RANK\(_2\) \(p\)-GROUPS, \(p > 3\), AND CHERN CLASSES

KAHTAN ALZUBAIDY
RANK\(_2\) \(P\)-GROUPS, \(P>3\), AND CHERN CLASSES

KAHTAN ALZUBAIDY

In this paper, the integral cohomology ring of a Blackburn’s type III rank\(_2\) \(p\)-group \((p \geq 3)\) (the rank of a \(p\)-group is the rank of a maximal elementary abelian subgroup) is computed and the even dimensional generators are expressed in terms of Chern classes of certain group representations. Then this group satisfies Atiyah’s conjecture on the coincidence of topological and algebraic filtrations defined on the complex representation ring of the group.

Let \(G\) be any finite group and \(R(G)\) the complex representation ring of \(G\). There is a convergent spectral sequence \(\{E^i_{rj}; 2 \leq r \leq \infty\}\) such that

\[
E^i_{2^r, even} = H^i(G, \mathbb{Z}), \quad E^i_{2^r, odd} = 0, \quad \text{and} \quad E^i_{2^r, j} = R^G_{2^r}(G)/R^G_{2^r+1}(G)
\]

where

\[
R(G) = R^G_0(\mathbb{Z}) \supseteq R^G_1(\mathbb{Z}) \supseteq \cdots \supseteq R^G_{2k-1}(\mathbb{Z}) = R^G_{2k}(\mathbb{Z}) \supseteq R^G_{2k+1} = \cdots
\]

is a topologically defined even filtration on \(R(G)\). \(R(G)\) can be given an algebraic filtration by using the Grothendieck operations \(\gamma^i;\) thus \(R^G_{2k}(\mathbb{Z})\) is the subgroup generated by monomials \(\gamma^i_1(\xi_1) \cdots \gamma^i_r(\xi_r)\), \(n_1 + \cdots + n_r \geq k\) and \(\xi_1, \ldots, \xi_r\) elements of the augmentation ideal of \(R(G)\). The definition is completed by \(R^G_0(\mathbb{Z}) = R(G)\) and \(R^G_{2k-1}(\mathbb{Z}) = R^G_{2k}(\mathbb{Z})\). \(R(G)\) is a filtered ring with respect to both filtrations, \(R^G_{2k}(\mathbb{Z}) \subseteq R^G_{2k+1}(\mathbb{Z})\) for all \(k\), and the equality holds for \(k = 0, 1, 2\) [2]. Atiyah conjectured that \(R^G_{2k}(\mathbb{Z}) = R^G_{2k}(G), k \geq 0\) and showed that a group \(G\) satisfies this conjecture if the even dimensional subring \(H^{even}(G, \mathbb{Z})\) of the integral cohomology ring \(H^*(G, \mathbb{Z})\) is generated by Chern classes of representations of the group \(G\). Though the alternating group on four elements \(A_4\) is a counter example [13], a long standing conjecture is that the two filtrations coincide when \(G\) is a finite \(p\)-group.

Rank\(_2\) \(p\)-groups, \(p \geq 3\), are classified by N. Blackburn [8, staz 14.4] as follows;

I: Metacyclic \(p\)-groups.

II: \(G = \langle A, B, C: A^p = B^p = C^{p^{n-2}} = [A, C] = [C, B] = 1, [B, A] = C^{p^{n-3}}\rangle\).

III: \(G = \langle A, B, C: A^p = B^p = C^{p^{n-3}} = [B, C] = 1, [A, C^{-}] = B, [B, A] = C^{p^{n-3}}\rangle\) where \(n \geq 4\) and \(s = 1\) or some quadratic nonresidue mod \(p\).
In [11] and [12], C.B. Thomas shows that $H^\text{even}(G, \mathbb{Z})$ of some split metacyclic p-groups and Blackburn type II groups are generated by Chern classes, and hence they satisfy Atiyah's conjecture. He conjectured that a similar result holds for the remaining rank 2 p-groups, $p > 3$. This would be the best possible result, since there is a 4-dimensional generator of $H^*(3\mathbb{Z}_p, \mathbb{Z})$ which can not come from representations [9, Proposition 4.2]. For a metacyclic p-group in general the conjecture is proved by the author [1]. In this paper the conjecture is proved for Blackburn type III p-groups. The method used is mainly computational and the main result is given as follows:

Theorem 9.

$H^\ast(G, \mathbb{Z}) = \mathbb{Z}[\alpha, \mu, \gamma, \ldots, \gamma_{p-1}; \xi, \xi']$ where $\deg \alpha = 2$, $\deg \mu = 3$, $\deg \gamma_i = 2i$, $\deg \xi_i = 2i + 2$, $\deg \xi = \deg \xi' = 2p$ with the relations: $p\alpha = p\mu = sp^{a-1}\gamma_i = px_i = p^{2}x_i = 0$, $\alpha^p = 0$, $\alpha \gamma_i = p\xi_i = 0$, $\mu \gamma_i = 0$, $\gamma_i \gamma_j = 0$, and $\xi \xi_i = 0$ for all i, j.

The method of computation used depends mainly on constructing a free action of the group G on a product of two spheres to determine the order of certain cohomology groups of G together with the method used by G. Lewis to compute the integral cohomology ring of a non-abelian group of order p^3 and exponent p. Lewis' method is based on the calculation of the E_2 terms of spectral sequences of two group extensions and the calculation of E_∞ terms by certain exact sequences of the restriction and corestriction maps. The reader is referred to [9] for the details of the method.

$H^\text{even}(G, \mathbb{Z})$ is expressed in terms of Chern classes by using a special Riemann-Roch formula [12].

Preliminaries. The group G can be given by either of the following two extensions:

(1) $1 \rightarrow H \rightarrow G \rightarrow \mathbb{Z}_p \langle \bar{A} \rangle \rightarrow 1$.

Where $H = \mathbb{Z}_p \langle B \rangle + \mathbb{Z}_p^{a-1} \langle C \rangle$ is a normal abelian subgroup of index p in G, and

(2) $1 \rightarrow G' \rightarrow G \rightarrow \mathbb{Z}_p \langle \bar{A} \rangle + \mathbb{Z}_p^{a-1} \langle \bar{C} \rangle \rightarrow 1$

where $G' = \mathbb{Z}_p \langle B \rangle + \mathbb{Z}_p \langle C^{sp^{a-3}} \rangle$ is the commutator subgroup of G. The group G is isomorphic to the group $G' = \langle X, Y, Z: X^{sp^{a-2}} = Y^p = [Y, Z] = 1, Z^p = X^{sp}, [X, Z] = Y, [X, Y] = X^{sp^{3}} \rangle$ where $n \geq 4$ and $s = 1$ or some quadratic non-residue mod p [3, p. 145]. The isomorphism from G' onto G is given by: $X \leftrightarrow AC$, $Y \leftrightarrow B^{-1}$, and $Z \leftrightarrow C$.

\[
X^p \cong A^pC^pB^{1+2+\cdots+(p-1)}C^{p^n-3+2p^{n-3}+\cdots+(p-1)p^{n-3}} = C^p \cong Z^p
\]
\[
XZ \cong ACC = CA^{-1}BC = CACB^{-1} \cong ZXY \text{ and } XY \cong ACB^{-1} = AB^{-1}C^{-1} = B^{-1}ACC^{p^n-3} \cong YX^{1+p^n-3}.
\]

If \(s\) is a quadratic nonresidue mod \(p\), the isomorphism can similarly be defined by: \(X \rightarrow AC, Y \rightarrow B^{-s},\) and \(Z \rightarrow C^s\).

Proposition 1.

\(G'\) and hence \(G\) acts freely on the product of two spheres \(S^{2p-1} \times S^{2p-1}\).

Proof. Let \(\lambda: Y \mapsto e^{2\pi i/p} = a, Z \mapsto 1\) and \(\lambda': Y \mapsto 1, Z \mapsto e^{2\pi i/p^{n-2}} = b\) be two 1-dimensional representations of the normal abelian subgroup \(\langle Y, Z \rangle\) of index \(p\) in \(G'\). The direct sum of the induced representations \(i_!\lambda\) and \(i_!\lambda'\) defines an action of the group \(G'\) on the product of two spheres \(S^{2p-1} \times S^{2p-1}\). \(I \otimes 1, \bar{X} \otimes 1, \ldots, \bar{X}^{p-1} \otimes 1\) forms a basis for the induced modules associated with \(i_!\lambda\) and \(i_!\lambda'\). By [5, p. 75] the induced representations are explicitly given as follows:

\[
i_!\lambda(X) = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad i_!\lambda(Y) = \begin{bmatrix} a \\ \cdot \\ \cdot \\ a \end{bmatrix}, \quad i_!\lambda(Z) = \begin{bmatrix} 1 \\ a^{-1} \\ \cdot \cdot \\ \cdot a^{-p+1} \end{bmatrix},
\]

and

\[
i_!\lambda'(X) = \begin{bmatrix} 0 & 0 & \cdots & 0 & b^p \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad i_!\lambda'(Y) = \begin{bmatrix} 1 \\ b^{-1} \cdot \\ \cdot \\ \cdot \end{bmatrix}, \quad i_!\lambda'(Z) = \begin{bmatrix} b \\ \cdot \cdot \\ \cdot \cdot \cdot b^{-p+1} \end{bmatrix}.
\]

Let \(g \in G'\) be any element. Then \(g = Z^iY^jX^k\) where \(0 \leq i < p^{n-2}\) and \(0 \leq j, k < p\). The action of \(G'\) on the first and second sphere is given by:

\[
g(x_1, \ldots, x_p) = (a^ix_{p-k+1}, a^{j-k}x_{p-k+2}, \ldots, a^{j-(p-1)i}x_{p-k})
\]

and

\[
g(x_1, \ldots, x_p) = (b^{p-k}x_{p-k+1}, a^{-j}b^{(k-1)p-i}x_{p-k+2}, \ldots, a^{-(p-1)i}b^{-i}x_{p-k})
\]

respectively for every point \((x_1, \ldots, x_p) \in S^{2p-1}\). Any element \(g \in G'\) which acts freely on \(S^{2p-1} \times S^{2p-1}\) must equal to the identity. Thus \(G'\) and hence \(G\) acts freely on \(S^{2p-1} \times S^{2p-1}\). \(\square\)

The group \(G\) acts on the sphere \(S^{2p-1} = S^1 \ast \cdots \ast S^1\) (\(p\)-fold join)
by the induced representation of $C \mapsto e^{2\pi i / p^n - 2}$, $B \mapsto 1$. By [9, §6.2] we have the following complex $C' = \{C_0', \ldots, C_{p-1}'\}$ where C_i' is a G-free module except for $i = 0, 1, p - 1$, and $2p - 1$. $C_0' = ZG/(B)$, $C_i' = ZG/(B) \oplus F$, $C_{p-1}' = ZG/(A) \oplus F$, and $C_{2p-1}' = ZG/(A) \oplus F$ for some free G-module F. Consider $0 \mapsto Z \mapsto C_0' \mapsto \cdots \mapsto C_{2p-1}' \mapsto 0$ and let $K, L, M, N, and R$ be the image-kernels at C_0', C_1', C_{p-2}', C_{p-1}' and C_{2p-1}' respectively. Applying the Tate Cohomology to the resulting exact sequences we get the following exact sequences for i odd:

\[
0 \longrightarrow H^i(G, M) \longrightarrow H^{i+1}(G, N) \longrightarrow H^{i+1}(A, Z) \longrightarrow H^{i+1}(G, M) \\
\quad \longrightarrow H^{i+2}(G, N) \longrightarrow 0
\]

\[
0 \longrightarrow H^i(G, R) \longrightarrow H^{i+1}(G, Z) \longrightarrow H^{i+1}(A, Z) \longrightarrow H^{i+1}(G, M) \\
\quad \longrightarrow H^{i+2}(G, N) \longrightarrow 0
\]

\[
0 \longrightarrow H^{i+1}(G, Z) \longrightarrow H^{i+1}(G, K) \longrightarrow H^{i+1}(B, Z) \longrightarrow H^{i+1}(G, Z) \\
\quad \longrightarrow H^{i+2}(G, N) \longrightarrow 0
\]

\[
0 \longrightarrow H^i(G, K) \longrightarrow H^{i+1}(G, L) \longrightarrow H^{i+1}(B, Z) \longrightarrow H^{i+1}(G, K) \\
\quad \longrightarrow H^{i+2}(G, L) \longrightarrow 0
\]

and $H^i(G, L) \cong H^{i+p-3}(G, M), H^i(G, N) \cong H^{i+p-1}(G, R)$ for all i by dimensional shifting. Similarly, there are exact sequences for i even. Then

\[
|H^{i+2}(G, Z)| \leq |H^{i+1}(G, R)| = |H^{i+p+2}(G, N)| \leq p |H^{i-2p+1}(G, K)| \\
\quad \leq p^2 |H^{i-2p+2}(G, Z)| \leq p^2 |H^{i-2p+3}(G, Z)|.
\]

Thus the following lemma holds

Lemma 2.

\[|H^{i+p}(G, Z)| \leq p^2 |H^i(G, Z)| \text{ for all } j. \quad \Box\]

Integral cohomology rings: Consider the spectral sequence of extension (1).

\[E_2^{i,j} = H^i(Z_p \langle A \rangle, H^j(H, Z)) .\]

$H^*(H, Z) = P[\beta, \gamma] \otimes E[\mu]$ where $\deg \beta = \deg \gamma = 2$, $\deg \mu = 3$, and $p \beta = s p^{n-2} \gamma = p \mu = 0$ [1]. β and γ are maximal generators corresponding to $B \mapsto 1/p$, $C \mapsto 0$ and $C \mapsto 1/sp^{n-2}$, $B \mapsto 0$ respectively. The action of the group $Z_p \langle A \rangle$ on $H^*(H, Z)$ induced by A is given by:

\[
\beta \mapsto \beta + sp^{n-2} \gamma, \gamma \mapsto \gamma + \beta, \text{ and } \mu \mapsto \mu .
\]

\[
E_2^{*} = H^*(Z_p \langle A \rangle, Z) = P[\alpha]
\]
where \(\deg \alpha = 2 \) and \(p \alpha = 0 \). \(\alpha \) is a maximal generator corresponding to \(\bar{A} \mapsto 1/p \). \(E_2^{*,*} = H^*(H, Z)^{p\langle \bar{A} \rangle} \) the invariant elements:

\[
\begin{align*}
\gamma_1 &= p\gamma, \ p^2\gamma, \ \cdots, \ p^n\gamma; \\
\gamma_z &= p^z\gamma^2, \ \cdots, \ p^n\gamma^z; \\
\gamma_p &= p^p\gamma, \ p^2\gamma, \ \cdots, \ p^n\gamma^p; \\
\beta; \ \beta^2; \ \cdots; \ \beta^p; \ \gamma^p - \gamma^p - 1; \ \mu.
\end{align*}
\]

Proposition 3. The low dimensional cohomology groups are

\[
H^*(G, Z) \cong Z^{p^n-3} \times Z_p, \ H^i(G, Z) \cong Z_p, \text{ and } H^*(G, Z) \cong Z_p^{n-3} \times Z_p \times Z_p.
\]

Proof. \(H^*(G, Z) \cong \text{Hom}(G/G^1, Q/Z) \cong Z^{p^n-3} \times Z_p \) where \(Q \) is the field of rationals [4]. By spectral sequence of extension (1) \(H^*(G, Z) \) is generated by \(\alpha \) and \(\gamma_1 \). Let \(\text{Res}: H^*(G, Z) \to H^*(H, Z) \) and \(\text{Cor}: H^*(H, Z) \to H^*(G, Z) \) be the restriction and corestriction homomorphisms. \(\text{Cor} (\text{Res} (\alpha) \cdot \gamma_i) = \alpha \text{Cor} (\gamma_i) = 0 \) since \(\text{Res}_1 (\alpha) = 0 \). \(\text{Res} (\text{Cor} (\gamma)) = (1 + A + \cdots + A^{p-1})\gamma = p\gamma + (1 + 2 + \cdots + p - 1)\beta + (s_2^{p-3} + \cdots + s_2^{p-2} - 1)\gamma = p\gamma \). Therefore \(\gamma_1 = \text{Cor} (\gamma) \) and \(\alpha \gamma_1 = 0 \). Similarly, \(\gamma_i = \text{Cor} (\gamma_i) \) and \(\alpha \gamma_i = 0 \) for \(1 \leq i < p \). By \(\text{Res} - \text{Cor} \) sequences [9, p. 504 (5')]

\[
0 \longrightarrow H^3(H, Z)_A \longrightarrow T^3 \longrightarrow H^3(H, Z)^A \longrightarrow 0
\]

is exact. \(|H^3(H, Z)_A| = p^{n-3} \) and \(|H^3(H, Z)| = p \). Then \(T^3 = p^{n-3} \times p \). \(0 \to H^3(G, Z) \to T^3 \to H^3(G, Z) \to H^3(G, Z) \) is exact [9, p. 504 (4')] \(|I_1\tau| = |\text{Ker} \cup \alpha| = p^{n-3} \) since \(\alpha \gamma_1 = 0 \). \(|H^3(G, Z)| = |T^3|/|\text{Im} \tau| = p \). Therefore \(H^3(G, Z) \cong Z_p \) and generated by \(\mu \) since

\[
\text{Res}_*: H^3(G, Z) \longrightarrow H^3(H, Z)
\]

is an epimorphism. The following diagrams is commutative and the top row is exact [9, p. 504 (4)].

\[
H^3(H, Z) \xrightarrow{\text{Cor}} H^3(G, Z) \longrightarrow H^3(G, K) \xrightarrow{\theta} H^3(H, Z) \xrightarrow{\text{Cor}} H^3(G, Z)
\]

\[
\cong \cong
\]

\[
\text{Hom}(H, Q/Z) \xrightarrow{\text{Cor}} \text{Hom}(\langle \bar{A}, \bar{C} \rangle, Q/Z)
\]

where \(K = \text{Ker} \{ Z_p \langle A \rangle \to Z \} \). \(\text{Cor}: H^3(H, Z) \to H^3(G, Z) \) is zero since \(\text{Cor} \mu = \text{Cor} \text{Res} \mu = p\mu = 0 \). \(|\text{Im Cor}_1| = p^{n-3} \) since \(\text{Cor} \gamma = \gamma_1 \) and \(\text{Cor} \beta = 0 \) because \(\text{Cor} (\text{Res} (\alpha) \cdot \beta) = \alpha \text{Cor} \beta = 0 \). Then \(|H^3(G, K)| = |\text{Im} \theta| \cdot |H^2(G, Z)|/|\text{Im Cor}_1| = p \times p \). The following sequence is exact

\[
H^3(G, Z) \xrightarrow{\text{Res}} H^3(H, Z) \longrightarrow H^3(G, K) \longrightarrow H^3(G, Z) \xrightarrow{\text{Res}} H^3(H, Z).
\]

\(\text{Res}_* \) is an epimorphism and \(|\text{Im Res}_1| = p^{n-3} \) since \(\text{Res} \alpha = 0 \). Then
Therefore \(H^i(G, Z) \cong Z_p^{n-3}<\gamma> + Z_p<\alpha^i> + Z_p\langle \chi \rangle \) where \(\chi \) is an additional generator.

Consider now the spectral sequence of extension (2).

\[
E_2^{i,j} = H^i(G, Z) \cong Z_p^{n-3}<\gamma> + Z_p<\alpha^i> + Z_p\langle \chi \rangle
\]

\[
E_2^{i,0} = H^i(Z_p \times Z_p, G) = P[\alpha, \gamma] \otimes \text{Fil}[\delta]
\]

where \(\deg \alpha = \deg \gamma = 2 \), \(\deg \delta = 3 \), and \(p\alpha = sp^{n-3}\gamma = p\delta = 0 \). \(E_2^{0,*} = H^*(G, Z)(\hat{A}, \hat{C}) = P[\beta^3, \beta^4, \cdots ; p^{n-3}\gamma] \).

The odd generators in the exterior part vanished since they are trivial under the action of \(\langle \hat{A}, \hat{C} \rangle \). By comparing the two spectral sequences \(E_i \leftrightarrow E_i \) for \(1 \leq i < p \).

\[
E_2^{i,2j} = H^*(Z_p \times Z_p, G) = H^*(Z_p \otimes Z_p, Z_p \times Z_p)
\]

by Künneth formula. This induces a horizontal multiplication

\[\circ: E_2^{i,2j} \times E_2^{k,2j} \longrightarrow E_2^{i+k,2j}, j > 0\]

and

\[\beta: E_2^{i,j} \longrightarrow E_2^{i,j+2}\]

is monomorphism for \(j \geq 2 \) and isomorphism for \(j \geq 0 \) [4]. Let \(\mu, \nu \in E_2^{i}\) be two independent generators. Then \(\chi = \mu \circ \nu \in E_2^{i,2} \) by horizontal multiplication. Since the odd rows are zero, then \(E_2 = E_2 \).

From the cohomology groups at the low dimensions \(d_s(\alpha) = d_s(\gamma) = d_s(\mu) = d_s(\chi) = 0 \). Others are easily deduced from the \(E_2 \)-diagram. Since \(\gamma \mapsto \gamma_1 \), then \(\alpha \gamma_1 = \delta \gamma_1 = \mu \gamma_1 = \nu \gamma_1 = \chi \gamma_1 = 0 \). Then the additive structure of \(E_2 \) can be given as follows:

\[
E_2^{2i,0} = Z_p\langle \alpha^i \rangle + Z_p^{n-3}\langle \gamma^i \rangle, \ E_2^{2i+1} = Z_p\langle \chi \alpha^{i-1} \rangle + Z_p\langle \beta \alpha^i \rangle
\]

Lemma 4.
\[E_2^{2i,0} = Z_p\langle \alpha^{i-1} \rangle, \quad E_2^{2i,1} = \frac{Z_p\langle \Delta \delta \rangle}{Z_p\langle \alpha^i \rangle}, \quad E_2^{2i,\beta} = Z_p\langle \alpha^{i-1} \rangle, \quad E_2^{2i+1,0} = Z_p\langle \alpha^j \rangle, \quad \text{and} \quad E_2^{*;2j+1} = 0 (j > 0). \]

The other terms are given by periodicity \(E_2^{*;4} = E_2^{*;6} = \cdots \). \(\square \)

Lemma 5. \(\gamma^p \) and \(\beta^p \) are universal cycles and hence \(\beta^p : E_2^{i, j} \to E_2^{i, j+2p} \) is an isomorphism for \(j > 0 \).

Proof. By double cosets formula for the generalization of corestriction \(\mathcal{N} \) [6, Theorem 3]

\[
\text{Res}_H \mathcal{N}(\gamma) = \prod_{i=0}^{p-1} \left(\gamma - i\beta - \frac{1}{2} i(i - 1)s p^{n-3i} \right) = \prod_{i=0}^{p-1} \left(\gamma - i\beta \right) + \sum_{j=0}^{p-1} \left(\prod_{i=0}^{p-1} \left(\gamma - i\beta \right) \frac{1}{2} j(j - 1)s p^{n-3i} \right)
\]

where \(^\wedge \) means a deleted term. \(\text{Res}_H \mathcal{N}(\beta) = \prod_{i=0}^{p-1} (\beta - i s p^{n-3}) = \beta^p \). Therefore \(\gamma^p \) and \(\beta^p \) are universal cycles [9, Corollary II]. \(\square \)

The additive structure of \(E_i \) can now be given as follows:

Lemma 6.

\[E_2^{*;i} = Z_p\langle \alpha^i \rangle + Z_p\langle \gamma^i \rangle; \quad E_2^{*;2j} = Z_p\langle \beta^{2j-i-1} \rangle, \quad j > 0; \quad E_2^{*;2j} = 0, \]

\(j \neq 0(p), j > 0, i \neq 1; \quad E_2^{*;2j} = 0, j \neq 1(p), j > 1; \quad E_2^{*;2j} = 0, \]

\(j \neq 0(P)j \neq 1, i > 0; \quad E_2^{*;2j} = Z_p\langle \alpha^i \mu \rangle; \]

and

\[E_2^{*;2(p-1)} = Z_p\langle \alpha^{2(p-1)} \beta^{2p-1} \rangle. \]

The other terms are given by periodicity \(E_2^{*;i} = E_2^{*;i+2p} = \cdots \). \(\square \)

Then \(E_i = E_\infty \) in dimensions \(\leq 2p \).

Lemma 7.

\[|H^{2p}(G, Z)| = p^{n+1}. \]

Proof. \(G \) acts freely on the product of the two spheres \(S^{2p-1} \times S^{2p-1} \) by Proposition 1. Then by [10, Corollary 2.7] the following sequence is exact:

\[
0 \to H^{2p-1}(G, Z) \to H^{2p}(G, Z) \to Z_p^\times \times Z_p^\times \to H^{2p}(G, Z) \to H^{2p-1}(G, Z) \to 0.
\]

Since \(H^{2p-1}(G, Z) = Z_p\langle \alpha^{2p-1} \mu \rangle \) by the previous spectral sequence,
then $|H^{2p}(G, Z)| = p^{n+1}$.

By Res-Cor sequence

$$0 \longrightarrow \mathbb{Z}^{n-1} \longrightarrow H^{2i}(H, Z) \longrightarrow H^{2i}(G, K) \longrightarrow H^{2i+1}(G, Z) \longrightarrow \mathbb{Z} \longrightarrow 0$$

is exact where $K = \text{Ker} \{ \langle A \rangle \rightarrow Z \}$. Therefore $|H^{2i}(G, K)| = p^{i+1}$. If $\text{Cor}_{\alpha_i} = 0$, then $0 \rightarrow H^{2i-1}(G, Z) \rightarrow H^{2i}(G, K) \rightarrow H^{2i}(H, Z) \rightarrow 0$ is exact. Therefore $|H^{2i}(G, K)| = p^{n-i}$ which is a contradiction. Then $\text{Cor} (\beta^i) \neq 0$ for $2 \leq i < p$. Similarly, we can prove the following:

Lemma 8. Cor $(\beta^i) \neq 0$ for $2 \leq i \leq p$ and Cor $(\gamma^p) \neq 0$.

Let $\xi = \mathcal{N}^{-1}(\gamma)$ and $\xi^i = \mathcal{N}^{-1}(\beta^i) \mathcal{N}^{-1}(\gamma) = \gamma^p - \gamma\beta^{p-1}$ and $\mathcal{N}^{-1}(\beta) = \beta^p$. Cor $\mathcal{N}^{-1}(\gamma) = p\mathcal{N}^{-1}(\gamma) = \mathcal{N}^{-1}(\gamma^p) \neq 0$ and Cor $\mathcal{N}^{-1}(\beta) = p\mathcal{N}^{-1}(\beta) = \mathcal{N}^{-1}(\beta^p) \neq 0$. Therefore $\mathcal{N}^{-1}(\gamma)$ and $\mathcal{N}^{-1}(\beta)$ have orders p^{n-1} and p^i respectively and are elements in $H^{2p}(G, Z)$. Since $|H^{2p}(G, Z)| = p^{n+1}$ by Lemma 7, then $\alpha^p = 0$ in $H^*(G, Z)$.

Let $\lambda_i = \text{Cor} (\beta^i+1)$, $1 \leq i < p - 1$. λ_i is not a polynomial in α and γ since $\alpha \text{Cor} (\beta^i) = 0$ and Res Cor $(\beta^p) = 0$. Therefore $H^{2i+1}(G, Z) = Z\langle \lambda_i \rangle + Z_p\langle \alpha^{i+1} \rangle + Z_{p^{n-1}}(\gamma)^{i+1}$.

By using Cor (Res a.b) = a. Cor b, we have $\alpha \lambda_i = \mu \lambda_i = \lambda_i \lambda_i = 0$ and $\gamma \lambda_i = 0$ since Res $\lambda_i = 0$. If $\gamma_i \gamma_j = e$ α^{i+j}, then $\alpha \gamma_i \gamma_j = e \alpha^{i+j+1} = 0$. Then $e = 0$ and hence $\gamma_i \gamma_j = 0$. Thus we have:

Theorem 9. The integral cohomology ring $H^*(G, Z) = Z[\alpha; \mu; \gamma_1, \cdots, \gamma_{p-1}; \lambda_1, \cdots, \lambda_{p-2}, \xi, \xi']$ where $\deg \alpha = 2$, $\deg \mu = 3$, $\deg \gamma_i = 2i$, $\deg \lambda_i = 2i + 2$, $\deg \xi = \deg \xi' = 2p$ with the relations $p \alpha = \mu \mu = sp^{n-2} \xi = p^i \xi = p^i \xi' = 0$, $\alpha^p = 0$, $\alpha \gamma_i = \alpha \lambda_i = 0$, $\mu^2 = 0$, $\mu \gamma_i = \mu \lambda_i = 0$, $\gamma_i \gamma_j = 0$, and $\gamma_i \lambda_j = 0$ for all i and j.

$H^{	ext{even}}(G, Z)$ is generated by $\alpha, \gamma_1, \cdots, \gamma_{p-1}, \lambda_1, \cdots, \lambda_{p-2}, \xi, \xi'$.

$\alpha = c_1(\tilde{A})$ is the first Chern class of the 1-dimensional representation given by $\tilde{A}(A) = 1/p$. $\gamma_i = \text{Cor} (\gamma^i)$ for $1 \leq i < p$ and $\lambda_i = \text{Cor} (\beta^{i+1})$, $1 \leq i \leq p - 2$. Then by using a special Reimann-Rock formula [12, Theorem 2] we get: Cor $(\gamma^i) = S_{\gamma}(i, i)$, $2 \leq i \leq p - 2$; Cor $(\gamma^{p-1}) = S_{\gamma}(i, i) + (p - 1)\alpha^{p-1}$ and Cor $(\beta^i) = S_{\beta}(i, i)$ $2 \leq i \leq p - 2$; Cor $(\beta^{p-1}) = S_{\beta}(i, i) + (p - 1)\alpha^{p-1}$ where α is the inflation of the generator of $H^3(\langle A \rangle, Z)$ and $\tilde{A}, \tilde{\beta}$ are two representations given by $\tilde{A}: B \rightarrow 1/p$, $C \rightarrow 0$ and $\tilde{\beta}, B \rightarrow 0$: $C \rightarrow 1/sp^{n-2}$. The two generators $\xi = \mathcal{N}^{-1}(\gamma) = c_p(\gamma)$ and $\xi' = \mathcal{N}^{-1}(\beta) = c_p(\beta)$ are given in terms of pth Chern classes [7, Theorem 4]. By [2-Appendix] we have:

Theorem 10. $H^{	ext{even}}(G, Z)$ is generated by Chern classes and
hence G satisfies Atiyah's Conjecture.

The author is greatly indebted to Dr. C. B. Thomas, who, as his former research supervisor, gave invaluable assistance during the preparation of this work at Mathematics Department, University College London. The author also wishes to thank the referee for several helpful suggestions.

REFERENCES

Received September 22, 1980 and in revised form September 23, 1981.

GARYOUNIS UNIVERSITY BENGHAZI
LIBYA
Pacific Journal of Mathematics
Vol. 103, No. 2 April, 1982

Alberto Alesina and Leonede De Michele, A dichotomy for a class of positive
definite functions ... 251
Kahtan Alzubaidy, Rank$_2$ p-groups, $p > 3$, and Chern classes 259
James Arney and Edward A. Bender, Random mappings with constraints on
cocycle and number of origins .. 269
Bruce C. Berndt, An arithmetic Poisson formula 295
Julius Rubin Blum and J. I. Reich, Pointwise ergodic theorems in l.c.a. groups ... 301
Jonathan Borwein, A note on ε-subgradients and maximal monotonicity 307
Andrew Michael Brunner, Edward James Mayland, Jr. and Jonathan Simon,
Knot groups in S^4 with nontrivial homology 315
Luis A. Caffarelli, Avner Friedman and Alessandro Torelli, The two-obstacle
problem for the biharmonic operator 325
Aleksander Calka, On local isometries of finitely compact metric spaces 337
William S. Cohn, Carleson measures for functions orthogonal to invariant
subspaces ... 347
Roger Fenn and Denis Karmen Sjerve, Duality and cohomology for one-relator
groups .. 365
Gen Hua Shi, On the least number of fixed points for infinite complexes 377
George Golightly, Shadow and inverse-shadow inner products for a class of linear
transformations .. 389
Joachim Georg Hartung, An extension of Sion’s minimax theorem with an
application to a method for constrained games 401
Vikram Jha and Michael Joseph Kallaher, On the Lorimer-Rahilly and
Johnson-Walker translation planes .. 409
Kenneth Richard Johnson, Unitary analogs of generalized Ramanujan sums 429
Peter Dexter Johnson, Jr. and R. N. Mohapatra, Best possible results in a class of
inequalities .. 433
Dieter Jungnickel and Sharad S. Sane, On extensions of nets 437
Johan Henricus Bernardus Kemperman and Morris Skibinsky, On the
characterization of an interesting property of the arcsin distribution 457
Karl Andrew Kosler, On hereditary rings and Noetherian V-rings 467
William A. Lampe, Congruence lattices of algebras of fixed similarity type. II 475
M. N. Mishra, N. N. Nayak and Swadeenananda Pattanayak, Strong result for
real zeros of random polynomials .. 509
Sidney Allen Morris and Peter Robert Nickolas, Locally invariant topologies on
free groups ... 523
Richard Cole Penney, A Fourier transform theorem on nilmanifolds and nil-theta
functions .. 539
Andrei Shkalikov, Estimates of meromorphic functions and summability
theorems .. 569
László Székelyhidi, Note on exponential polynomials 583
William Thomas Watkins, Homeomorphic classification of certain inverse limit
spaces with open bonding maps .. 589
David G. Wright, Countable decompositions of E^n 603
Takayuki Kawada, Correction to: “Sample functions of Pólya processes” 611
Z. A. Chanturia, Errata: “On the absolute convergence of Fourier series of the
classes $H^\alpha \cap V[u]$” .. 611