed hereditary
Hausdorff extension properties with the g-inversion property (such
as almost realcompactness) behave much like Tychonoff extension
properties. For this reason we pay considerable attention to such
Hausdorff extension properties in what follows.

PROPOSITION 2.6. The following are equivalent for an extension
property F.

(a) P has the k-inversion property.

b)) If XS TC kX, Y is an extension of X, and T = Y, then
k1 = kY.

(e) If eX is a FP-extension of X then cliy..r 4y has P (where
dy = {(x, x): x€ X}, viewed as a subspace of kX x eX).
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Proof. (a)==(b). Let f:xX—> kY extend the identity map
Since Tz Y, fI[T]€ Y. By 22(a) k.Y S kY, so by hypothesis
fIksY] has &7, and contains T. Thus by 2.2(b) £.T & f kY],
so flk-T maps kT into k.Y and fixes X pointwise. Thus
T =Zk,Y.

(b)=(a). Let Y be a “F-extension of X and let f:xX—>kY
extend the identity map on X. Then f[Y]= Y, so by hypothesis
kof Y1 = k.Y =Y. Thus there exists a continuous function
g:k-f[Y]— Y such that g|X =1,. By 2.2(a) and 1.9(c) f[Y] <
kof 1Y) S kX, so g and flk.f[Y] both map £-f[Y] into £Y and
agree on X. Hence g = fle-f[Y]so flesf[Y]]1 < Y. This implies
that £,/ [Y] = f[Y], so Y has .&°. Thus & has the k-inversion
property.

(e) = (a). Let f:&£X — k(eX) extend the identity map on X. It
is straightforward to show that el y..» 4r = {(z, f(@)): x€ f[eX]} and
that this latter set is homeomorphic to f[eX]. The equivalence.
follows. 1

DEFINITION 2.7. Let & bek a topological property. A space X
is said to be F-pseudo-H-closed if each extension of X with &7 is
H-closed. The class of .Z”-pseudo-H-closed spaces will be denoted
by .

The definition of ’-pseudo-H-closed spaces is similar to the
definition of Z7-pseudocompact spaces (for Tychonoff extension prop-
erties &) introduced in [20]; hence the choice of terminology. Each
part of the following lemma has a one-line proof.

LEMMA 2.8. Let & and & be topological vroperties. Then

(a) F is determined by dense subspaces.

(b) If all H-closed spaces have 7, then X is H-closed iff X has
both & and F.

(¢) If &P < & then &' S F'. ,

(d) If & is an extension property then X has ' iff k.X is
H-closed.

LEMMA 2.9. If 7 is a topological property with the k-inversion
property, then ' has the k-epimorphism property.

Proof. Let T be a F'-extension of X with XS T C kX, letY
be an extension of X, and let T= Y. We must show Y has .
Let Z be an extension of Y with &”; we must show that Z is H-
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closed. Let f:kX — kZ extend the identity map on X, let g: kY —
£Z extend the identity map on Y, and let h: kX — kY extend the
idc ntity map on X. Then goh maps £X to £Z and agrees with f
on X, so f=goh. As & has the g-inversion property, f[Z] has
P, i.e., h[g7[Z]] has &». Now YCg[Z]and h[T]CY since T = Y;
thus T'c f-[Z]. As T has &', f[Z] is H-closed. Thus by 1.7(b)
Z is H-closed and so Y has &' 1

We now describe a general method of constructing extension
properties. The procedure consists of starting with a topological
property <Z that is determined by dense subspaces and satisfies the
x-epimorphism property, and defining an extension property & in
terms of <. By 2.8(a) and 2.9 if < is an extension property with
the x-inversion property, then &’ is determined by dense subspaces
and satisfies the k-epimorphism property, and so 9/%’\’ is an extension
property whose relationship to the original extension property &
becomes a subject of interest.

DEFINITION 2.10. Let .&Z be a topological property. The topolo-

gical property 2 is defined as follows: X has .92 if each regular
closed subset of X with .<Z is H-closed.

THEOREM 2.11. Let <2 be any topological property. Then:

(a) All H-closed spaces have B and P is regular closed here-
ditary.

(b) Let T and {T;:1< I} be a collection of extensions of a space
X such that XC T, CT for each i and X = N {Ti:iel}). If &2 is
determined by dense subspaces and each T; has B then X has 5.
In particular B has the k-intersection property.

(¢) If &2 has the k-epimorphism property and is determined
by dense subspaces, then B has the k-inversion property and hence
is an extension property.

Proof. (a) That all H-closed spaces have .22 follows from 1.7(a).
If A is a regular closed subset of X and B is a regular closed subset
of A, then B is a regular closed subset of X; it immediately follows
that <2 is regular closed hereditary.

(b) Let A be a regular closed subspace of X with <Z. For
each t¢l, cl;, A is a regular closed subset of T, and has &2 as &%
is determined by dense subspaces. Since T, has .22, cly, A is H-
closed. Thus cly, A = clz(cly, A) = el A for each 7¢I, Thus A =
Nicly, A:iel} = cleA Thus A is H-closed and X has 3.

(¢) By (a) and (b) all H-closed spaces have 7 and 2 has the
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k-intersection property. Thus once it is shown that  has the
k-inversion property, it follows from 2.5 that <2 is an extension
property.

Let X be an Z-extension of X and let f: X —k(rX) extend
the identity map. We must show that f~[rX] has <Z. Let A be
a regular closed subspace of f[rX] with <Z. Then AN X is a regular
closed subspace of X; so, by 1.9(e), el.x (AN X) = k(AN X). Thus
ANXCcAC k(AN X). As f[A] is an extension of AN X and f|A4
extends the identity function on AN X, we have A = f[A] in the
partial ordering of extensions of AN X. Since & has the k-epimor-

phism property, it follows that f[A] has 2.
There is an open subset V of »X such that VN X = int; (4 N X).

As AN X is dense in f[A], it follows that
C]'TX V = CIrX(Vn X) = C]'TX(A n X) = CITXf[A] .

Since f[A] has < and <7 is determined by dense subspaces, cl,, f[A4]
is a regular closed subset of »X with <Z. As rX has .2 cl,y flIA]
is H-closed. If A were not H-closed then cly A — A # @, and so
cly A — f[rX]# @. Thus flely A] — »X # @, and so cl; f[A] is a
proper dense subspace of f[ely A]. This contradicts the fact that
cly f[A] is H-closed. Hence A is H-closed, 2 has the g-inversion

property, and hence S is an extension property. D

The most important special case of 2.11 arises when the 2 of
2.11 is & for a suitably chosen property . We will show that

under certain conditions ﬁ’ is a “well-behaved” extension property
that is the “largest” extension property belonging to a certain class.

Note that a space X has é) iff whenever A is a regular closed sub-
set of X that is not H-closed, then A has .ZP-extensions that are

not H-closed.

LEMMA 2.12. Let & be a topological property. Then:
PN
(a) If & has the k-imversion property then F' is a regular
closed hereditary extension property with the k-inversion property.

(b) If &P is regular closed hereditary then P < P,
(e) If P is regular closed hereditary and has the k-inversion

property them F' = (9/’\')'.
(d) If & has the k-epimorphism p'rope'rﬁ/\ and is determined

by dense subspaces then P < (P) and P = (P).

Proof. (a) This follows from 2.8(a), 2.9, 2.11(a) and 2.11(c).
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(b) Suppose X has & and A is a regular closed subset of X
with &’. Then each F-extension of A is H—closed By hypothems

A itself is such an extension, so 4 1s H-closed. Thus X has .7"

(¢) By 2.8(c) and (b) above, (&' )’C.?’. By (i) above & is
an extension property. If X has &’ then by 2.8(a) £.»X has F'.
But £.5X is a regular closed subset of itself, so by definition of .7/’\’ ,
£5X is H-closed. Thus by 2.8(d) X has (&%) and & C (&)

(d) Suppose X has . By 2.11(c) P is an extension property
and £2X is an extension of X with & Since & is determined by
dense subspaces, £2X also has . As g2X is a regular closed subset
of itself, it follows that £.X is H-closed and so X has (.9‘?)' by 2.8(d).
Thus & ;(.9?’)'. It is easily seen that if <2 and % are two topolo-

~ - S ~
gical properties with <2 € &4 then & € &#Z; thus (&) <. Con-
versely, by 2.11(a) P is regular closed hereditary so by (b) & <
P T~

(P)Y. Thus &P = (P). O

DEFINITION 2.13. (a) Two topological properties & and & are
co-pseudo-H-closed if ' = &', The class {&: &’ = F°'} is called
the co-pseudo-H-closed class of the property 2.

(b) An extension property is called strong extension property
if it is regular closed hereditary and has k-inversion property.

Being co-pseudo-H-closed is an equivalence relation on the class
of topological properties. In the next theorem, which is the main
result of § 2, we show that if &°(&°) is the class of all strong exten-
sion properties co-pseudo-H-closed with the strong extension property

P, then &(?) has a largest member, namely ._é"\" This parallels
similar results obtained in [20] for Tychonoff extension properties.
As Example 2.17 shows, this attractive result fails for arbitrary
extension properties.

THEOREM 2.14. (a) If &7 is a strong extension property, then
N
G’ i3 a strong extension property co-pseudo-H-closed with < and

containing all other strong extension properties co-pseudo-H-closed
with 2.
(b) If # is a topological property determined by dense subspaces

and possessing the k-epimorphism property, then P is a strong
extension property and is the largest member of & (#).

Proof. Part (a) follows from 2.12(a), (b), and (c), and part (b)
follows from 2.11(c) and 2.12(d). O
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In the remainder of this section we consider a variety of exam-
ples illustrating the applications and limitations of the above theory.

EXAMPLE 2.15. Almost realcompactness is an extension property
(see 2.3(b)) that is regular closed hereditary (see [3]). Almost real-
compactness has the g-inversion property (the verification of this,
using 1.9(b), is tedious but routine). Thus almost realcompactness
is a strong extension property; denote it by & Then by 2.14(a)

s a strong extension property co-pseudo-H-closed with & and
containing &2 If X is a (Tychonoff) non-almost realcompact P-space,

then Xe .é‘\” — & (recall that a space X is a P-space if its G;-sets
are open; see. Problems 4K and 4L of [4] for details). To justify
this, note that a Tychonoff space X belongs to &' iff it is pseudo-
compact (see 3.19). But pseudocompact P-spaces are compact (see

4K of [4]); thus ﬁ’ contains all (Tychonoff) P-spaces. An example
of a Tychonoff P-space that is not almost realcompact is given in
9L of [4]. :

By considering the examples introduced in 2.3(d) and (e) we now
show that the hypotheses made on our extension property &° in 2.12
and 2.14 are necessary to the conclusions.

EXAMPLE 2.16. Let .22 be as in 2.3(c) and let 57 be the prop-

erty of being H-closed. A routine calculation shows the following:

T —

Xe (o7 v ) iff either X ¢ .2 or X is H-closed and Xe (5F VvV .#)
iff each regular closed subset without <# is H-closed.

We now show that the property ., of 2.8(d) fails to have the
k-inversion property. Let IV be the countable discrete space; then £V
and BN have the same underlying set of points (N together with
the free ultrafilters on N) but different topologies. Let j:xN— gN
denote the identity map on the underlying sets. Then j is continu-
ous and extends the identity map on N. If pe BN\N then BN\{p}e
Z,, but j[BN\{p}] = kN\{p} ¢ &, so F, does not have the k-inver-
sion property. This example also shows that &% does not have the
k-epimorphism property. However, &7 is easily seen to be regular
closed hereditary.

Sinece &, does not have the g-epimorphism property, 2.11(¢) no
longer guarantees that 9/%’ is an extension property, and in fact it
is not. To see this, note that for each p e k N\N, £N\{p} € 9/%’ . Hence
by 2.2(b) the maximum é%—extension of N (if it exists) must be N;

P
however, N¢.&#. Thus 7 is not an extension property.

ExAMPLE 2.17. It is easily verified that the property &2 of 2.3(e)
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is not regular closed hereditary but has the x-inversion property.
N
By 2.12(a) .&7 is a regular closed hereditary extension property with

the k-inversion property. Evidently X eé’? iff each regular closed
subset of X without isolated points is H-closed; equivalently, if
X =IX)UHUPF where I(X) is the set of isolated points, H is an
H-closed subset of X, and F is a closed nowhere dense subspace of

X. In contrast to 2.12(b), & & 9/% ; for example (0, 1) U {2}, viewed

as a subspace of R, belongs to .&2’\.7“‘1. It is also easy to check that
s

G & (F). : ]

ExAMPLE 2.18. One might be tempted to conjecture that if
Z is a property satisfying the hypotheses of 2.11(e), then (%)’ =
. This is untrue; as an example, let <2 be the property “is an
extension of IV or is H-closed”. Then .2 has the required properties,
but if X is the free union of the closed unit interval and the space
N U {a}, where actN\N then Xe () \ . N

2.19. A description of £.X. Sometimes an explicit description
of £_X is difficult to obtain, but in special circumstances we can obtain
such a description. Let .22 be a topological property satisfying the
hypotheses of 2.11(c). Then 7 is an extension property. For each
space X define PX to be U{XUecl,yV:V is open in X and cl; V
has .<#}. A routine verification shows that X c.BX cksX. It fol-
lows from 2.2(b) that if 2X has 27, then k23X = <2X. The reader
can easily verify that this occurs if .&Z is inherited by dense open
subspaces. For example, if m is an infinite cardinal and if <#Z is
either “cellularity no greater than m” or ‘“density character no
greater than m”, then &2 is such a property (see [8] or [17] for a
discussion of these and other cardinal invariants).

There are topological properties .&# satisfying 2.11(c), and not
inherited by dense open subspaces, for which £,X = #X. We con-
sider two of these.

Let m be an infinite cardinal. A space X is m-H-closed if each
open cover of X of cardinality no greater than m has a finite sub-
family whose union is dense in X. A space X is m-weakly Lindelof
if each open cover of X has a subfamily cardinality no greater than
m whose union is dense in X. If m = },, m-H-closedness is also
called feeble compactness; among Tychonoff spaces Y,-H-closedness
is equivalent to pseudocompactness (see 9.13 of [4]). R,-weakly-
Lindelof spaces are simply called weakly Lindelof spaces; these have
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been studied by Ulmer [18] and Woods [21], among others.

It is easy to show that if <# is either m-H-closedness or the
m-Lindelof property, then .22 is determined by dense subspaces, has
the k-epimorphism property, but is not necessarily preserved by
dense open subspaces. Nonetheless, a somewhat lengthy but straight-

forward calculation shows that x4 X = ZX.

3. Lattices of .Z-extensions. In this section we develop the
machinery to prove that the lattice structure of a certain subset of
the tight “-extensions of a Hausdorff space (defined in 3.7) is com-
pletely determined by the topological structure of a certain space.
This result parallels Magill’s result [11], the corresponding result
for the lattice of Hausdorff compactifications of a locally compact
Hausdorff space, and the generalizations of Magill’s result in [12]
and is a generalization of Theorem 2.3 in [13], the corresponding
result for the upper semilattice of H-closed extensions of a space.
First, some basic facts about absolutes need to be recalled.

Absolutes 3.1. A function f: X — Y is -continuous if for each
xe X and open neighborhood U of f(x), there is an open neighbor-
hood V of % such that f(cly V) & cl, U; f is irreducible if f is onto
and no proper closed subset of X is mapped onto Y; and f is perfect
if f is closed and for each yeY, f~(y) is compact. A space is
extremally disconmected if its open sets have open closure (see [4]).

For a space X, let 0X = {Z: Z is open ultrafilter on X}. For
an open subset U of X, let O, = {zx e 0X: Ue %}. Now, X with
the topology generated by the open basis {O,: U open in X} is a
compact Hausdorff, extremally disconnected space and is sometimes
denoted by GX and called the Gleason space of X (see [1]).

The subspace EX = {% c0X: 7 is fixed} of X is extremally
disconnected and Tychonoff and is called the absolute of X. Define
m: EX— X by n(%)=ady%’; the surjection =z is @-continuous,
perfect and irreducible. The absolute EX of X is unique in this
sense: if Y is an extremally disconnected, Tychonoff space and there
is a #-continuous, perfect, irreducible surjection f: ¥ — X, then there
is a homeomorphism h: EX — Y such that foh = 7w (see [7]); in such
cases, we identify EX and Y and write EX = Y. In particular, for
a space X, E(EX)= EX by Corollary 2 in [7] and 60X = 6(6X) =
0(EX) = F(6X) by Theorem 11 in [7]. If two spaces X and Y have
homeomorphic absolutes, we say X and Y are co-absolute.

PROPOSITION 8.2. Let U be an open subset of a space X.
(a) [7] X 7s H-closed iff EX is compact.
®) [7] #(O, N EX) =cl; U.
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(¢) [7] Let xe X. n(x) S Oy iff zeintzcly U.
(d) Oy N EX, ny) is the absolute of cly U where 7y is © restricted
to Oy N EX.

Proof of (d). Clearly, O, N EX is extremally disconnected and
Tychonoff. So, it suffices to show =,: O, N EX —cly U is a f-con-
tinuous, perfect, irreducible surjection. It is straightforward to
show 7, is perfect and irreducible; by (b) 7z, is a surjection. To
show 7, is #-continuous, let Z¥ € O, N EX and V be an open neigh-
borhood of 7#,(Z) in cly U. So, there is an open set W in X such
that V=Wnel, V. Since n,(%)e W, then WeZ. There is an
open set O, containing % such that #(0O,N EX) S cly W. Since
Te %, we can assume that 7€ Un W. Thus, O, £ O,. Let 7 ¢
O,N EX. Then Te? which implies that n(?)eecl; T S cl; (UN
W)=cly(cly UNnW)=cly V. So, n(O,NEX)ZclyV and 7z, is
6-continuous. O

One of the liabilities of #-continuity is that the restriction of a
#-continuous function (with the corresponding restriction of the range)
may not be @f-continuous (see the remark after 3.4 in [2]). However,
as proven in 3.2(d), some restrictions are 6-continuous; such is the
case in the following result.

LemMmA 8.3, Let f: X—Y be a surjection, SS X, DCY,
f(S)<S D, and fl|s: S— D.

(a) If f is O-continuous and both S and D are dense, then f|s
18 B-continuous.

(b) If f is perfect and S = f~(D), then f|s is perfect.

(e) If f is closed and irreducible, S = f~(D), and D is dense,
then fls 18 closed and irreducible.

Proof. Straightforward. ]

ProrOSITION 3.4. Let hX be a H-closed extension of a space X.
Define w,:0X —>hX by (%)} =ad,y %. Let XS YZ hX and
Z=w(Y). Then w,|;: Z—Y is a O-continuous, perfect, irreducible
surjection; in particular, Z is the absolute of Y.

Proof. The proof uses 3.3 and is similar to the format of the
proof of Theorem 10 in [7]. 0

Let Y be an H-closed extension of X and peY. Let O(p)
denote the filter base of open neighborhood traces of p on X. By
1.9, let f: kX — Y be the unique continuous function that extends
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the identity function on X; it is easy to verify for e xX\X, that
{(f(%)} = ady 7 and % 2 O(f(%)). Since f|x = 1;, then using the
notation of 3.4, for,|zx = Tylzx. If Z €6X\EX, then {x (%)} =
ad,y 7 implying 7 (%) = % and (forn %) = 7w (%). So, we have
that fox, = m,. Suppose Z is an H-closed extension of X and
9: kX — Z is the unique continuous function that extends the identity
function on X. Then we have gom, = m,. Also, suppose that
h: Y — Z is a continuous funetion that extends the identity function
on X. By the uniqueness of the extension funection g, it follows
that hof = g. Thus, hoy = ho foR, = goT, = Wy ™

An immediate consequence of this fact and 8.4 is the next result.

PrOPOSITION 3.5. Let Y and Z be H-closed extensions of a space
X and suppose there is a continuous function h: Y — Z that extends
the identity function on X. Suppose XST S Z. Then T and h(T)
are co-absolute.

Throughout this section & will denote a class of spaces with
these properties:

(i) &7 contains the class of H-closed spaces.

(ii) 7 is co-absolute closed, i.e., if Xe & Y is co-absolute
with X, then Ye .2

(iii) & has the k-intersection property.
These three requirements on &’ guarantee that & is an extension
property (as defined in 2.1) and has other nice properties as proved
in the next result.

PROPOSITION 3.6. (a) Let Y be an exiension of a space X and
F be a nonempty family of F-extensions Z such that X S Z Y.
Then N & is a FP-extension of X.

(b) P has the k-inversion property.

(e) < is an extension property.

Proof. To prove (a), let hY be an H-closed extension of Y and
f:£X — hY the unique continuous function that extends the identity
function on X (see 1.9). By 8.5, for Z¢.#, Z and f~(Z) are co-
absolute. So, f(Z)es” Thus, T =N{f(Z):Zc F}e P Let
S=N{Z Zes}. Then T = f~(S) and by 3.5, T and S are co-
absolute. So, Se€.22 Now (b) follows from 3.5 and (c) follows from
(b) and 2.5. ]

DEFINITION 3.7. Let Y be a “-extension of X. Y is called a
tight FP-extension if whenever Z is a F-extension of X and



EXTENSIONS OF HAUSDORFF SPACES 127

XC ZCY, it follows that Z =Y.

By 8.6, for each H-closed extension X of a space X, thereisa
tight “-extension, denoted by #.X, such that X S h. X S hX. By
2.2, this notation for the H-closed extension £X conforms with the
notation introduced in 2.1. If aX is a tight .Z°-extension of X, then
the Katetov extension kaX of aX is an H-closed extension of X; it
follows that (ka).X = aX. Thus, {h.X: hXec 7 (X)} is the set of
all tight “-extensions of X and is denoted by “#(X). By 2.1 and
2.2, it follows that £.X = Y for all Ye .o°(X).

THEOREM 3.8. Let X be a space andY, Ze . F(X). ThenY = Z
iff kY = kZ.

Proof. Suppose Y = Z. There is a continuous function f: Y — Z
such that f(x) = « for all xe€ X. To show f extends to a continuous
function from £Y to x£Z, it suffices by [5] to show that f is a p-map,
i.e., for each p-cover % of Z (i.e., 7/ is an open cover with a finite
subfamily whose union is dense), (%) = {f(U): Ue '} is a p-cover
of Y. Now, f(Z) is an open cover of Y. Let U, ---, U, be a
subfamily of %/ whose union is dense in Z. Then U {U;N X:1 =
1< mn} is open and dense in X. Sinse Y{UNX:1Z1= 0} S
U{U):1 =1 =< n}, then f~(U,):1 £1<n is a subfamily whose
union is dense in Y. Thus, f(%) is a p-cover. Conversely, suppose
kY = kZ. Let F:kY — kZ be a continuous function that extends
the identity function on X. By 3.5, Z and F~(Z) are co-absolute;
since Ze¢ .27, then F~(Z)e .Z”. Since Y is a tight .Z’-extension, then
Y S F[{Z]. Thus, FIY:Y—>Zand Y = Z. |

Let Y be an extension of X and f:xX — £Y be the unique
continuous extension of the identity function on X (see 1.9). Let
P(Y)={f(p):peY\X}; P(Y) is a partition of f(Y\X), which is
contained in £#X\X since f|X = 1;. Since ¢X and £X have the same
underlying set, then f(Y\X) < ¢X\X, and by (0.5) in [13], P(Y)
is a collection of pairwise disjoint compact subspaces of ¢ X\X. If
Y and Z are extensions of X, then P(Y) refines P(Z) if for each
AcP(Y), there is a BeP(Z) such that A £ B; in particular,
UPY) < UP2Z).

LEMMA 3.9. If Y and Z are extemnsions of X such that Y = Z,
then P(Y) refines P(Z).

Proof. Let f: kX — kY and ¢g: kX — kZ be continuous extensions
of the identity function on X. By 8.8, there is a continuous function
h: kY — £Z such that h(Y) Z Z and h extends the identity funection
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on X. By the uniqueness of g, hof =g. For pe Y\X, f~(»)e P(Y)
and f(p)S f(h(h(p) =g (W(p)) € P(Z). So, P(Y) refines P(Z). []

Let Y be an extension of X and f: kX — £Y be the continuous
extension of the identity function on X. For pexkY, let O(p) be
the open neighborhood filter trace of » on X. In particular, if
7z € kX\X, then f(%) is the unique point in £Y\X such that
% DO(f(#7). (See paragraph after 3.4.) Also, if 7 exY\Y, let
Vx={WNX:We#?}ekX\X; thus, f(#Z)={#%}. If & is
an open filter on X, let &5 denote the open filter generated by the
open filter base {inty (cly F'): Fe & }. It is easy to show that if Z
is an open ultrafilter and & is open filter on X, then ¥ 2 & iff
U 2 Fs.

Let Y and Z be extensions of a space X. The extensions Y and
Z are said to be #-isomorphic if there is a #-homeomorphism (i.e., a
bijection that is #-continuous (see 8.1) in both directions) between
Y and Z that extends the identity function on X. The proof of
the following lemma is straightforward and left to the reader.

LEMMA 3.10. Let Y and Z be extensions of a space X, and let
f:Y— Z be a 6-continuous function such that f(x) = x for all xe X.
Let pe Y. Then (O(f(p))s S (O(D))s.

THEOREM 3.11. Let Y, Ze FP(X) for a space X. Consider the
Sollowing:

(a) Y and Z are 6-isomorphic.

(b) P(Y) = P(Z).

(¢) kY and £Z are 0-isomorphic.
Then (a) is equivalent to (b) and implies (c).

Proof. Let f: kX — kY and g: kX — £Z be the continuous funec-
tions that extend the identity funection on X.

(a) implies (b). Let h: Y — Z be the 6#-homeomorphism that
extends the identity function on X. If pe Y, by 8.10, (O(p))s =
(O(h(p)))s. Thus, if pe Y\X, e f(p) iff Z 20(p). But % 2
(O(p))s it Z € g=(W(p)). So, f~(p) = g~(h(p)) and P(Y) = P(Z).

(b) implies (a) and (c): Suppose P(Y) = P(Z). Recall that
(@) ={Z~+} for ZZekY\Y. Then PkY)={f(p):peckY\X}=
PYYU{Zsy e Y\Y} = P(Y)YU{7 7 e X\fF(Y)} = PZ)U{{7}):
7 ekX\g () =P Z)U{{Zx}: e kZ\Z} = {9~ (p): pe kZ\X} = P(kZ).
The quotient topology on the partition P(kY) U {{z}: x€ X} of X is
an H-closed extension 21X of X (see Theorem 2.1 in [15]) and A X is
#-isomorphic to £Y and to kZ. Let k: X — hX be the continuous
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extension of the identity function on X. There are continuous
bijections 7: X — kY and s: hX — £Z that leave X pointwise fixed
and both 7~ and s~ are #-continuous. Now, by uniqueness, rok = f
and sok = g. Also, sor: kY — £Z is a f-isomorphism. If pe Y\X,
then g (sor~(p))=(k"os")(sor (p))=k"or(p)=f~(p). But f(p)e P(Y)
implies g (sor(p)) € P(Z). So, ser~(p)e Z\X and sor(Y)SZ. Similar-
ly, ros(Z)S Y. Thus, sor |Y: Y— Z is a bijection that extends the
identity function on X. By 3.3, sor~|Y is a #-homeomorphism. []

The property of §-isomorphism is an equivalence relation in F(X);
let A be an element of the induced partition on “(X) and Ye A.
Then P(kY) is partition of £X\X and the induced quotient space hX
is H-closed and X = kY. In fact, for Zec A, hX = kZ and the
continuous function f:hX — £Z that leaves X pointwise fixed is a
f-isomorphism (the proofs of these two fact are similar to the proofs
of the corresponding results in [15] and [16]). By 3.5, Z and f(Z)
are co-absolute; since Ze &?, then f(Z)e <. Thus, h.X < f(Z)
and hoX = Z for all Ze A. So, h.X is a projective maximum of A.
Let Z7%(X) denote the set of projective maxima, one from each
f-isomorphism class in #(X).

LEMMA 8.12. Let Y and Ze F)(X). Then Y =Z iff P(Y) refines
P(Z).

Proof. By 3.9, if Y = Z, then P(Y) refines P(Z). Conversely,
suppose P(Y) refines P(Z). Then, P(kY) refines P(kZ). Now, P(kY)
induces an H-closed extension %h,X of X and the tight Z-extension
of hyXis Y. By (0.6) in [13], hyX = h,X. Let f:hyX—h,X be the
continuous extension of the identity function on X. By 3.5, Z and
f(Z) are co-absolute. So, since Z belongs to .77 then so does f(Z).
Thus, Y S f(Z) as Y is tight. This shows that ¥ = Z. ]

For a space X, let ¢,X denote the tight .Z-extension of X
induced by X (see 1.8(a)). As noted in the paragraph following
3.7, £ X=0,X. Let f:kX—0X be the continuous extension of
the identity function on X; f is a bijection and is the identity funec-
tion on the common underlying set of kX and ¢X. So, f(k.X) <
o-X. Since, by 3.5, f(k-X) and f~f(k-X) = £k-X are co-absolute,
then f(k.X) is a F-extension of X. Thus ¢.X = f(k-X). So, as
sets, 0,X =k.X. If Ye FA(X) and ¢g: kX — Y is the continuous
extension of the identity function on X, then ¢g(k-X) Z Y. Thus,
UPY)=9g(Y\X) 2k X\X. Let 2(X)={YeF'(X) k. X\X =
UP(Y)}. Hence, for Ye 2(X), P(Y) is a partition of £,X\X and
of o X\X.
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LEMMA 3.13. Let X be a space and P a partition of o,X\X.
Then P = P(Y) for some Ye 2(X) iff the elements of P are compact
subspaces of oX.

Proof. If P = P(Y) for some extension Y of X, then the ele-
ments of P are compact subspaces of ¢X (see Cor. 5.5 in [16]).
Conversely, suppose the elements of P are compact subspaces of gX.
Then PU{%Z}: % eoX\[XU (U P)]} U {{x}): ze X} is a partition of
compact subsets of oX; the quotient space hX of x£X induced by
this partition is an H-closed extension of X (see Cor. 5.5 in [16]).
Let f: kX — hX be the quotient map; thus f is a continuous exten-
sion of the identity function on X. Let Z = f|U P]U X; clearly
P(Z)=P. Since UP(Z)=UP =«,X\X, then f(Z) = k-X. Since,
by 8.5, Z and f(Z) = £ X are co-absolute, then Z is a “P-extension
of X. By the paragraph following 8.11, r..X ¢ Z%X). So, it suffices
to show Z =h,X. Since h,X is tight, then Z2h.X. Since
£-X Z h:X, then Z = f(k-X) S h,X. So, Z=nh,X, h.Xe D(X),
and P = P(h.X). O

Let X be a space, and let &2, = {P: P is a partition of ¢.X\X
whose members are compact subspaces}. Then &%, is partially
ordered by refinement. Recall that &/(X) is partially ordered by
<. The following corollary is an easy consequence of 3.11, 3.12,
3.13 and the definition of P/ X).

COROLLARY 3.14. Let X be a space. The function ¢: [X]— L
defined by oY) = P(Y) is an order-preserving isomorphism.

Note that for a space X and X & T € ¢X, it is not necessarily
true that ¢T and X are isomorphic extensions of X, see Example
7.7 in [16]. However, we have the next result.

THEOREM 3.15. Let X be a space and X & T < 0X. Then o X\T
and oT\T are homeomorphic.

Proof. Let Z be a free open ultrafilter on T. Then %%
(={UNn X: Ue %)) is a free open ultrafilter on X and Z/y € T. Thus
we can define a funection ¢:0T\T —cX\T by 9(Z) =% If
z,7 €cT\T and Z + 7, there are disjoint open sets Ue % and
Ve7: Since UNX and VN X are disjoint, then Z/y #+ 7% and ¢
is one-to-one. If % e oX\T, then since X is dense, it follows that
2z ={U:U open.in T and UN Xe 77"} is a free open ultrafilter on
T and %y = %". Thus, ¢ is a bijection. Let U be an open set in
X and O (={zeocX\X: Uez}U U) a basic open set in ¢X as
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defined in 1.8. Let W=0,NT and let O}, be the corresponding
basic open set in ¢T. To show the bijection g is a homeomorphism,
it suffices to show that ¢(O,\T) = O,\T. Note that WNn X = U.
For % ecoT\T, %7 c¢O0,\T if We %, ie., WNnXe %% But
U= WnXe %% is equivalent to ¢g(%#") = % ve O,\T. ]

For a space X, let 6X = XU (0X\o.X). Then XS X< 0X
and ocX\6X =o0.X\X. Let & ={P:P is a partition of ¢(6X)\0X
into compact subspaces}. & is partially ordered by refinement. By
3.15, ¢X\6X and ¢(6X)\6X are homeomorphic and, hence, the next
result follows:

COROLLARY 3.16. Let X be a space. Then £, and & are
order-isomorphic.

In the particular case when &2 is the class of all H-closed exten-
sions, &7 is co-absolute closed and has the k-intersection property
(see the paragraph following 3.5). The set of tight .Z%-extensions
is the set of all H-closed extensions; for a space X, . X = hX for
each H-closed extension hX of X and Z/X)= 2(X). In [P],
(X)) is denoted by 5#%X). The next result relates &2(X) for
an arbitrary <& (that is co-absolute closed and has g-intersection
property) with its H-closed extension structure S#%(X).

THEOREM 3.17. Let X be a space. Then 2(X) and Z#%(6X)
are order-isomorphic.

Proof. By 3.14 and 3.16, it suffices to show that &5 and 5#%(6X)
are order-isomorphic which follows immediately from (0.5) and (0.6)
in [13].

For a space X, let kX denote the k-space co-reflection of X, i.e.,
X with {4 € X: AN C closed for every compact C & X} as a topology
for the closed sets.

THEOREM 3.18. Let X and Y be spaces. Then 2(X) and
2(Y) are order-isomorphic iff k(c.X\X) and k(o,Y\Y) are homeo-
morphic.

Proof. By 3.17, =7(X)and &(Y) are order-isomorphic iff 2#%(6X)
and S#%0Y) are order-isomorphic which is equivalent to S#9(6X)
and 2#°6Y) being lattice isomorphic. By Theorem 2.3 in [13],
F7%0X) and 2#(0Y) are lattice isomorphic iff k(6(6X)\6X) and
E(e(0Y)\0Y) are homeomorphic. By 3.15 and the paragraph following
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3.15, this latter statement is equivalent to k(6-X\X) and k(c.Y\Y)
being homeomorphie. O

When & is the class of all H-closed spaces, then for each space
X, 7%X) = 2(X) and 6-X = 0X; the result in Theorem 3.18 is
precisely the same result as in Theorem 2.3 in [13]. However,
Theorem 3.18 is a pure extension of Theorem 2.3 in [13] when &
is the class of all almost realcompact spaces. This particular &7 is
co-absolute closed and has the g-intersection property (see 2.15), and
the maximal almost realcompact extension £-X of a space X is
denoted as pX by Liu and Strecker in [10].

Let m be an infinite cardinal and <Z the class of all m-H-closed
spaces, as defined in 2.19. It is straightforward to show for a space
X such that EX e .o#, then Xe 2. Using 3.2, it easily follows that
P is co-absolute closed, and by 2.11, 7 has the g-intersection

property. Thus, for each infinite cardinal m, 2 is another class of
Hausdorff spaces satisfying 3.18.

For the class & of all almost realcompact spaces, let &’ be the
class of all “Z-pseudo-H-closed spaces defined in 2.7. In the next
result, &' is proven to be exactly the class of all W,-H-closed spaces
(sometimes called feebly compact spaces, see 2.19). Thus, by the

preceding paragraph, ' satisfies 8.18. By 2.12 & < &',

THEOREM 8.19. Let X be a space and 7 the class of all almost
realcompact spaces. Then Xe F' iff X is W,-H-closed.

Proof. Suppose Xe.F”’ and assume there is a countable open
cover & of X without a finite subfamily whose union is dense.
Without loss of generality suppose & is closed under finite unions.
Now {X\cl U: Ue &} is contained in a free open ultrafilter ¥ ¢ k X\ X.
Since Xe &', then by 2.7, £, X = £X. So, Z € k-X\X and by 2.3(b),
@ #N{cl(X\cl U): Ue}. Since cl(X\cl U) < X\U and N{X\U:
Uez} = @, then N{cl(X\cl U): Ue &} = @, a contradiction. Con-
versely, suppose X is W,-H-closed. Let % be a free open ultrafilter
on X and {U,:neN}< %. Now, N{cU,neN}+* @ or else
{X\cl U,: ne N} is open cover of X and there is me N such that
@ =MN{clU;:1 <7< m} contradicting the fact that % is a filter. [

REMARK 3.20. In this section we have obtained a Magill-like
result (Theorem 3.18) for an extension property which is co-absolutely
closed. Also, 8.18 is true for an extension property satisfying this
condition.
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(ii)) If Y is an extension of X and f: kX — £Y is the continuous
extension of the identity function on X, then Ye & iff f~(Y)e A

By 3.5, a co-absolutely closed property satisfies (ii)’, and it is
straightforward to show that a property & satisfying (ii)’ also
satisfies the following modification of 3.5:

PropoSITION 3.5'. Let Y and Z be H-closed extensions of a space
X and suppose there is a continuous function h: Y — Z that extends
the identity function on X. If X T < Z, then Te & iff h(T)e .

Now, if 3.5 is replaced by 3.5’ in the proofs, then 3.6 through
3.18 are true for an extension property satisfying (ii)’.
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