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Lat B be a commutative ring with identity. In this
paper we propose an extension of the concept of central
separable R-algebra and use this to define an associated
Brauer group for R which contains the classical Brauer
group as a subgroup. The essential difference between our
notion of central separable algebra and the classical one is
that we do not require that the algebra have an identity.
As a consequence, our algebras need not be finitely generated
or projective as R-modules. Nevertheless, with equality
defined using an appropriate version of Morita eguivalence
and tensor product providing the operation, we obtain a
tractable extension of the Brauer group. If R is a Henselian
local ring with algebraically closed residual field, our Brauer
group is trivial. If R is the algebra of complex valued
continuous functions on a compact Hausdorff space our Brauer

group is the full integral third Cech cohomology group of
the underlying space, while the classical Brauer group is
just the torsion subgroup.

Models for classical central separable algebras are the algebras
of the form Endp(M) where M is a finitely generated projective R-
module. The class of such algebras forms the zero element of the
Brauer group for R. Models for our central separable algebras are
algebras of the form M &, N where M and N are R-modules and
multiplication is defined through a surjective R-module homomorphism
M N®zM— R by the formula (m,Q n,)- (m, R n,) =1, @ my)(m, K n,).
We do not require that M and N be finitely generated or projective.
If M is finitely generated and projective and N = Homg(M, R) with
 defined by the standard pairing between M and its dual, then the
algebra M @z N is just Endz(M) and we have a classical central
separable R-algebra.

There are several equivalent definitions of separable R-algebra
in the classical situation. For example, A is separable if the mul-
tiplication map A Xz A — A has a right inverse as an A-bimodule
homomorphism. KEquivalently, A is separable if it is a projective A-
bimodule (cf. [2], [8]). Here it is assumed that A has an identity.
If we drop the identity requirement, then the various conditions for
separability are no longer equivalent as they stand. However, with
some strengthening of hypotheses to avoid trivialities we obtain
several equivalent and acceptable conditions for separability. For
example, the definition we adopt in §2 is that an R-algebra A is
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separable if it is projective as an A-bimodule, 4> = A, and MA = A
for each maximal ideal M of R. Note that if A has an identity
then the last two conditions are redundant and A4 is a classical
separable R-algebra.

The first three sections of the paper are devoted to developing
elementary properties of separable and (in §3) central separable R-
algebras. Most of the results have analogues in the classical theory
which are relatively trivial. The techniques required here are less
trivial and quite different from the classical situation due to the
lack of an identity and the absences of R-projectivity and finite
dimensionality. The key result in §3 is Proposition 3.8 which gives
a characterization of central separable R-algebras that is extensively
used in the succeeding sections.

In §4 we discuss Morita equivalence, define an extended Brauer
group, and establish its triviality for Henselian local rings with
algebraically closed residual fields.

In §5 we discuss automorphisms of central separable algebras.
We develop a complete analogue of the exact sequence of Rosenberg-
Zelinsky [20] relating such automorphisms to the Picard group of R.

Serre proved that the Brauer group of C(X) for X a compact
Hausdorfl space is the torsion subgroup of H¥ X, Z). Following work
of Dixmier-Douady [9] on C* algebras, we prove in §6 that our
extended Brauer group is all of H* X, Z) when R is C(X). We also
prove that if X is a certain kind of compact subset of a Stein space
and ~2(X) is the algebra of functions holomorphic in a neighborhood
of X, then the extended Brauer group of £Z7(X) is naturally embedded
as a subgroup of H¥X, Z). When we began writing this paper we
thought we knew how to prove that this embedding was surjective.
Unfortunately we discovered a gaping hole in our argument and,
as a result, this question remains unsettled.

Our interest in this subject stems from an attempt to charac-
terize the third Cech cohomology group of the maximal ideal space
4, of a commutative Banach algebra R. There are nice character-
izations of the lower order Cech groups of 4, (e.g., H¥ 4z, Z)=Pic(R)),
and it has been clear for some time that H3(4, Z) should be identi-
fiable with some sort of Brauer group for R (ef. [7],[25]). In a
joint paper with Craw and Raeburn [6] we introduced a class of
Banach algebras over R which can probably be used to construct
such a Brauer group. This class is defined and studied using a
completed topological tensor product and, as a result, it only makes
sense for ground rings R which are Banach or topological algebras.
We had hoped that the extended Brauer group defined here would
yvield a strictly algebraically defined functor, defined for all rings
R, which would yield the third Cech cohomology of 4, when R is a
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Banach algebra. Unfortunately, the surjectivity question mentioned
above when R = ~27(X) remains an obstacle in the way of completing
this project. It may be that a purely algebraically defined Brauer
group will not suffice to characterize H3(4,, Z) in all cases. To obtain
such a characterization, it may be necessary to reformulate the
results of this paper in the context of Banach algebras, using
completed tensor products. This question is discussed in more detail

in §7.

1. Splitting maps. Let R be a commutative ring with identity
and let A be an R-algebra (generally without an identity).

DEFINITION 1.1. A splitting map for A is an A-bimodule homo-
morphism @: A — A QXr A which is a right inverse for the multipli-
cation map 7: A R, A — A.

In the case of algebras with identity, the existence of a splitting
map is equivalent to separability ([8], Prop. 1.1). In the case of
algebras A without identity certain degeneracies are possible even
when A has a splitting map. These degeneracies are undesirable. To
eliminate them requires a slightly stronger definition of separability.
We shall come to this in §2. In the mean time we prove what we
can about algebras with splitting maps.

Another problem with algebras without identity is that the
module action map A R, M — M (M a left A-module) may fail to be
an isomorphism. It is trivially an isomorphism, with inverse m —
1®m: M— AR, M, if A has an identity. Here, by an A-module
we mean an R-module with a compatible action of the R-algebra A.

DEFINITION 1.2, A left A-module will be called regular if A&,
M — M is an isomorphism. Regular right and 2-sided A-modules are
defined analogously.

ProrosiTiON 1.1. If A has a splitting map, then A is a regular
left (right, 2-sided) A-module.

Proof. The existence of a splitting map @ shows that z: A gz
A — A is surjective. To prove that A ®, A4 — A is an isomorphism
we must show that kerw = imX, where M AR ARz A—> ARz A
is defined by Ma®bXc) =a @ bec — ab® ¢. However the identity
@ot + Mo(1 ® @) = 1 does this for us immediately. This proves that
A is regular as a left and as a right A-module, and this is what
we mean when we say it is a regular 2-sided A-module.

In what follows, the term “relative” will always refer to the



166 JOSEPH L. TAYLOR

ground ring R. For example, P is relatively projective means that

homomorphisms of P into a quotient module lift provided the quotient
map is R-split.

PROPOSITION 1.2. If A has a splitting map ® and M is a regular
left A-module with action map 7,: AQRr M — M, then @ induces a
left A-module homomorphism @u,: M — ARrM which is a right
inverse for m,. The analogous statement holds for right A-modules.

Proof. 1If we let v denote the isomorphism M — A Q, M, then
@, is just the composition of the three maps

M2 AR, M2 A0, AR, M2 AR M.

PrOPOSITION 1.3. If A has a splitting map then every regular
left (right) A-module is relatively projective.

Proof. Let M be a regular left A-module. Suppose y¢: L — N is
a surjective left A-module homomorphism which is R-split by v: N—
L and suppose a: M — N is a left A-module homomorphism. Then
we have the commutative diagram

L—" >N
N /
uoa\ /a

M

with ¢ and @ A-module maps and voa an R-module map. Applying
ARr( ) yields a commutative diagram of A-module homomorphisms
AR L8 4. N
AN /
1® VOa\ /1 R a
AR M.

If each of 1 ® vor and 1 ® a is preceded by the map @, M - AR M
of Proposition 1.2 and followed by the appropriate action map, we
obtain the commutative diagram

L—" N
N7 /
N S
M

with v = 7,0(1 ® voa)o@, the required A-module lifting of @. Thus,
M is relatively projective.
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COROLLARY. If A has a splitting map, then A is a relatively
vrojective left (right, 2-sided) A-module.

Note that the argument in Proposition 1.8 is just a little bit
different from the standard argument for the analogous fact for
algebras with identity. Also, in the case of algebras with identity,
a trivial argument gives that relatively projective modules are
relatively flat. We can prove an analogous result but the argument
requires a certain twist.

ProrosiTION 1.4. If A has a splitting map, then every regular
A-module is relatively flat.

Proof. We first prove that A is relatively flat as a right A-
module, If M is a left A-module, consider the sequence

ARpA®y M~ AQy M~ A®, M— 0

where Me QbR m) = a Q@ bm — ab @ m and p is, by definition, the
quotient map modulo the image of ». If A has a splitting map o,
then —\o(@ ® 1) is a projection onto the image of . This projection
is natural in the sense that it commutes with the induced map
ARrM—> A®rN whenever M — N is an A-module homomorphism.
In other words, ¢#: A QM — AQ, M is naturally split as a left A-
module homomorphism. It follows that if 0 - L — M — N—0 is an
exact sequence of left A-modules for which exactness is preserved
by A®:( ), then exactness is also preserved by A®R,( ). In
particular, A®,( ) will preserve the exactness of R-split exact
sequences, i.e., A is relatively flat as a right A-module.

Now if P is any regular right A-module then P is a direct
summand of P®,A4 by Proposition 1.2. That A is relatively flat
implies the same is true of PR, A4 and P.

This leads to the following result on the stability of regu-
larity:

ProrosiTiON 1.5, If 0> L—>M—>N—0 is an R-split exact
sequence of left (right) A-modules and A has a splitting map, then
the regularity of any two of L, M, N implies the regularity of the
third.

Proof. Suppose L, M, N are left A-modules. By Proposition 1.4,
A is a relatively flat right A-module. Hence, we have the commu-
tative diagram
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| J 1

0O— L — M — N —90

with both rows exact. Thus, if any two verticle maps are isomor-
phisms, so is the third.

ProPOSITION 1.6. If A has a splitting map, M is a regular left
(right) A-module, and Lc M is a submodule with AL = L, then L
18 regular.

Proof. Consider the diagram in the proof of Proposition 1.5
with N = M/L. Since A®, M — M is an isomorphism, A Q, L — L,
is automatically injective; since A-L = L, it is also surjective.

PROPOSITION 1.7. Let A have a splitting map. If M is a regular
left (right) A-module and L c M a submodule with AL = L, then if
L is an R-module direct summand of M it is also an A-module
direct summand of M.

Proof. Combine Proposition 1.8 and Proposition 1.6,

The following proposition will allow us to apply Proposition 1.7
to 2-sided A-modules also:

PropoOSITION 1.8. If A has a splitting map, so does the algebra
A= ARz A,

Proof. If @ is a splitting map for A then ¢ ® Sop is a splitting
map for A°, where T(a ®b) = b X a.

Now regarding an A-bimodule as a left A°-module allows us to
conclude that Proposition 1.7 is true with left modules replaced by
2-sided modules. If we apply this to the case where M = A and
L =1 is a 2-sided ideal of A4, we get:

PROPOSITION 1.9. Let A have a splitting map and suppose I is
a 2-sided ideal of A with AIA = 1. Then if I is an R-module direct
summand 1t 18 also an A-bimodule direct summand.

2. Separable algebras. We are now prepared to define separable
R-algebras. At first glance the definition (Def. 2.1 below) appears
much stronger than the simple existence of a splitting map. However,
eventually we shall show they are practically the same thing.
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If A is an R-algebra we will denote End,.(4) by Z(4). If A
had an identity this would be the center of A. In the absence of
an identity, there is no natural way to regard Z(A) as a subalgebra
of A. However, at least we have:

ProrosiTIiON 2.1. If A*= A then Z(A) 1s a commutative R-
algebra.

Proof. 1f a, e Z(A) and a, b A then «aopB(ab) = alaBd)) =
a(a)B3(b) = Blala)d) = Boalab). Hence, Z(A) is commutative if
A=A,

DEFINITION 2.1. Let A be an R-algebra. We shall call A
separable provided:

(a) A*= A4;

(b) A is a projective A°-module; and

(e) for each maximal ideal M c Z(A), MA #+ A.

Condition (¢) is a nondegeneracy condition. It implies, in par-
ticular, that A == (0).

PROPOSITION 2.2. If A 1is separable them A has a splitting
map.

Proof. Since w: A ®, A — A is surjective by (a) and A is A°’-
projective by (b), = has a right inverse ¢ as an A‘-module homo-
morphism. Such a thing is a splitting map.

DerINITION 2.2. We shall call A central if the natural map
R — Z(A) is an isomorphism. Observe this makes A faithful.

To avoid confusion in what follows, the multiplication in A® will
be indicated through the use of a dot between the factors, as will
the left module action of A° on A. We shall not employ the dot
when multiplying elements of A or writing the left or right A-
module action of A on AR A.

PROPOSITION 2.3. Let A be a nonzero central R-algebra with a
splitting map ®. If R is a field, then ®(A)-A° = A° and A° is also
central.

Proof. The space @(A)-A° is two-sided ideal of A°. We first
show that it cannot be the zero ideal.
Let N={necAd;an =nb =0 for all a, b 4} and initially assume
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that N = (0). Then the family of linear functions from A4 to R of
the form a — f(ab) with be A and f in the dual of A, is a separating
family of linear functionals on the R-vector space A. The same is
true of the family of functionals of the form a — g(ca) for cc 4
and ¢ in the dual of A. It follows that tensor products of functionals
of these two forms yield a separating family of linear functionals
on A®QrA. Thus, if acA° and a-(db® c) =0 for all b, ce A, then
a = 0.

Returning to the case where N may not be zero, if we apply
the above argument to A/N we conclude that a-A° =0 implies
that a € ARz N + N®rA. This, in turn, implies 7a = 0 where
w: AQr A — A is the multiplication map. Since wc@ =1 we conclude
that @(A4)-4° # (0).

Since A°-@(A) = p(A°-A) = p(A) we have that @(4)-A° is the
two-sided ideal in A° generated by @(A). Hence, it is an (A°)-
module direct summand of A° by Proposition 1.9. This means there
is a projection pe Z(A°) with pA° = p(A): 4°. Clearly, p is not
multiplication by an element of R (since R is a field) unless p =1
and @(A)-A° = A°. Thus, the proof will be finished if we can show
that A° is central.

Let ae Z(A°) be given. Then for a € A and f in the dual of A4,
the map b — (f @ Da(a ® b) belongs to Z(A) and, hence, is given
by an element r(a-f)e R. Then for any functional g in the dual of
A we have:

(f @ 9)ala @ b) = r(a, )g(b) .

Similarly, ¢ - (1 & ¢)ala ® b) is given by an element s(b, g)€ R.
Then

(f ® 9afa & b) = s(b, 9)f(a) .

Thus, s(b, g)f(a) = r(a, f)g(b), which implies that there exists ke R
such that s(b, 9) = kg(b) and (e, f) = kf(a). Then

(f® 9ala@b) = k(f Q 9)a & bd)
and we conclude that « is given by multiplication by k€ R. Thus,

A¢ is central.

PROPOSITION 2.4. Let A be separable and let IC A be a two-
sided ideal. Then every element of Z(A/I) lifts to an element of
Z(A).

Proof. If acZ(A/I) we wish to find g€ Z(A) such that the
diagram
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A— Al

ks

A— AT

is commutative. However, the existence of g follows immediately
from the fact that A is a projective A°-module and the identities
Z(A) = End .(A), Z(A/I) = End (A/I).

If A is an algebra with a splitting map @ and be 4, then o —
P(a)-b: A — A defines an element of Z(A4). If we denote this element
by ,(b), then p,: A — Z(A) is an R-module homomorphism. In fact,
it is a Z(A)-module homomorphism since if g€ Z(A) then By (b)a =
B(P(a)-b) = P(a)-B(b) = 1, (8(b)a) for all a, be A.

PROPOSITION 2.5. If A s separable and @ is a splitting map
Jor A, then p,: A — Z(A) is surjective. Furthemore, if be A is an
element for which p,(b) =1, then Z(AM is a Z(A)-module direct
summand of A which is isomorphic to Z(A).

Proof. 1If p, is not surjective, then its image is a proper two-
sided ideal of Z(A) and, hence, is contained in a maximal ideal M.
Now by (e¢) of Definition 2.1, B = A/MA # (0). Furthermore, Z(B)
is the field Z(A)/M by Proposition 2.4.

Note that @ induces a splitting map B— B B for B, which
when composed with B®yB— B X, B yields a splitting map @
for B regarded as a Z(B)-algebra. Hence, Proposition 2.8 applies
and we conclude that $(B)-B° = B°. On applying the multiplication
map B°— B this yields #(B)-B = B. On the other hand, by the
definition of y, and M, we have @(A4)-Ac MA, which implies

@(B)-B = (0). The resulting contradiction shows that g, must be
surjective.

PROPOSITION 2.6. If A is an R-algebra, then A is separable if
and only if A has a splitting map @ for which f, is surjective.

Proof. In view of Proposition 2.5, we need only show that if
A has a splitting map @ with g, surjective then A is separable.

The existence of ¢ immediately gives A* = A. Suppose a: M —
N and B: A — N are A°*-module homomorphisms and « is surjective.
If p, is surjective we choose a,€ A with p,(a,) =1 and m,€ M with
a(m,) = Bla,). Then v(a) = ¢(a)-m, defines a lifting v: A— M of g.
In fact,

aY(a) = a(P(a)-m,) = P(a) - a(m,) = P(a)- B(a,)
= B(@(a)-a,) = B(¢laa) = Ba) .
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Hence, A is a projective A°-module.

Finally, the map b — p.(b)a,, where p,(a,) =1, expresses Z(A)a,
as a Z(A)-module direct summand of A which is isomorphic to Z(4).
Thus, we cannot have MA = A for a proper ideal M < Z(A). This
completes the proof that A is separable.

PROPOSITION 2.7. Let A and B be R-algebras and let I be a
regular two-sided ideal of A; then

(a) if A is separable, so is A/l

(b) if A 1is central separable, then A/I is central over R/t I);

(e¢) if A and B are separable, so is A Rr B; and

(d) 4if A and B are central separable, so is ARz B.

Proof. If ¢ is a splitting map for A, then the regularity of I
implies that @ maps I into I®;A and, hence, that @ induces a
well defined splitting map & for A/I. Clearly, if g, has 1 in its
image so does p;. Thus, A/I is separable. That A/I is R/p,(I)
central if A4 is A-central follows from Proposition 2.4.

Now suppose A and B are separable with splitting maps @ and
o with g, and g, surjective. Then clearly @ @ + is a splitting map
for A®r B and fugy(a @ b) = p,(a)tty(b)—which implies that ft,gy is
surjective and A Xz B is separable. If A and B are also central,
then p, and g, are R-valued. It follows that p,gy is R-valued as
well and, hence, that A ®, B is central.

3. Central separable algebras. In this section we establish
analogues of several of the basic results from the classical theory
of central separable algebras with identity. This material lays the
groundwork for the definition of the Brauer group in §4.

Let A be a central separable algebra over R and let @ be a
splitting map for A. Recall the map pg,: A — R of Proposition 2.5,
which is a surjective R-module homomorphism characterized by the
identity p.(b)a = @(a)-b. If J is a two-sided ideal of A, then p,(J)
is an ideal of R and the above identity shows that p¢,(J)AcJ. The
following is an analogue of Lemma 3.5, Chapter 2 of [8].

PROPOSITION 3.1. With A and ® as above, of J is a maximal
two-sided ideal, then p,(J) is a maximal ideal of R and py(J)A =
AJA.

Proof. If M is an ideal of R such that p,(J) C M, then J + MA
is a two-sided ideal of A containing J. Since p,(J + MA)C M, J +
MA is a proper ideal. The maximality of J implies MA cJ and,
hence, M = p,(MA) < p(J). We conclude that g,(J) is maximal.
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Now A/p,(J)A is a central separable algebra (Prop. 2.7) over the
field R/p,(J). It follows from Proposition 1.9 that A/¢.(J)A can have
no proper nonzero regular ideals. Hence, if J is the image of J in
Alp(J)A, then AJA = (0). We conclude that AJA cC p,(J)A. Since
pA(J)ACJ and A* = A, it follows that AJA = p,(J)A, as claimed.

The next proposition would be trivial if we were working with
algebras with identity:

PROPOSITION 3.2. If A is central separable, then every two-sided
ideal of A is contained in a maximal two-sided ideal.

Proof. 1f JC A is a two-sided ideal, then p,(J) is an ideal of R
with p(J)AcJ. If M is a maximal ideal of R containing g, (J)
and K is any proper two-sided ideal of A containing MA, then
P(K) = M and, necessarily AKA = MA. Thus, although MA may
not be maximal, the ideal I, = {ac A:bacc MA for all b, ce A} is
maximal. Since I, contains MA it also contains .J.

PROPOSITION 3.3. If A is central separable, then P(A)-A° = A°.

Proof. If @(A)-A° is not all of A° then it is a proper regular
two-sided ideal in A°. By Proposition 2.7, A° is a central separable
algebra. By Proposition 3.2, ¢(A4)-A° is contained in a maximal ideal
J, we have A°-J-A° = MA® for some maximal ideal M of R by
Proposition 3.1. Since ®(A)-A° is regular and contained in J, it is
also contained in A°-J-A°=MA°. This is impossibe since w(p(A4)-A*)=
A MA by Proposition 2.6. We conclude that @(4)-A4° is not a
proper ideal of A°.

PROPOSITION 3.4. If A is central separable, ® and pt, are as
above, and N = {a € A: AaA = (0)}, then a two-sided ideal JC A s

contained in N 1f and only if p(J) = (0).

Proof. If JC N then p(J)A = (4)-J = (0) and, hence, g, (J) =
(0). On the other hand, if g,(J) = (0) then A°-J = @p(A4)-A*-JC
P(A)-J = po(J)-A = (0).

We can now prove a version of the ideal correspondence (cf. [8],
Ch. 2, Cor. 3.7):

PROPOSITION 3.5. Let A be central separable with ® and tt, as
before. Then the map M — MA is a bijection from the set of ideals
of R to the set of regular two-sided ideals of A. Furthermore, if J
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18 any two-sided ideal of A, then AJA is regular and equal to MA
Jor M = p(J).

Proof. Since p,(MA) = M the map M — MA is injective. If J
is a two-sided ideal of A, then M = p,(J) is an ideal of R and MA
is a regular two-sided ideal of A contained in J. The algebra A/MA
is central separable over R/M by Proposition 3.3. Since M = p,(J),
Proposition 3.4 implies that the image of J in A/MA is contained
in the ideal N for A/MA. Hence, AJA < MA, which implies AJA =
MA since MAcJ and MA is regular. If J happens to be regular,
then J = MA.

There are four module actions of A on A ®r A—the first and
second left actions (referring to which factor in A ®; A is being
acted upon) and the first and second right actions.

DEFINITION 3.1. Let 2 (or 2(A) if the A-dependence needs
exhibiting) denote the R-module consisting of all R-module homo-
morphisms @w: ARz A—> AR, A with the property that w is a
homomorphism for the four module actions described above except
that the two right actions are interchanged.

We may also regard AX;A as an A*-bimodule in two ways:
first, by identifying it with A° and using the multiplication in A,
and, second, by identifying A ®, A with 4, &, A, where A, is A
regarded as the left A°-module with operation (b ® ¢)-a = bac and
A, is A regarded as the right A°-module with operation a-(0®¢) =
cab. If we denote the A*-bimodule A4, Xz A4, by A? then £ may be
regarded as the space of A°-bimodule homomorphisms w: A* — A° or,
alternatively, as the space of A°-bimodule homomorphisms @: 4° — A®.

Note that the composition of two elements of 2 may be regarded
as an element of Z(A°). Hence, if A°® is central then composition
of two elements of 2 yields an element of R.

If weQ and be A, then a — wow(a @ b) is an A-bimodule endo-
morphism of A, i.e., an element of Z(A). We denote this element by
tr,(b). Then wow(a Q b) = tr, (b)a.

ProOPOSITION 3.6. If A*= A and we 2(A), then tr, is a Z(A)-
module homomorphism of A to Z(A) and tr, (ab) = tr,(ba) for all
a, be A.

Proof. For a,b, ¢, € A we have

tr,(ab)e = mow(c ® ab) = w(c ® a)-b = wow(ec X ba) = tr,(ba)e .
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If Zez(A) and a, b, ce A we have

tr,(z(ab))e = wow(e ® z(ab)) = wow(ec R 2z(a)b)
= w(c® b)-z(a) = z(w(c @ b)-a) = z(tr,(ab)) .

Hence, tr, is a Z(A)-module homomorphism if A®* = A.

Suppose A is central, then the pairing 2 x 2 — Z(4) = R, given
by composition, yields an R-module homomorphism p: 2 Q2 — R.

There is a map from A R, A X2 to AXr A given by a QbR
w— w(a®b). This can be regarded as an A°’-bimodule map
0: A? R, 2 — A°. In the same vein, there is a map tr: A Q2 — Z(A4)
defined by tr(a ® w) = tr,(a). If A is central then tr has its values
in BR. The map # will be called the separator for A while tr will
be called the trace.

ProproSITION 3.7. If A is a central separable algebra then
(1) 0:2Rz2— R is an R-module isomorphism;

(2) 6: A R 2 — A® is an isomorphism; and

(8) tr: AQz 2 — R is surjective.

Proof. All three statements follow from the existence of a rich
supply of elements of 2. We may construct such elements as follows:
Let @ be a splitting map for A and set @' = So@ where S(a ® b) =
b®a. If acA® then a defines an element w,e 2 by w.(a® b) =
@(a)-a-P(b). Then the fact that 0: A Rz A Rz 2 — A Rz A is surjec-
tive follows immediately from the identity ®(A4)- A°-p(A) = A°. This,
in turn, follows from Proposition 3.3.

Now consider the commutative diagram

(AR AR 2) D225 AR AR 10— A®1 A
7
Qe
-

{
I —

(A®zA) Rz (2 ®:2)

Since @ is surjective p must be surjective, otherwise its image would
be a proper ideal M of R with MA° = A°. This is impossible since
A° is separable.

Since o is surjective, we may choose Jw, ® w;c 2 Q2 such
that Jw,ow; = 1. We set o(r) = rZw, @ w; for re B. Then ¢: R —
2Rz 2 is an inverse for p. In fact, poo = 1 is clear, while

0o0(w R @) = (W) Zw;, R w; = Sw(ww,) QR W;
=30 Q@ QR w)w; =0 @ o'(w,om) =0 R w0 .
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This establishes (1).

Returning to the diagram (*), note that since p is an isomorphism,
¢ must be injective. Thus, 6 is an isomorphism and (2) is established.

To prove (3), note that 1 ® tr = wod. Thus, since © and 6 are
surjective the image of tr is an ideal M of R with MA = A. Hence,
M = R and tr is surjective.

Condition (8) above turns out to be necessary and sufficient for
A to be separable. In fact, a somewhat stronger result is:

PROPOSITION 3.8. Let A be a Saithful R-algebra and let 20
be an R-submodule. I f tr maps A X2 onto Rc Z(A) then A 1is
central separable and 2 = Q.

Proof. By Proposition 3.6 each tr, for we@ is a Z(A)-module
homomorphism (provided A® = A). Thus tr must map A ®,? onto
Z(A), from which we conclude that A is central. That A*=A
follows from the identity 1 ® tr = 7-8 and the hypothesis on tr.

If A is separable then Proposition 3.7 implies 2 is an invertible
R-module. Then the only way £ could be a proper R-submodule
would be if it were contained in MQ for some proper ideal M c R.
The hypothesis on trace makes this impossible.

To complete the proof we must prove that tr: A ¥z 2 — R sur-
jective implies A is separable.

From the above we have that A* = A. If M c R is an ideal for
which MA = A, then tr(AQ 2) = tr(MAQ 2)c M. Hence, if tr is
surjective M = R. Thus, conditions (a) and (¢) Definition 2.1 are
satisfied.

To complete the proof, we show that A is projective as a left
As-module. Since tr is surjective and = is surjective, we may choose
an element b, Q@ ¢; ® ;€ A Qr A QR £2 such that 3 tr, (b)) =1. We
define @, € Hom (4, A°) by o,(a) = w,(a ® ¢;,) and note that

2o (a):b, = Zmow,(a X bic;) = (Ztrwi(bici))a =a.

Now suppose p: M — N and v: A — N are A°-module homomorphisms
with g surjective. We choose m,€ M such that p(m;) = v(b;) and
define 7v: A — M by v(a) = Ip(a)-m;. Then p-v(a) = Ip,(a)- p(m;) =
Jpla)-vd,) = v ZP(a)-b) = a. Thus, v lifts v and A is projective.
The module £ is rather mysterious. For central separable A4, 2
is an invertible R-module by Proposition 3.7 and, hence, determines an
element of Pic(R). In fact, this element is a square root of unity
since 2 ®r 2 = R. We conjecture that 2 = R for all central separable
A. We shall see that this is true for a wide variety of algebras A.
For example, if A has an identity e, then @ — tr.(e): 2 — R is an
isomorphism. If ® is chosen so that tr.(e) =1, then we®e) =
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Ze, ® d; is an idempotent of A° with the property that w(a ® b) =
Zachb R d;, = Te; ® bd,a.

If 2 is isomorphic to R (determines the identity element of
Pic(R)), then the separator 6 determines an isomorphism A? — A4°.
This is not unique but depends on the choice of the isomorphism
2 — R. Clearly the isomorphism A? — A° defined by 6 is unique up to
an invertible multiplicative factor from R. Similarly, 2 = R implies
that tr yields a trace from A to R which is unique up to a normali-
zation factor from R.

If there exists we 2 and be A such that tr,(b) =1, then o' —
tr,(b): 2 — R is an isomorphism. Since tr: A Q2 — R is surjective
for a central separable algebra A, there are always finite sets of
elements {w,} and {b;} so that ¥ tr,(b,) =1. If R is a local ring, we
must have tr,(b;) = »; invertible in R for some j. Then w; and
7;'b; forms a pair as above and we conclude that 2 = R. Thus,

ProprosITION 3.9. If R is a local ring, then Q2(A) = R for any
central separable R-algebra A.

The standard model of a central separable algebra is as follows:
Let X and Y be R-modules and let »:Y &z X — R be an R-module
homomorphism which is surjective. Then A = X®;Y becomes an
R-algebra if we set (2, ® ) (2. ® ¥.) = My, Q@ .)(@, @ ¥s).

If we define w: A®rA— ARRA by (@, ® ) (2. @ ¥.) =
(@, @ Y) @ (2, @ 1), then we2(A) and tr,(x @ y) = My ®x). The
surjectivity assumption shows that there exists be A with tr,(b) = 1.
Thus, Proposition 3.8 implies that A is central separable.

By the paragraph preceding Proposition 8.9, A4 has the property
that Q(A4) = R since tr,(b) = 1.

DEFINITION 3.2. The algebra deseribed above will be called the
R-elementary algebra determined by the triple (X, Y, \).

PrOPOSITION 3.10. Let A be an R-algebra. Then A is central
. separable algebra if and only if there is an R-algebra B, having R
as an R-module direct summand, such that A RrB is 1somorphic
to an R-elementary algebra.

Proof. Suppose A is central separable and consider the separator
g: A?Q 2, — A°. We have

0e@OR @) 0(cRXRAIRXO) =00aRbRw) cRdR )

=0(mBaRbe R w)RdR v
=0(tr(bce ® w)a R d R ') .
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Hence, 4 is an algebra isomorphism with image A° and with domain
the R-elementary algebra determined by 4, A ®; 2, and the pairing
e, bQ w) = tr(be ® w) = tr,(bc). Thus, B = A is an algebra for
which A ®, B is isomorphic to an elementary algebra. Note that
A°? contains R as an R-module direct summand by Proposition 2.5.

Conversely, suppose B is an R-algebra having R as an R-module
direct summand and suppose A X B is isomorphic to an elementary
algebra. Then A ®;B is central separable. We shall show that
this implies that A is central separable.

We have R-module homomorphisms p: B— R and »: R — B with
pov=1 Then 1Qu:ARB—A and 1 Q®v: A— AR, B exhibit
A as an A-bimodule direct summand of A ®zB. Using this it is
easy to see that (A®rB)= A QB implies 4*= A and that
M(A ®y B) = (A &5 B) for each proper ideal M of R implies the
same is true of A. To prove A is A°*-projective, let a: M — N and
B:A— N be A*-module homomorphisms with « surjective. On
tensoring with B we get (A Xz B)-module homomorphisms a®
1: AR B—> NQ®zB and B3R 1:4A Rz B—> NXzB. Since (A R;B)is
(A ®y B)-projective we have a map 7 AXRzB—MKzB with
(a@®@1)oy =(BR1). Then d =1 p)evo(1 K v): A— M is A°-module
homomorphism such that ooy = 8. Thus, A is projective.

To prove that A is central, note that if ze Z(A) then 2& 1le
Z(A ®5 B) and, hence, is multiplication by an element of R. Using
the fact that 4 is an R-module direct summand of A ® B shows
that z is multiplication by the same element of R.

4. The extended Brauer group. The classical Brauer group
for R is constructed from the class of central separable R-algebras
with identity by declaring two such algebras, A and B, to be
equivalent if there is an algebra isomorphism A @ Homgz(N, N)—
B &y Homzy(M, M), where N and M are finitely generated projective
faithful R-modules. The equivalence classes then form a group
under tensor product. For central separable algebras the above
equivalence relation agrees with Morita equivalence (cf. [4], Ch. 2).
We shall use Morita equivalence as the starting point for our deve-
lopment of the extended Brauer group.

Let A and B be regular R-algebras (A X, A = A and BQ ;B = B).
We declare A and B to be Morita equivalent and write A ~ B
provided there exists a regular left A-right B-module M and a regular
left B-right A-module N such that 4 = M ®,; N as an A-bimodule
and B= N®,M as a B-bimodule. It is a simple matter to prove
that this is an equivalence relation, but the proof uses the regularity
of all the modules involved. For example, reflexivity is just the
regularity condition on 4: A = A KR, A.
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Given a Morita equivalence, the implementing modules N and M
determine functors X - N®, X and Y- MK Y which yield an
equivalence between the category of regular left A-modules and
the category of regular left B-modules. Half the proof that this is
an equivalence is the sequence of isomorphisms

MB;(NKR.X)= (MR N)Q@uX=A®, X=X

(note the use of the regularity of X). The other half goes the same
way. By interchanging M and N and tensoring on the right we
get an equivalence between regular right A-modules and regular
right B-modules. Tensoring cn both sides yields an egquivalence
between 4 and B-bimodules.

Given a Morita equivalence A ~ B as above, the isomorphism
N, M — B determines a B-bimodule map v: N X, M — B satisfying
Mura @ m) = Nn @ am). The pair N, M and the map » determine
the algebra A as follows: A4 is M&®,; N as an R-module and the
multiplication is determined by » as

(m;, @p )1, Qp n,) = (M Qg 1) Q4 (1, Qs 1)
=My @y (0 Q. M.) Qp = My Qp M, @ My)N, .

This is just like the construction of an R-elementary algebra, except
that the ground ring is replaced by B.

On the other hand, suppose we are given a regular R-algebra B,
a left B-module N, a right B-module M, and a B-bimodule map
MNK,M—B. We can define an algebra A4 which is M &, N as
an R-module and with product given by

(1m0, 5 1)1, Qp 1) = m, Q@ Mn, K ney)n,

Is A then Morita equivalent to 8 with N and M the implementing
modules? The answer is yes if B is central separable. The only
thing that needs proving is that »: N®, M — B induces a B-bimodule
isomorphism N &), M — B. We shall prove this using the separator
f defined in the previous section. First, we neced a proposition
which characterizes the trace map.

ProrosiTION 4.1. Let A be a central separable R-algebra and
let 2 = 2(A), then:

(a) 0—]A4, Al Rz 2 —>AR:2 i R—0 1s a split short exact
sequence of R-modules.

o) If T: AR 2 — R is any surjective R-module homomorphism
with kernel containing [A, Al Rz 2, then T = v tr for an invertible
element r e R.



180 JOSEPH L. TAYLOR

Proof. Since tr(ab® w) = tr(ba ® w), ker tr clearly contains
[4, Al ®: 2.

To prove the reverse containment, we consider the maps S(a Q) b) =
b@®a on ARrA, and S; = 6*0Sef and S, =SSR 1 on ARz ARz L.
Since SypoS;* is an A’-bimodule automorphism of A°®;2, it must
be given by an invertible element » € R; i.e., Sy = 7S,.

With 7: A ®; A — A the multiplication map, recall that 1 ® tr =
wof. Thus 7 = (1 ® tr)ef~* and for a, be A we have:

[a,b] = ( —7S)a®b) = 1 tr)L — 7S~ (a QD) .

It follows that (1@ tr)(1 — rS): A Rz (A ®z2) — A has [A, A] as
image. On tensoring with 2, we obtain a map (1 & tr)(1 — »S):
(AR 2) Rz (AR 2) > ARz 2 with [A4, A]®: 2 as image. Here,
SR, R0Rw,) =bRQ w,®a® w, If wechoose 3e AR, with
tr(8) =1, then 7(a) = 1 ® tr)1 — »S)(a ® B) defines an R-module
homomorphism 7: A ®; 2 — A R 2 which is the identity on kertr
and has [4, A] ®; 2 as image. Since [4, A] ®:2 C ker tr, we conclude
the two are equal. The map 7 also shows the sequence is R-split
and (a) is proved.

To prove (b) note that if T: A ®: 2 — R has kertr cker T and
is surjective, then it induces an R-module surjection (A Q5 2)/ker tr —
R. Since (AX®y2)/ker tr = R this map has no choice but to be
multiplication by an invertible element re¢ R. Then T = 7 tr.

Returning to the discussion preceding Proposition 4.1, if A =
M @5 N is the algebra determined by regular left (resp. right) B-
modules N (resp. M) and a surjective B-bimodule homomorphism
M N®zM— B, then we shall call 4 a B-elementary algebra.

PROPOSITION 4.2. Suppose B is central separable. Then an R-
algebra A is B-elementary if and only if it is Morita equivalent to
B. In this case A is also central separable.

Proof. We have already established that a Morita equivalence
beteen A and B presents 4 as a B-elementary algebra. The converse
will follow if we can show that if N, M, and \ present A as a B-
elementary algebra then the kernel of »: N®r M — B is the kernel
of NxM—NR®, M. This will prove NQ, M = B and also es-
tablish the regularity of N and M as A-modules, since AR, M =
MRy(NQsM) and NQ,A = (NQ+M) &5 N.

First, M and N are A-modules in the obvious way: if a =
m @ n then am’ = mix(n ® m') and n'a = M(n' ® m)n for m’e M and
nw'€ N. Note that #'a@m —n' Qam' =AM Qm)n Qm' — n' &
mrn(n @ m') which is in the kernel of A: N®z M — B. Hence, the
kernel of ) contains the kernel of NQ. M — N, M.
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Now consider the separator 6: BX,BXz2—>B&X,B for B. It
is an isomorphism for the two left and two right B-module actions
but interchanges the two right actions. Thus, if we apply MR, ( )
to the second factor in both domain and range and ( ) ®; N to the
second factor in the domain and the first factor in the range, we
obtain a map

0:BRrARr 2 — NQr M

which is an isomorphism for the two A actions and the two B
actions but interchanges the right actions. Hence, for each aec
AR 2,0 > 1f(bR a): B—~ B is a member of Z(B). Since B is
central xo0(b® a) = T(a)b for an R-module map T: A®,; L2 — R.
Note T is surjective because 4 and A are surjective. Then kernel
of T contains [4, 4] ®. 2 because of the A-module properties of &
and the fact that Mne @ m — n Q@ am) = 0 for a€ A, ne N, me M.

Assume for the moment that A 1is central separable and the
module 2 = 2(B) is isomorphic to 2(4). Then Proposition 4.1 implies
that T is an R multiple of the trace for A. Since A = 1R T)od7,
its kernel is 6 ker(1 ® T). By Proposition 4.1 the kernel of T is
[4, A]®: 2 and § maps B®,[4, A] Rz 2 exactly to the kernel of
Nz M-—-> N, M. Thus, the proof is finished if we can show that
A is central separable and 2(B) = 2(A4).

Consider the sequence of maps

~

BRrA®r2— N®yM—— B

d is a B-bimodule isomorphism and an 4 bimodule isomorphism while
A is a B-bimodule homomorphism. If we apply MQ:( )Xz N we
obtain the pair of maps

AR AR, 2 AR, A A

where ©* is the multiplication in A. Also, since Aof =1 R T: BR),
(AR5 2)— B we conclude that 7404 =1 QR T: A Xz (A Rz 2) — A.

Now 6+ has the properties of the separator for 4 except that
we don’t know a priori that 2(4) = 2(B). However, if w € 2 = 2(B)
then @(a ® a’) = 0*(a Q a’ ® w) clearly defines an element @& e 2(A).
Thus, @ — @ maps 2(B) into 2(4) and 64 is the separator for A
composed with the map A Rz AR 2 — ARz A Xz 2(A) induced by
@ — @. From this it follows that T is the composition of the trace
for A with the induced map A ®, 2 — A ® 2(A). Since T has image
R, it follows from Proposition 8.8 that A is central separable and
w — @ is surjective. Since £ is an invertible R-module @ — @ must
be an isomorphism.
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The previous proposition is a powerful tool for generating Morita
equivalences. For example, it easily yields:

PROPOSITION 4.3. Let N be a regular left ideal and M a regular
right ideal of the central separable algebra A. If NM = A then the
subalgebra MN is central separable and Morita equivalent to A.

Proof. Let \: NQrM — NM = A be multiplication in A. From
Proposition 4.2 (with B replaced by A) we have that the A-elementary
algebra M ®, N, with product determined by A, is central separable
and Morita equivalent to A. If we can prove that m: M ®, N— MN
is bijective, then the proof will be complete since the multiplication
induced by A will then agree with the product in MN as a sub-
algebra of A.

Clearly =m is surjective. To prove it is injective consider the map
@y: N— AR N of Proposition 1.2.

It is a left A-module homomorphism and a right inverse for
the multiplication map A&z N-—N. Thus, if > mmn, =0 and
@x(n) = D5 a; @ ny; we have D, m; >y a; Q 1y = xS man,) = 0 and
S0

2mQn; = Z (m; @ iy — My @ Niy)
¥

which belongs to ker M Q. N— MR, N). It follows that MQ, N —
MN is injective.

COROLLARY 4.1. FHvery central separable R-algebra A is Morita
equivalent to a subalgebra which 1is contained in a finitely generated
R-submodule of A.

Proof. 1If a,b, ce A then ach = 3, tr(v,c ® w;)n; where
2 Q®vQw, =0(a@®beAR AR L.

It follows that if M and N are finitely generated ideals then MN
is contained in a finitely generated R-submodule of A. Now suppose
a;, b, ¢, and @, are chosen (¢ =1, -+, n) so that tr(3) a;b.e; Q w,) = 1.
Then 7-80(A QR > ab,e; X w,) = A but is contained in (3] A¢;)- (S a,4).
Thus N = 3, A¢; and M = 3 a,A are finitely generated regular left
(resp. right) ideals satisfying NM = A. By the proposition, 4 ~
MN and MN is contained in a finitely generated R-submodule of A.

COROLLARY 4.2. If R is moetherian then every central separable
R-algebra is Morita equivalent to a subalgebra which is a finite R-
module.
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It is apparent from Corollary 4.1 that the Morita equivalence
classes of central separable R-algebras form a set. It is also clear
from the definition that algebra tensor product induces a well defined
operation on this set under which it is an abelian semigroup. The
ground ring R determines an identitiy for this semigroup. By
Proposition 3.10, if A4 is a central separable A-algebra then there is
another R-algebra B, necessarily central separable by the same
proposition, such that A ®,B is isomorphic to an R-elementary
algebra. By Proposition 4.2 an R-elementary algebra is Morita
equivalent to R. Thus, our semigroup is actually an abelian group.

DEFINITION 4.1. The extended Brauer group of R, denoted B(R),
is defined to be the group of Morita equivalence classes of central
separable R-algebras. If A is a central separable R-algebra, we
denote its class in B(R) by [A].

Equality in the extended Brauer group can also be defined in a
way that is more in the spirit of Auslander-Goldman [2]:

ProOPOSITION 4.4. If A and B are central separable R-algebras,
then [A]l = [B] in B(R) if and only if there are R-elementary algebras
E and F so that AR, E = BX,F.

Proof. Since [E]|=[R]=[F} we have [A]=[ARE]=
[B®.F] = [Bl.

Conversely, if [A] = [B] then [A®,B’] =[A]B]™ =[R] and
[B°R, Bl = [B]7'|B] = [R] so that £ = B°Q:z B and F = A R B’ are
R-elementary algebras. However,

ARl = AR B Qe B=BX@r ARz B =B F .

The usual Brauer group B(R) is defined in a similar way except
that only algebras with identity are considered and equality is defined,
as in Proposition 4.4, but with ZA-elementary algebras replaced by
algebras of the form Hom,(#, M) where M is a faithful finitely
generated projective R-module. Now such an algebra is R-elementary
in our sense. In fact, Hom,(M, M)=M Q, M’ where M' = Hom(M, R)
and multiplication is defined by the usual pairing AMm' @ m) = m'(m).
On the other hand we have:

PROPOSITION 4.5. If E= M, N is an R-elementary algebra
with an identity, them M is faithful, finitely generated and projec-
tive, N= M' and E = Homz(M, M).

Proof. Let i NQrpM — R be the map inducing multiplication
in K. The fact that A is surjective implies that N and M are
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faithful R-modules. If ¢ = 3>, m; ® %, is an identity for E, then

mRr =em@n) =S, Mn&Qm)m;Qn .

Thus, if ke N®rzM is chosen so that AMk) =1, we have m Q@ k =
Sin(m, @ m)m; @ k and, on applying 1 ®n, m = >, Mn; @ m)m,. Then
the maps m — {M(n; ® m)}: M — R* and {r;} — >, r/m; express M as
an R-module direct summand of R*. Hence, M is finitely generated
and projective and every element of M’ has the form m —
St rovn, @ m) = Mn Q@ m) with n = 3, r.m,. The analogous argument,
using the fact that e is a right identity, shows that » — > Mn Q) m,):
N — R" embeds N as a direct summand of R" and completes the
proof that the form (n, m) — Mn Q m) defines an isomorphism of N
with M’. Thus, = M Q; M = Homy(M, M).

If A and B are central separable R-algebras with identity which
determine the same class in B(R), then A ®; B® is an R-elementary
algebra with identity and, hence, has the form Homg(M, M) for a
faithful, finitely generated projective R-module M. This implies that
A and B determine the same element of the classical Brauer group
B(R). Thus, we have:

PROPOSITION 4.6. The classical Brauer group B(R) is embedded
as a subgroup of B(R).

Just as in the classical case, B is a covariant functor on the
category of rings and identity preserving ring homomorphisms. For
such a homomorphism R — S, A —» A & S determines the correspond-
ing group homomorphism B(R) — B(S).

We now proceed with an analogue of the classical result that
B(R) = (0) if R is a Henselian local ring with maximal ideal M and
R/M is algebraically closed (ef. [2], Prop. 6.1). The proof rests on
the existence of rank one idempotents, where an idempotent pec A
is called rank one if pAp = Rp = R. An idempotent p is called
nondegenerate if p ¢ MA for each maximal ideal M of R. Note that
a rank one idempotent p is nondegenerate. Otherwise, we would
have pe MA and Rp = pAp C MpAp = Mp. Since R — Rp is an R-
module isomorphism, this is impossible.

PRrROPOSITION 4.3. If A is a central separable R-algebra contain-
ing a nondegenerate idempotent p, then [A] = [pAp] and [A] € B(R).
If p is rank one then [A] = (0).

Proof. 1f we can show that Ap4A = A if p is a nondegenerate
idempotent, it will follow from Proposition 4.8, applied to the ideals
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Ap and pA, that A is Morita equivalent to pAp. Since pAp has
identity p, [pAp] belongs to B(R). If p has rank one pAp = R and
(4] = (0).

If ApA =+ A it is contained in MA for some maximal ideal M C
R by Proposition 3.5. This implies p € MA in violation of the non-
degeneracy hypothesis.

PROPOSITION 4.8. If R is an algebraically closed field, them each
central separable R-algebra contains a rank one idempotent and,
hence, B(R) = (0).

Proof. By Corollary 4.2 may assume A is finite dimensional. If
we can show A contains a nonzero idempotent p, then pAp will be
a central separable algebra with identity and, hence, a matrix algebra
over R by the classical theory. Then pAp and, therefore A, contains
a rank one idempotent.

Now A contains a nonnilpotent element a. Otherwise A would
be a nilpotent algebra, since it is finite dimensional, violating A*=
A. Then by standard matrix theory, some polynomial in L, is a
nonzero idempotent, where L, A — A is left multiplication by «a.
That is, there exists be A with L} =L, # (0). If p = b then p is
our nonzero idempotent.

ProprosITION 4.9. If R is a Henselian ring with maximal ideal
M and R/M is algebraically closed, them each central separable R-
algebra contains a rank one idempotant and, hence, B(R) = (0).

Proof. A Henselian ring is a local ring R such that whenever
B is a finite R-algebra, I C B a two-sided ideal, and p< B/I an ide-
mpotent, then p is the image of some idempotent in B. This is not
the usual definition of Henselian ring, but is equivalent to it (ef.
[3], p. 136).

By Proposition 2.7, A/MA is central separable over the algebrai-
cally closed field R/M. Thus, A contains an element a such that
the image of @ in A/MA is a rank one idempotent. We shall show
that a is contained in a subalgebra of A that is finitely generated
as an R-module.

By Proposition 3.9 the separator § may be regarded as a map
from AQr A4 to ARz A. We define k,: A— A by k,(b) = aba and
note that k,(b) = >, u,; tr(v,b) where 6 u, ®v,) =a® a. In other
words, k, = uov where u:R"— A and v: 4A— R" are defined by
w({r,}) = D, rwu, and »(b) = {tr(v;b)}. It follows that k" = wow™ ‘op
where w = vou: R*— RE*. Since w is integral over R so is k, and
we have q(k,) = 0 for some monic polynomial g € R[xz]. Then g(k,)(a) =
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0 is a monic polynomial equation satisfied by a. It follows that the
subalgebra of A generated by « is a finitely generated R-module.

Since R is Henselian, the subalgebra of A generated by a con-
tains an idempotent p equivalent to ¢ modulo MA. Now pAp is a
central separable algebra with identity and, hence, is a finitely
generated projective R-module. Since R is local, pAp is a free R-
module and, hence, one dimensional since it is one dimensional modulo
M. Thus, p has rank one.

5. Automorphisms. In the classical theory of central separable
algebras with identity one has the following exact sequence (cf. [8],
Ch. II, §6)

0 — Inn(A) — Autz(4) — Pic(R) — Qz(M) — 0

where Autp(A) is the group of R-algebra automorphisms of 4, Inn(4)
is the group of inner automorphisms of A, B is a central separable
R-algebra Morita equivalent to A, M is a projective right B-module
and A is the central separable R-algebra Homj(M, M). The group
Qz(M) is constructed from isomorphism classes of projective right
B-modules N for which Hom,(N, N) = A. In effect, this classifies
both the automorphisms of A and the distinet ways in which A may
be presented as a B-elementary algebra. In this section, we obtain
essentially the same results, with appropriate modification, in the
setting of algebras without identity.

Let A be a central separable R-algebra and let Auty(4) denote
its group of R-algebra automorphisms. If o€ Autgz(4) then A4, will
denote the left A°-module consisting of A with A°-module action
defined by (a ® b):-¢ = aco(b). Then we set P, = Hom (A, 4,). Note
that if ¢ =1 then P, = Z(4) = R.

The R-module P, is always nontrivial. In fact, if w € 2(4) then
for each be A

a—>7o(1 R o)ew(a & b)

defines an element of P,. By Proposition 3.7, if w ranges over 2(A), b
over A, then the images of the resulting elements of P, will span
A,. Thus,

PROPOSITION 5.1. For each o€ Auty(A), P,-A = A,.

Now let o, 7 be elements of Autp(A). If feP, and ge P, are
regarded as maps from A to A, they may be composed. Then

Sfeglach) = f(ag(e)z(d)) = afog(c)oet(d) .
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Hence, fege P,.. and we have an R-module homomorphism P, Q. P. —
P,...

PROPOSITION 5.2. The map P, R P.— P,.. is an 1isomorphism
for each o and T in Auti(4).

Proof. We first prove that P, ®, P,-s — P, = R is an isomorphism.
If it were not surjective its image would lie in a maximal ideal M
of R. However, P,rA=A4, P,+-A=A, and MA # A make this
impossible. Thus, let {u,}c P, and {v}c P,-. be chosen so that
Siuw, =1, Then r — > ru; ® v,: R — P, Xy P,~ provides an inverse
for P, ®y P,~.— R. That it is a right inverse is clear. It is also
a left inverse since, for we P, and ve P,-;, we have vu,€ R and,
thus,

2unu, v, =2 u@ uv, = w@v) D uv, =uRv.
Now for 7€ Autz(4) we have
P..=R®uP,.=P, Q. P,  QxP,.

and a map P, ®z P,-1 Qp P,.. > P, Xy oP. induced by composing the
second and third factors. The resulting map P,.. — P, X P. is clearly
an inverse for the composition map.

The above proposition shows that o — P, determines a homo-
morphism of Autp(A) into Pic(R), where Pic(R) is the group of
isomorphism classes of R-modules which are invertible under .

Suppose that P, represents the trivial element of Pic(R), i.e.,
P,=R. Thisis equivalent to the existence of an R-module generator
weP,. Then P,. is also singly generated, by let’s say ». Thus
wv = v € R is invertible as is vu = s; furthermore wvu = 74 = su and
so r = s. It follows that » ¢ = w has the property that uw = wu =
1. Now w(abe) = aw(b)o(¢) so that if u = gow then u'(abc) =
o(e)u'(b)e and uw'ou = o.

Since %’ commutes with right multiplication in 4 and u commutes
with left multiplication in A, it makes notational sense to write
w'(a) = w'a and u(a) = au. We will not get in trouble with this since
left and right module endomorphisms commute on an algebra satis-
fying A? = A. Then the equation w'ou = ¢ becomes o(a) = w'au for
ac A. We also have the relation (au)(u'd) = ab for a,be A since
olab) = o(a)o(b) = (w'au)(uw'bu) = o((auw)(u'd)). This suggests the follow-
ing definition:

DEFINITION 5.1. An automorphism ¢ of A will be called inner
if it has the form o(a) = w'au, where % is an automorphism of 4
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as a left A-module, %’ is an automorphism of A as a right A-module
and (eu')(ub) = ab for all a,bec A. We denote the set of inner auto-
morphisms by Inn(A).

Clearly Inn(A4) is a subgroup of Aut(4). We showed above that
the kernel of the map Aut,(A4) — Pie(R) is contained in this subgroup.
Conversely, suppose oeInn(A) so that o(a) = w'au with ' and u
as above. Then u(abc) = abcu = (abu)(u'cu) = au(b)o(c) and, hence,
u# belongs to P,. The fact that « is invertible as a map from A to
A implies that it is a generator for P,. Thus, P, = K. This proves
that Inn(A) is exactly the kernel of Autz(A4)— Pic(R). Thus,

PROPOSITION 5.3. If A is a central separable R-algebra then
there is an exact sequence

0 — Inn(4) — Aut,(4) — Pic(R) .

We propose now to characterize the cokernel of the last map in
this sequence.

Let B be an algebra Morita equivalent to A (e.g., we could choose
B=Aor B=Rif A is R-elementary). Let N, M, and »: NQ M —
B be data presenting A as a B-elementary algebra. If P is an
invertible R-module with inverse P!, then N QM= NX.M
where N°=N®zP and M? = M X, P™*. This isomorphism, composed
with N, yields a map A N°®r M? — B. Hence, we have data for
another B-elementary algebra A = M? ®; NF. Clearly, the isomor-
phism P QP — R determines an isomorphism @: A* — A. Thus,
each invertible R-module P transforms (N, M, \) into another set
of data presenting A as a B-elementary algebra.

It seems appropriate to call two sets of data (N, M, ) and
(N, M’, \) equivalent if there are B-module isomorphisms y: N’ — N
and p: M’ — M such that A = ano(v @ p). Clearly, the B-elementary
algebras so determined are isomorphic in this case (via g @ v).

PRrROPOSITION 5.4. With (N, M, \), P, and (N¥, M*, \%) as above,
(N, M, \) and (NEF, M*, \) are equivalent sets of data if and only
if P= P, for some o€ Autz(A).

Proof. If veP, and ue P;* then v is a left A-module endomor-
phism of A and oou is a right A-module endomorphism of A. From
this and AQ, M= M and NQY, A = N we conclude that there are
well defined B-module homomorphisms v: N*— N and p: M* - M
characterized by v(na @ v) = nv(a) and plam @ u) = gou(a)m. Using
the isomorphism P, ®: P,'— R one easily obtains inverses for these
maps. For example, the inverse for vy is the composition of N —
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N®zP;'Qz P, > NXR,P, where the second map is induced by a
map NXz P;' — N constructed just as v was but with P, replaced
by P;*. Thus, ¢ and vy are B-module isomorphisms.

We must prove that A = no(v @ ). First, note that A" = \ovp
where + is the isomorphism (N®zP,) ®r (M Rz P, ") = NQzM
induced by P, R, P,*—> R. Now '@ m) =3, (n Q@ v,) ® (m R u,)
if v,€ P, and u; € P;* are chosen so that >, vu, = 1. Thus,

Ao ® oy (na ® a'm) = (3 10e) ® (ou)(@)m)
= 3L nv4a) Q. (oua’)m
=n Q. (X vla)ooula’))m

=1 Qs vau(aa))m = n @, aa'm

=na @, a'm = ANna @ am') .

Thus, Mo(¥ @ t)eyr™ = % and A = no(pt @ V).

Conversely, suppose v: N* — N and p: M* - N are B-module
isomorphisms such that \¥ = Ne(v @ ). Then £t R v: A" = M Qy N* —
M&®z N is an algebra isomorphism. We already have an algebra
isomorphism @: A* — A induced by the isomorphism P &P — E.
Thus, (@ v)op™ = ¢ is an automorphism of A. To complete the
proof, we must show that P = P,. For pec P we define v,(m Q n) =
m@vinQp). Then v, maps A =M Rz N to itself and is a left
A-module endomorphism. Also, with v,€ P, w,€ P~ chosen so that
Sivu, =1,

v,(m Q@ n)o(m’ Q n') = v,(m & n)(pQ v)ep™(m’ K n')
= v,(m @ 1) 2 pm’ Q u,) @ v(n Q v,)
=m & X Mr(n Q p) ® t(m' @ u))v(n' ® v,)
=m Q@ N1 & p) @ (m ® uv(n' & v,)
=m & 2 Mn & pum v(n' @ v,)
=m Q@ Mn @ m ' @ p > uwv,)
=m &Q Mn Q@ m)(n’ @ p)
=v,(mQn)-(m' Qn') .
Thus, v,(aa’) = v,(a)o(a’) and v,€ P,. Since P and P, are both
invertible R-modules, the only way p—wv,: P— P, could fail to be
an isomorphism is if it has image in IP, for some proper ideal I of

R. However, this would imply IN = N and, via )\, IB = B. Since
this is impossible, we have P = P, and the proof is complete.

We next show that given one set (N, M, \) of data presenting
A as a B-elementary algebra, every other such set has the form

(N?, M%, \F) for some invertible R-module P.
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Given data (N’, M’, \) with M'®;N' = A, we have N = N'®,
A=N Q@ MR ;N=ERzN with E =N ®, M. Similarly, M’ =
MK F with F=N®,M'. Furthermore, EQ,F =FX;F = B.
We shall show E= B®zP and F = BX, P for some invertible
R-module P.

Let P = Homg«(B, E) and note that if pc Pthen p®1: BR,F—
E®zF is an element of Homg. (F, B). Clearly the resulting map
P = Hom.(B, ) — Hom.(F, B) is an isomorphism. We set Q =
Hom,«(F, B) and note that @ is also isomorphic to Homg«(B, F').
Also note, Homy.(F, E) = Hom(F, F') = Hom«(B, B) = R. Thus, for
pe P, ge @ both compositions pog and gop are given by elements of
R, necessarily the same element of R since (pg)p = p(gp). Thus,
there is a well defined map P&X,Q — R given by composition.

Let 0: BR B 2 — Bz B be the separator for B. If we
apply ( ) ® E to the appropriate factors we obtain an isomorphism
0p: BRQRrERzR2— EXRzB and, with 7z, E®;B— E the module
action map, a surjection 7,00, BQr EF X, 2 — E. In the B variable
this is a B°-module homomorphism. It follows that P is sufficiently
rich that (b X p) — p®b): BRzP — E is surjective. Similarly,
E&rQ — B is surjective and it follows that P ®, @ — R is surjective.
If 9.0, ¢ PR,Q satisfies >, p,q;, = 1 then the usual argument
shows that » —» >, p,® ¢, is an inverse for PR,Q — R. Hence,
P is an invertible R-module with inverse @. It follows easily that
E=ZBRzP and F = BR, P

Now we have NN = EQRQ; N=BR; NRzP = NYz P and, simi-
larly, M' = M Q5 P

If we let Q,(A) denote the set of equivalence classes of data
presenting A as a B-elementary algebra we have now shown that
Pic(R) acts transitively on Qz(A) and that the isotropy group of a
point (N, M, \) is the image of Auty(4). If we fix such a point then:

PROPOSITION 5.5. Given Morita equivalent central separable R-
algebras A and B, there is anm exact sequence

0 — Inn(A) — Auty(A) — Pie(R) Q4(A) 0.

This is an exact analogue of the classical result (ef. [20] and
[8], Ch. 2, §6).

Now Knus [15] has shown that in the classical situation of
algebras with identity the image of Autp(4) in Pic(R) is contained
in the torsion subgroup. Thus, if 4 has an identity and Pic(R) is
not a torsion group then @,(A) is nontrivial. However, regardless of
what Pie(R) is, it is easy to find a central separable R-algebra A
(without identity) for which Q4(A4) =0 for all B (note Q5(4) is
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actually independent of B). For example, if M is the direct sum of
countably many copies of R, N = Hom,(M, R) the direct product, and
M N®zM— R the standard pairing, then the R-elementary algebra
A =M®®zN satisfies Qz(4) = (0). This follows directly from the
fact that M = M ®, P for any invertible R-module P.

It is well known that if R = C(X)—the algebra of continuous
complex valued functions on X—for a compact Hausdorff space X,
then Pie(R) = H*¥X, Z). The same thing is true for any commutative
Banach algebra with maximal ideal space X (cf. [10]). Thus, for a
a commutative Banach algebra R and any central separable R-algebra
A for which Q(A) = Q.(A) = (0), the group Autz(4)/Inn(4) is iso-
morphic to the second Cech cohomology group H*X, Z), where X is
the maximal ideal space of E. It was this connection with Banach
algebra theory, pursued in a somewhat different way in [6], that
led us to consider central separable algebras without identity.

Suppose a Morita equivalence between A and B is implemented
by modules M and N so that MR, N=A. If = M— M is a left
A-right B-module endomorphism, then #®1: M X; N— M QN is
an A°‘-module endomorphism of A and, hence, given by an element
of R. This has the following proposition as a consequence:

PROPOSITION 5.6. Suppose (N, M, \) and (N', M’',\) belong to
the same equivalence class in Qz(A). Then the isomorphisms p: M' —
M and v: N'— N which determine the equivalence are unique up to
the action r — (rn, r~'m) of the invertible group of B on N x M.

6. Cohomology. The results of §4 suggest that, as with the
classical Brauer group (cf. [12]), B(R) can be computed for certain
rings R by representing R as the ring of sections of a sheaf of local
rings for which B is trivial and then using sheaf cohomology methods.
We shall show how this method is successful when R = C(X) for X
a compact Hausdorff space and partially successful when R = £Z(X)
for X a “nice” compact subset of a Stein space. Here £(X) is the
algebra of functions holomorphic in a neighborhood of X. For R =
C(X), the result is B(R) = H%X, Z). Compare this with the classical
result that B(C(X)) is the torsion subgroup of H*X, Z) (cf. [12]).
For R = ~(X), X an appropriate compact subset of a Stein space,
we get an injection B(R) — H%X, Z). However, we have not been
able to prove it is also a surjection.

We begin with some preliminary results concerning the algebra
Z(X). Thus, let X be a compact subset of a Stein space (e.g., X
could be a compact subset of C*) and let £7(X) denote the algebra of
functions holomorphic in a neighborhood of X. In other words, & (X)
is the inductive limit of the algebras <(U) where U ranges over open
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sets containing X. By a result of Harvey and Wells, if every complex
homomorphism of #(X) is given by point evaluation at a point of
X, then Cartan’s Theorems A and B hold for coherent analytic
sheaves on X (cf. [14], Th. 8.3). We shall call X a Stein compact
set in this case. For example, if X has a fundamental system of
neighborhoods which are Stein spaces, then X is Stein compact.

We shall need to know that X has a basis for its topology
consisting of sets U which also satisfy Cartan’s Theorem B (i.e., sets
on which any coherent sheaf is acyclic). In fact, sets defined by
inequalities |fi(x)| <7, ---, |fulx)] < 7, with f, ---, f,e &(X) have
this property and do comprise a base for the topology.

PROPOSITION 6.1. Let X be a Stein compact subset of a Stein
space and let Uc X have the property that every coherent analytic
sheaf on X is acyclic on U. Then &(U) is a flat &(X) module.

Proof. To prove that an R-module M is flat it suffices to prove
that M®zI—> M KR, R = M is injective whenever [ is a finitely
generated ideal of R (ef. [17], Ch. 2, Th. 1).

Thus, let f,, ---, f, be generators of an ideal I of ~(X). Let
y¢ denote the restriction to X of the sheaf of germs of holomorphic
funetions in the ambient Stein space. Then(g,, ---, ¢,)— >, fi0:: x&"—
x defines a homomorphism of sheaves of y2” modules which we
shall call g. Since ker(y) is coherent (ef. [13], Ch. 11, §13) and X
satisfies Cartan’s Theorem A, there is a homomorphism v: z&@ — "
with image ker(y). Hence, we have an exact sequence

v

ot o Q 0

0— K—> ;o™

where @ is the cokernel of £+ and K is the kernel of v and, hence,
each is a coherent sheaf.

From the fact that coherent sheaves are acyclic on X and U we
conclude that the exactness of this sequence is preserved by passing
to sections over X or over U. Passing to sections over X yields
that I = coker{y: /(X)) — £(X)"}. This, and the exactness of the
sequence for sections over U and the fact that &2(U) R,/ X) =
2(U) yields that &2(U) @, I = coker{y: Z(U)™ — 2(U)"} as well
as the fact that this maps injectively into Z(U) = 2(U) Q7 (X).
This completes the proof.

The next proposition spells out the properties of ~7(X) and C(X)
which allow us to proceed with our cohomology program:

ProroOsSITION 6.2. If R = C(X) for X a compact Hausdorff space
or B =2(X) for X a Stein compact subset of a Stein space, then
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R is the ring of global sections of a sheaf of rings # such that:

(1) &2 is an acyclic sheaf of Hemnselian local rings, each of
which 18 algebraically closed modulo its maximal ideal;

(2) each R-module M 1is isomorphic to the module of global
sections of the sheaf MKy

(8) for each R-module M the sheaf MK, . is acyclic.

Proof. If R = C(X) we choose the sheaf of germs of continuous
complex valued functions for <. If R = 27(X) we choose F# = .
In either case, we fix a finite open cover of X and let

(*) 0—>R—sC' s C s -+ Ct——0

be the corresponding complex of alternating Cech cochains for the
sheaf .<2.

In the case R = C(X) this complex is exact and R-split (a par-
tition of unity yields a contracting homotopy in the usual way).
Now M Ky 2 is the sheaf of germs of the presheaf U— M Rz R(U)
where R(U) is the ring of sections of <# over U. If we apply
M&e( ) to (*) we obtain the complex of Cech cochains for this
presheaf and the given cover. Since (*) is R-split, it remains exact
when tensored with M. On passing to the limit over refinement of
open covers we conclude that M is the module of global sections of
MQRr F# (fromvexactness at the first two stages) and that M Q, #
has vanishing Cech cohomology and, hence, is acyclic.

For R = &7(X) we proceed as above except we restrict attention
to open covers with the property that each finite intersection of
members of the cover is a set on which coherent sheaves are acyclic.
This ensures that each C? is a flat R-module (by Prop. 6.1) and,
hence, that whenever (*) is exact its tensor product with M with
also be exact. However, (*) is always exact for such a cover since
o(X) = & is acyclic on X and on each finite intersection of sets
in the cover. By the discussion preceding Proposition 6.1, there are
arbitrarily fine covers of the required type and, hence, the argument
of the previous paragraph works in this case as well.

It only remains to show that each stalk of <# is a Henselian
local ring with algebraically closed residual field. Everything but
Henselian is obvious and Henselian is well known. For example, the
stalks in ,¢” are convergent power series rings and, thus, Henselian
by [18], Chapter VII, §45. Any finite subset of the ring of germs
of continuous functions is contained in a subring which is a quotient
of a convergent power series ring and, thus, Henselian by [18],
Chapter VII, 43.4; it follows that the ring of germs of continuous
functions is Henselian.

In what follows, we assume R is C(X) (resp. £7(X)) for X compact
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(resp. Stein compact) and .©#Z will denote the sheaf of the above
proposition.

We let <Z* denote the sheaf of invertible groups of the sheaf
.

Our first objective is to construct a homomorphism §: B(R) —
HYX, #*), where H¥(X, &#*) is the second sheaf cohomology group
of the sheaf <#*. This construction is similar to that in [9].

Let A be a central separable R-algebra and denote the sheaf of
algebras A ®z # by .. For each x¢c X let <&, (resp. .%7,) denote
the stalk of <Z (resp. &) at . For each open set Uc X let R(U)
denote the ring of sections over U of <7 and set A(U) = A Rz R(U).
Then .o is the sheaf of germs of the presheaf U — A(U). For each
U, A(U) is a central separable R(U) algebra.

Now for each ze X, .7, = lim{A(U): x € U} is a central separable
algebra over a Henselian local ring .27, with algebraically complete
residual field. Hence, .o7 is an <2 -elementary algebra by Proposition
4.9. This followed from the existence of a rank one idempotent in
7. It is easy to see that such an idempotent must be the germ
of a rank one idempotent in A(U) for some neighborhood U of z.
Thus, A(U) is R(U)-elementary. Let {U;};, be a finite open cover
of X by neighborhood for which A(U) has this property. Thus, we
have elementary R(U,) algebras M, ®; N, and algebra isomorphisms
@0 A(U;) = M, Qg N,

If xe VcU;N U; then, on tensoring with R(V), we have isomor-
phisms A(V)— (M;®:N,) Rz B(V) and A(V) —(M; @zN;)RzwyB(V).
In other words, we have two sets of data in Qz(A(V)). By Proposition
5.5 one set is obtained from the other by application of an element of
Pie(R(V)). Since Pie(<Z,) = (0) and Pie(<Z,) = lim{Pic(R(V)): x€ V},
we conclude that for sufficiently small V' this element of Pic(R(V))
must be zero. Then the two sets of data belong to the same element
of Qz(A). It follows that if we replace our original cover by a suf-
ficiently fine refinement we may obtain the following: if U,NU; =U,;
and M;(V)=M;QRzrwy B(V), N(V)=N,; Qzrwy B(V) there are R-module
homomorphisms #,;: M;(U,;)— M,(U,;) and v;;: Ny(U,;)— N,(U,;) such that
PioPit = ty; Q@ vi;: M(Uy;) ®E(U¢j) N{(U;;) — M(U,;) ®R(Uij) N(U;;). We
next set Uy;, = U, N U; N U, and consider the maps ;0 ¢;.0 80 MU, j0) —
M(U,;) and v;;00;,00,0 Ny(U,;) — N(U, ). By Proposition 5.6 these
are given by miltiplication by elements r,;, and 7., respectively, in
R(U;;,). If we are careful to choose p,; and v,; so that p; = p;}
and y;, = v;}, then a simple computation shows that {r;;,} form a 2-
cocycle for the cover {U;} and the sheaf =#*. On passing to the
limit over refinements, we obtain an element 6(A)e H¥X, <#*).

The element d(A) does not depend on the choice of the isomor-
phisms @; A(U,) = M; Qzwy N;. In fact, suppose o;: A(U;) —
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M; @rws Ni is another choice. Then by passing to a refinement of
the cover if necessary, we may assume @;o@;* = £, Q vi: M; Qzrw, N, —
M, ®rwy NI for R(U;) module isomorphisms g, and v,, We then
conclude from Proposition 5.6 that pe; = r, ;05" for »,;€ R(U,;)
and, hence, that 2%, = 7,;7;7.7:;, Where primes indicate the data
constructed from the ®;’s. In other words, {ri;} differs from {r;}
by a coboundary and, hence, determines the same class in H*(X, &2*).

Now if A is Morita equivalent to another algebra B, say B =
MR, N and A = NQ M, then the data {(M,, N,)} for A, yield data
M&®, M, and N;Q, N for B which leads to the same cocycle {r;}.
Hence, we have a well defined map o: B(R) — H*X, <#*). It is easy
to see that it is a group homomorphism.

We would like to show that ¢ is injective. That is, if 6(4) =0
we would like to show that A = M &z N for modules M and N with
a map M N®z M — R which defines the multiplication in A. This
is easy enough to do at the sheaf level:

PROPOSITION 6.3. If 0(A) = 0 there are sheaves 4~ and _# of
FB-modules and an F-module homomorphism \: N~ Q.. A — FB
such that &7 = # Q .. 4" as sheaves of F-modules in such a way
that the multiplication map 7 Q. %7 — & is equivalent to 1 Q
ARL AR N Qoo RN — # R V. Furthermore, the
sheaves _# and _4~ can be chosen so that they are locally Z-module
direct summands of 57

Proof. Suppose we have an open cover {U,} of X, data (N,, M, \;)
for elementary R(U,) algebras, isomorphisms @;: A(U,) — M; QzwyN;
and maps p,;: M(U;;) — M(U,), vi;: N{(U;;) > N(U;;) with A(ptem @
v;m) = N{m @ n). Suppose {r;,} is constructed as above, so that
Pise = Magoliro e ANA 755 = vyov0,,.  If {r,;} determines the zero
class in H*X, <#*), then by passing to a refinement if necessary,
wWe may assume 7,;, = 7,;7;7,; for an alternating Cech 1 cochain {r}
for the cover {U,} and the sheaf <#*. If we set g, = r;it; and
Vi, = Ty, then popn, opm, =1 =yv0v;, 0, This allows us to
construct sheaves of <Z-modules _# and .4~ on X as follows: on
U, # is M, RQzry, F# where, over points of U, N U; we identify
elements of M; Qry, 7 with elements of M; Rgpw, -# via p; Q L.
V" is constructed in a similar fashion.

The consistency requirement for g, v,; and ), and \; implies
that the \;: NV; Qrwy M; — RB(U,) fit together to define a global sheaf
homomorphism \: 4~ QR # — . Furthermore, the maps ¢,;: A(U,) —
M, Qrwy N; fit together to define an isomorphism @: % — 7 Qr A"
of sheaves of algebras, where A determines the multiplication on
A QAN
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That _#Z and _#" can locally be realized as .“Z-module direct
summands of .o follows from the fact that M, and N, can be chosen
of the form Ap, and p,A for a rank one idempotent p, € (A(U,)) provided
the cover is sufficiently fine.

The problem of showing that 6 is injective now boils down to
this: with _# and _y~ as above, is I'(X, Z Qr ") =X, #) R
I'X, +°)? 1If this is true then A is isomorphic to the elementary
algebra determined by (N, M, ») where M =I'(X, #) and N =
I'(X, _+7), since Proposition 6.2 implies A = I'(X, .%).

For R = C(X) there is no problem. In this case, #, the sheaf
of germs of continuous functions on X, is a fine sheaf. Hence, any
sheaf of “Z-modules is a soft sheaf. This means that sections over
closed sets are restrictions of global sections and it implies that
the sheaf is acyclic (ef. [11]). It follows that there are free -
modules &, and &, and an exact sequence of “Z-modules &, — F, —
4" — 0. This yields an exact sequence _#Z K, F, — # Qr F,—
A Qp " — 0 which remains exact when we pass to global sections
because sheaves of Z-modules are acyclic. However, if F, =
X, #;) for i =0,1, then I' X, 7 Q.%:) = MQ F,. Hence, we
have an exact sequence M QR F, > M Q@ Fy— I'(X, # Qz 4")— 0.
Since the cokernel of M R F, —> M Rz F, is M QY N, we have proved
that I'( X, #Z Rz 4") = MKz N when R = C(X).

The case R = ¢7(X) raises a fundamental difficulty. First, a
positive result: suppose that A is a finitely presented ~(X) = R-
module. Then & = & ®, # is a finitely presented sheaf of .#Z-
modules and, hence, & is a coherent analytic sheaf on a neigh-
borhood of X. Sinece _# and _#" are locally direct summands of
7 (Prop. 6.3) they too are coherent analytic sheaves in a neighbor-
hood of X. It follows from Cartan’s Theorem A, that there is an
exact sequence ™ — 2" — _4~ of sheaves of ;27 modules. Since
coherent sheaves are acyclic by Cartan’s Theorem B, the argument
of the above paragraph goes through and we again conclude that
I'X, # Qr4")=MQQzN.

To be able to conclude from this that ¢ is injective we need to
know that every class in B(£(X)) contains an algebra A which is
finitely presented over #°(X). Now if #£7(X) is noetherian, then
Corollary 4.2 implies that each class contains an algebra A which is
a finitely generated R-module. Then, applying noetherian again, we
conclude that A is finitely presented. Thus, we have proved:

PROPOSITION 6.4. Under the hypotheses of Proposition 6.2, 6(A)=
0 implies [A] = 0 in B(R) under each of the following conditions:

(1) R=C(X);

(2) R=7X) and &(X) is noetherian;
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(3) A is a finitely presented R-module.

The algebra <7(X) need not be noetherian. For example, let X
be a convergent sequence of points in C. There are more subtle
examples, with X connected, involving sets X < C™ for which there
is a subvariety which meets the boundary of X in a nonlocally
connected set. However, if X is a holomorphically convex subset of
a domain of holomorphy which is semi-analytic (defined by finitely
many analytic inequalities) then #”(X) is noetherian (cf. [23]).

Proposition 6.4 suggests the following definition:

DEFINITION 6.1. For any commutative ring R let B(R) denote
the subgroup of B(R) consisting of classes which contain a finitely
presented algebra.

We know that B(R) = B(R) for R noetherian. We can’t prove
that B(R) = B(R) in general, and we suspect that it is not true. If
they are not equal in general, then Proposition 6.4 and what follows
suggest that B may be the more appropriate functor in some
circumstances.

ProrosiTiON 6.5. If R = Lim R, for a direct limit system of
rings {R,}, then B(R) = lim B(R,).
—

Proof. Let A be a finitely presented central separable R-algebra.
Then, as an R-module, A is the cokernel of a map R* — R™, i.e., a
matrix with entries from R. By lifting each of these entries to
some R, we obtain a map R:— R™ having as cokernel an R-module
A, such that 4,&®,, R = A. Now the multiplication map for A and
each of the homomorphisms A Rz A — A X, A belonging to 2(4) may
also be represented by finite matrices over B. The associative law
and conditions for membership in 2(A) may each be expressed in
terms of finitely many polynomial equations in the entries of these
matrices. Thus, for large enough «, A lifts to an associative R,
algebra A, and 2(A4) lifts to a submodule 2,c2(4,). Now the
surjective map tr: A ®, 2(4) — R may also be represented by a finite
matrix. It follows that for large A, the restriction of

tr: Ay Qg, 2(Ad) — Z(Ad)

to A, ®z, 2. has range exactly R (not a quotient of R). Thus, A,
is a faithful R-module and Proposition 3.8 implies that A, is central
separable. Thus, we have proved that lim B(R,) — B(R) is surjective.

Now suppose A, is central separable over R, and finitely pre-
sented. If A= A,Qy R is R-elementary, say A = M &®; N, then
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each of M and N is finitely presented. Thus, they lift to R ,-modules
M, and N, for large o. The surjection a: N X, M lifts to a surjeec-
tion N\,: N, @z, M, — R, and the isomorphism 4 — M @, N lifts to
an isomorphism A, — M, @z, N, for large enough @. Thus lim B(R,) —
B(R) is injective as well. -

Since every ring is a direct limit of noetherian rings, the only
way the above proposition could remain true with B replaced by B
is if B = B.

We now return to the situation where R = C(X) or £/(X) and
continue our discussion of the map 4.

PROPOSITION 6.6. If R = C(X) for X compact, then 6: B(R)—
HYX, &%) is surjective.

Proof. We closely follow Dixmier-Douady [9]. The method is
to use an element of H*X, R*) to construct a locally trivial bundle
of elementary R-algebras; the algebra of sections then yields an
element of B(R). Up to a point the proof works as well for
(X)), X Stein compact, as it does for C(X). We shall indicate this
as we go along and then point out where the problem lies that stops
us from concluding ¢ is surjective when R = &(X).

Let H be separable Hilbert space and let G be the group of
invertible bounded linear operators on H. We give G the operator
norm topology. Let B be the algebra of finite rank operators on H.
Then B is C-elementary; in fact, B = H Q. H' where H’is the Banach
space dual of H and multiplication is given by the standard pairing
H' @cH—C. The group G acts as a group of automorphisms of B,
where g € G determines the automorphism b-— gbg™. If ¢: H — H'
is the Banach space adjoint of g and g¢g* = (¢')~* the contragradient
operator, then this automorphism can be writtenas ¢ Q g*: HQ H' —
HKH'. If P is the group of all auch automorphisms, then we
have an exact sequence

0 c* G P 0

with C* regarded as the group of invertible scalar operators. This
sequence, expresses G as a locally trivial fiber bundle with base P
and fiber C*. This is true not only topologically but also analytically.
That is, C*, G, and P are complex Banach Lie groups in the sense
of [19] and G is a locally trivial holomorphic bundle over P.

We denote the sheaf of germs of continuous functions with
values in C*, G, and P respectively by &*, &, and & The corre-
sponding sheaves of germs of holomorphic functions will be denoted
o*, L,y P,
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As in §26 of [9], the exact sequence 0 >~ &* > % —.F —0
induces a homomorphism k: H(X, &) — H¥X, *). Similarly, the
sequence 0 — 27* — G, — &, — 0 induces a homomorphism

k,: H(X, &) — HY(X, %) .

We claim that k& and %, are both isomorphisms. For k this follows
from Lemmas 4 and 22 of [9] and the fact that G is contractable
(cf. [16]). To prove it for k,, we let X be a Stein compact set and
consider the commutative diagram

H'(X, &) - H(X, &)
v l
H(X, o) -2 BY(X, &%)
where +* and j* are induced by the inclusion maps i: &, — < and
j: 0* - &*., We will have that %, is an isomorphism if we can

prove that +* and j* are isomorphisms. That j* is an isomorphism
is a standard fact. It follows from the commutative diagram

0 Z & a* 0

oo | s

0 Z & &* 0

on passing to the long exact sequences of cohomology and using the
fact that #~ and & are acyclic. Here, Z is the constant sheaf of
integers and e(f) = exp(2xif) for f a continuous or holomorphic germ.
This argument actually proves that HX(X, 7#*)=z H¥ X, €*)=H¥X, Z).
That <* is an isomorphism follows from Theorems A and B of [19].
This is Raeburn’s generalization to infinite dimensional bundles of
Grauert’s deep work on holomorphic fiber bundles. Although Raeburn’s
theorems assume the underlying space is a Stein space, the proofs
work just as well for a compact Stein set. Thus, 4* is an isomorphism
and %, is an isomorphism.

We complete the proof that 6 is surjective (for R = C(X)) by
defining a map m: H'(X, &%) — B(C(X)) for which the diagram

H(X, &) — B(C(X))
. N /
) B
HY(X, &%)

is commutative. Since k is surjective, this will prove that ¢ is

surjective.
To construct the map m, let an element of HYX, &) be repre-
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sented by a Cech cocyle {o;;} for & and the cover {U} of X. By
passing to a refinement, if necessary, we may assume each g,; is the
image of a section g,; of & over U,N U;. For each open set U we
let H(U) and H'(U) be the C(U) modules of continuous H and H’
valued functions, respectively, and set B(U) = H(U) Qs H'(U).
The standard pairing n\,: H(U) Qe HU) — C(U) makes B(U) an
elementary C(U) algebra. At this point we have a presheaf U—
B(U) of elementary algebras. We let <# be the corresponding sheaf
of germs of elementary & algebras. We then define a new sheaf &
by letting .o, = |, and identifying .o, and v, over U,N U; via
the automorphism o;; = g,; @ g7; considered as maps from 7,|y;nv;
to %, |p,av;; We then let A be the algebra of global sections of the
sheaf .o

Now for each U we have a map o: B(U)Quw B(U)—
B(U) Q¢ B(U) which is a generator for 2(B(U)) and is defined as
follows: (b, @ ki Q hy @ hy) = b, @ hy @ h, @ by with B(U) identified
with H(U) Q¢ H'(U). Clearly @ commutes with each of the auto-
morphisms a,; = ¢;; Xg% and, hence, defines a sheaf map & Q, ¥ —
S — S QR . Since I'( Q. 7, X) = AR A (see the dis-
cussion following Proposition 6.3) this sheaf map defines an element
0 AQopy A— AQpiry A of 2(A). The trace tr,: A — C(X) corres-
ponding to this element is locally given by

tr,(h @ B')(x) = Mh' @ h)(x) = B'(x)(h(x)) .

As a map from the sheaf .o to & this is clearly surjective. That
it is surjective on sections follows from the fact that < is a fine
sheaf and we are dealing with sheaves of & modules.

It now follows from Proposition 3.8 that A is a central separable
C(X) algebra. The correspondence {o,;} > A defines our map
m: H(X, &) — B(C(X)). It is clear from the construction of m, 6
and k% that the diagram (*) is commutative. This completes the proof.

What goes wrong when R = #7(X)? If in constructing m we
begin with an analytic cocycle {s,;} and use holomorphic functions
and sections in the above construction we end up with two problems:
I8 N Ry ) = ARpixy A Where A = I'(7, X) and .7 is the
analytic sheaf of algebras constructed from {¢;;}? If so, is tr,: A—
Z(X) surjective? Here we are no longer dealing with sheaves of
modules over a fine sheaf. Furthermore, due to the infinite dimen-
sionality of H, .o~ fails to be a coherent analytic sheaf. A priori,
we do not know that o has any sections other than the zero section.
It may be that A = (0). Now . is locally trivial and if it were
the sheaf of sections of a bundle of Banach spaces we could apply
results of Bungart [5] to get a sufficient supply of sections. However,
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the fiber of our bundle is H® H’ which is not complete. We could
pass to a completion, but this would force us to use a completed
tensor product rather than A ®. ) A in order to get w defined.
Thus, we would not be defining an element of B(~(X)). We shall
discuss the relevance of this question to commutative Banach algebra
theory in the next section.

In view of the isomorphisms H( X, 7*) = HXX, Z)and H(X, € *) =
H¥X, Z), we have the following summary of the results of this
section:

THEOREM 6.7. If R = C(X) for a compact Hausdorff space X
then B(R) = HXX, Z). If R = 2 (X) for X a Stein compact set and
2 (X) is moetherian, then B(R) = B(R) is isomorphic to a subgroup
of H¥(X, Z) containing the torsion subgroup.

The last statement of the theorem is due to the inclusion B(R) C
B(R) and the fact that for R = ~(X), B(R) is isomorphic to the
torsion subgroup of H*X, Z) (ef. [12]).

7. Commutative Banach algebras. Let R be a commutative
Banach algebra with identity. The maximal ideal space 4, is a
compact Hausdorff space under the weak-* topology it inherits from
being a subset of the Banach space dual of R. If R = C(X) then
4 = X.

It is natural to try to characterize the Cech cohomology groups
of 4; in terms of algebraic properties of the algebra R. In low
dimension there are such characterization: H°(Xy, Z) is the additive
group generated by the idempotents of R [22], H(4p Z) is the
invertible group of R-modulo the image of the exponential map ([1],
[21]), and H*(4y, Z) is the Picard group of R [10]. For a discussion
of these results and others involving various brands of K-theory see
[24].

The Picard group is a functor defined for any commutative ring
R which happens to yield H*4, Z) when R is a Banach algebra.
When we began this paper we believed that B had these properties
with H® replacing H®. However, the difficulties encountered in §6
for R = 27(X) now shed considerable doubt on this conjecture. If we
had been able to prove ¢ surjective for R = ¢7(X) the argument that
B(R) = H*(4,, Z) would have gone as follows: The holomorphic
functional calculus can be used to prove that every commutative
Banach algebra R with identity is the direct limit of a system {7(X.,)},
where the X, are Stein compact sets for which £(X,) is noetherian.
This can be done in such a way that 4, is the inverse limit of the
spaces X,. If we had B(~(X,)) = H¥X,, Z) we could pass to the
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limit, use the continuity of B and H*® and conclude B(R) = H¥4;, Z).

Whether or not such a program can succeed awaits settlement
of the question of the surjectivity of 6 for R = #7(X). We suspect
the answer is negative. In this case, a decent characterization of
H‘”’(AR, Z) may require abandoning the purely algebraic functors
B and B and instead dealing with a Brauer group defined only for
Banach or topological algebras E. Such a Brauer group can probably
be developed using a notion of central separable algebra similar to
ours but involving completed tensor products. A class of algebras
of this sort was defined and studied in [6] but the idea of using
them to define a Brauer group was not pursued.
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