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By local isometries we mean mappings which locally
preserve distances. Local isometries which do not increase
distances are called nonexpansive local isometries. A few
of the main results are:

1. Let f be a local isometry (nonexpansive local isometry)
of a finitely compact metric space (M, o) into itself. If for
each (some) z € M the sequence {f"(z)} is bounded, then there
exists a unique decomposition of M into disjoint open sets,
M=M{UM{U ---, such that (i) f maps M{ injectively into
itself, and (ii) f(M/,,) Cc M/ for eacht=0,1, ---. Moreover,
f maps M{ homeomorphically (isometrically) onto itself.

2. Let f be a nonexpansive local isometry (local isometry)
of a connected (convex) finitely compact metric space (M, p)
into itself. If for some z € M the sequence {f"(z)} is bounded,
then f is an isometry onto.

1. Introduction. Let f be a mapping of a metric space (M, p)
into a metric space (N, ¢). We will call f a local isometry if for
each ze M there is a neighborhood U, of z such that o(f(x), f(y)) =
oz, y) for all x,yc U,. If f is a local isometry and also a non-
expansive mapping (i.e., ¢(f(x), f(¥)) = p(x, y) for all z, ye M), we
will say that f is a nonexpansive local isometry.

A metric space (M, p) is said to be finitely compact [2] if each
bounded and closed subset of M is compact.

The purpose of this paper is to extend the results of the author’s
paper [4] to those local isometries f of a finitely compact metric space
(M, p) into itself which have the property that for each ze M the
sequence {f"(2)} is bounded. In §2 we give some more notation and
preliminary lemmas. Section 3 contains the main results. Roughly
speaking, the main theorem is: Let f be a local isometry (non-
expansive local isometry) of a finitely compact metric space (M, o)
into itself. If for each (for some) ze M the sequence {f"(z)} is
bounded, then there exists a unique decomposition of M into disjoint
open sets, M = M{ UM/ U ---, such that (i) f maps M{ injectively
into itself, (ii) F(M!))c M{_., for each 7 =1. Moreover, f maps M{
homeomorphically (isometrically) onto itself.

It should be noted that open surjective local isometries were
studied by Busemann [2}], [3], Kirk [5], [6], [7] and Szenthe [8], [9],
[10], in the special case where (M, o) is a G-space (Busemann [2]
called them “locally isometric mappings”). In [5] Kirk proved that
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if an open local isometry f of a G-space (M, p) onto itself has a fixed
point, then f is an isometry (from which it follows that if the iso-
metries of (M, p) onto itself form a transitive group, then each open
surjective local isometry is an isometry). Later Kirk [6] proved that
if an open local isometry f of a G-space (M, p) onto itself has the
property that for some ze€ M the sequence {f"(z)} is bounded, then
f is an isometry.

In §4 and §5 of the present paper, by using the results of §3,
we extend the above results of Kirk to the case of general local
isometries of finitely compact metric spaces.

2. Preliminaries.

(2.1) DEFINITION. Let p;, 2 = 0,1, be metrics on a set M. We
shall say that o, s locally identical with p, if the identity mapping,
idy, of M is a local isometry of (M, p,) into (M, p,). We shall say
that o, and o, are locally identical if o, is locally identical with p;,
for all 4,5 =0, 1.

(2.2) DEFINITION. Let f be a mapping of a metric space (M, o)
into itself. Then the function o, defined by

0s(@, y) = sup p(f"(x), f*(v)) for all =z, yeM,
(where f° = idy,, f™™ = fo f") is called the induced metric on M.

(2.8) REMARKS. (i) Let o, ¢=0,1, be metrics on a set M such
that p, and o, are locally identical. Then o, and p, are topologically
equivalent. If (M, p,) is finitely compact and p, = p,, then (M, p,)
is also finitely compact. If f is a local isometry of (M, p,) into itself,
then f is also a local isometry of (M, p,) into itself.

(ii) Let f be a mapping of a metric space (M, p) into itself such
that for each ze M the sequence {f"(2)} is bounded. Then for each
x, y €M, p;(x, y) < o=, and hence the induced metric, p;, is a metric
on the set M such that

(1) s =P,
(2)  fis anonexpansive mapping of the metric space (M, o)
into itself , and

(8) p;=p if and only if f is a nonexpansive mapping of
(M, p) into itself .

In [4] we proved the following theorem ((4.3) of [4]).

(2.4) THEOREM. Let f be a local isometry of a compact metric
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space (M, p) into itself. Then there exists a unique decomposition
of M into disjoint open sets,

M=MU---UM, 0=<mn),

such that (i) f(M{) = My, (ii) f(M])c M, and M + @ for each 1,
1<1i=mn. Moreover, the induced metric p; is o metric on M such
that p; and p are locally identical and f is a monexpansive local
isometry of (M, p;) into itself which maps M{ isometrically onto
itself.

From this theorem we have

(2.5) COROLLARY. Let f be a one-to-one local isometry of a com-
pact metric space (M, p) into itself. Then f(M) = M.

Proof. If f is one-to-one, then by (2.4), M = M{ and hence
fM) = M.

REMARK. If f is a local isometry of a compact metric space
(M, p) into itself and if N is a compact subset of M such that
f(N)c N, then the restriction of f to N, f/N, is also a local iso-
metry. For convenience, N = N} U --- U N/, will denote the decom-
position of N defined by (2.4) for f/N.

(2.6) PROPOSITION. Let f be a local isometry of a compact metric
space (M, p) into itself. If N is a compact subset of M such that
f(N)C N, then

N{ = NnNM, for each i=0, - -+, n(N),
where n(N) = max {1 = 0: NN M{ = @}.
Proof. By (2.4), it is sufficient only to show that f(NN M) =

NN M. However, it follows from (2.4) that f maps NN M{ iso-
metrically into itself. Hence, by (2.5),f(N N M{) = N N M{ as desired.

We will need the following.

(2.7) LEMMA. Let f be a local isometry of a metric space (N, p)
into itself. If N is a compact subset of M, then there exists a num-
ber 6 > 0 such that for each z€ N,

(4) o(f (@), f() = p(x, ¥) »
Jor all z, y € S,(2, 0) = {peM: p(z, p) < d}.
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The straightforward verification of (2.7) is omitted.

The convexity in this paper is to be understood in the sense of
Menger (cf. [1, p. 40]). A subset N of a metric space (M, o) is,
accordingly, convex if for each two distinct points «, y € N, there
exists a point ze N, z # x, y, such that o(x, y) = o(z, 2) + (2, ¥).

Also, we will use

(2.8) LEMMA. If f is a local isometry of a comvexr and complete
metric space (M, o) into itself, then f is a nonexpansive local isometry.

Proof. Let x and y be given points of M such that z == y.
Since M is convex and complete, by a theorem of Menger (cf. [1,
p. 41]) there exists a metric segment L C M whose extremities are
x and y; that is, a subset isometric to an interval of length o(z, ).
Since L is compact, it follows that there exists a finite sequence
2o, 2y, ***, %, of points of L such that z, =, 2, =y and

o(f (), f(#i11) = 0%y #44,) for each ¢=0,---,k—1
and
0, 1) = 3 (2 %) -
Thus,

@), FW) £ 3, (@), F@ie) = 34 00 %) = 0@, 9) .

This proves that f is a nonexpansive mapping, and hence a non-
expansive local isometry.

3. Local isometries and decomposition theorems. We shall
now prove the following extension of (2.4).

(3.1) THEOREM. Let f be a local isometry of a finitely compact
metric space (M, p) into itself. If for each z € M the sequence {f"(2)}
18 bounded, then there exists a unique decomposition of M into dis-
joint open sets,

(5) M=MUMU---,
such that
(6) f maps M imjectively imto itself,

(7) fM)c M, for each +=1,2,---.
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Moreover, the induced metric, 0y, is a metric on M such that
s and p are locally identical, (M, ps) is a finitely compact metric
space and f is a nonexpansive local isometry of (M, p;) into itself
which maps M{ isometrically onto itself.

Proof. In the proof, for each Ac M and 6 > 0, S,(4, d) is the
d-ball in M about A and cl A (Int A) is the closure (interior) of A.
For each ze€ M we denote: ¢(z) = cl {f*(z): n = 0.

We first define a sequence A,, n =0,1, ---, of compact subsets
of M such that
(8) f(A)c A, foreach =01, --,
(9) A,cIntA,,, for each =201, .-,
(10) U4, =M.

For each ze M, let 6, > 0 be a number defined by (2.7) for the
compact set ¢(z) and let V, = S,(¢(2), 6,). Thus, for each ze M, V, is
an open and bounded subset of M and using (4) and the fact that
fle(®)) C (), we have f(V,)C V,. Since (M, p) has a countable base

of neighborhoods, there exists a sequence z,, n =0, 1, ---, of points
of M such that U7, V, = M. Define the sets 4,, n=20,1, ---,
inductively, as follows: A, =eclV, and 4,,, = U7 el V,,, where k(n)

is an integer such that k(n) > n and 4, c Ji% V,,. Clearly, the sets
A,n=01, ..., satisfy conditions (8), (9) and (10), and are compact.
It follows now from (2.4), that for each n = 0, there exists a

sequence (4,), 1 =20,1, ---, of disjoint subsets of A, such that
(11) (A) NnInt A, is open, for each 7=0,1, .-,
(12) U @) = 4,,
=0

(13) f maps (A4,){ injectively into itself,
(14) FAX)c(A)]-,, for each 1=1,2 ---.

By (2.6), we have
(15) (A=A, N4, forall n,i=01,---.

Now, for each ¢ = 0,1, ---, we define the set M/ as follows:
M = U (4, .
n=0

Then, by (15) and the fact that (4,)/, ¢ = 0, are disjoint, the sets
M!, i = 0, are disjoint. By (9) and (15),
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(AN c(4inInt A, C (4,007

hence,
M =U (A, NInt A,.,), for each =01, ---,
n=0

and therefore, by (11), the sets M/, 4 = 0, are open. By (10) and (12),

T

UMi=Uu
and it follows from (18), (14) and (15) that the sets M/, ¢ = 0, satisfy
conditions (6) and (7). This proves the existence of the desired
decomposition of M.

In order to prove the uniqueness, it is sufficient only to show
that for each decomposition of M into disjoint open sets, M = U, M,
conditions (6) and (7) imply

(16) M, = {z € M: f(c(2)) = c(2)} .

Let us assume, M = Uz, M; is a decomposition of M into disjoint
open sets, satisfying conditions (6) and (7). If z € M, then (6) implies
that the restriction of f to ¢(z) is a one-to-one local isometry of ¢(2)
into itself. Since ¢(z) is compact, it follows from (2.5) that f(c(z)) =
e(z). Conversely, if z¢ M,, then ze M, for some n =1. Using (7)
and the fact that M,, ¢ = 0, are disjoint and open, we obtain

fle@)ce(f@)cMU - UM, ,,

hence zec(z)\e(f(z)), i.e., ¢(®) # ¢(f(2)). Therefore (16) follows as
desired.

Finally, by (ii) of (2.8), the induced metrie, p;, is a metric on
M and it follows from (8), (9), (10) and (2.4) that o, and p are locally
identical (ef. also (1)). Hence, by (1) and (i) of (2.3), the metric space
(M, oy) is finitely compact and, by (2), f is a nonexpansive local iso-
metry of (M, pos) into itself. It follows from (2.4) and (15) and the
definition of M{ that f maps M{ isometrically onto itself with respect
to the metric p;. This completes the proof.

AX=U4,=M,

0

(3.2) REMARK. Let f be a nonexpansive mapping of a metric
space (M, p) into itself. If for some ze M the sequence {f"(z)} is
bounded, then for each x € M the sequence {f"(x)} is bounded.

Indeed, since f is nonexpansive, then for all z,z€ M and each
1=0,1, ---, we have

o(f (@), {f"(@)}) = o(fi(x), f(?) = o=, ) ,
hence, if {f"(2)} is bounded, then also {f"(x)} is bounded.
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The following theorem is an immediate consequence of (3.1), (3.2)
and (3).

(3.3) THEOREM. Let f be a monexpansive local isometry of a
finitely compact metric space (M, o) into itself. If for some ze M
the sequence {f™(2)} is bounded, then there exists a unique decomposi-
tton of M into disjoint open sels,

MZMUMfU"',

such that (i) f maps M injectively imto itself, (ii) f(M{)c M{., for
each 1 =1,2, ---. Moreover, f maps M{ isometrically onto itself.

We have the following corollaries

(8.4) COROLLARY. Let f be a local isometry of a finitely compact
metric space (M, o) into itself. If for each z € M the sequence {f"(z)}
18 bounded, then the following are equivalent:

(i) f is one-to-one,

(ii) f is a homeomorphism of M onto itself,

(iii) f is an isometry with respect to the induced metric py.

Proof. The proof follows from (3.1), since each of (i)-(iii) is
equivalent to M{ = M.

(8.5) COROLLARY. Let f be a nonexpansive local isometry of a
Sfinitely compact metric space (M, p) into itself. If for some z€ M the
sequence {f™(2)} 1s bounded, then the following are equivalent:

(i) f is one-to-one,

(ii) f is a homeomorphism of M onto itself,

(iii) f is an isometry onto.

Proof. This follows from (8.8) (or from (3.4) and (38)).

4. Some consequences. As an immediate consequence of (3.1),
we get

(4.1) THEOREM. Let f be a local isometry of a connected finitely
compact metric space (M, o) into itself. If for each z € M the sequence
{f*(®)} is bounded, then the induced metric, p;, is a metric on M
such that p; and p are locally identical, (M, 0;) is a finitely compact
metric space and f is an isometry of (M, ps) onto itself. In par-
ticular, f 18 a homeomorphism of M onto itself.

As an immediate consequence of (3.3), we get
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(4.2) THEOREM. Let f be a nonexpansive local isometry of a con-
nected finitely compact metric space (M, p) into itself. If for some
2 € M the sequence {f"(z)} is bounded, then f is an isometry onto.

The corresponding statement concerning local isometries of con-
vex finitely compaet metric spaces is stated next.

(4.3) THEOREM. Let f be a local isometry of a convex finitely
compact metric space (M, o) into itself. If for some z € M the sequence
{f™(=)} is bounded, then [ is an isometry onto.

Proof. Since (M, p) is convex and complete, by (2.8), f is a
nonexpansive local isometry. Hence, our assertion follows from (4.2).
Finally, we note the following special cases of (4.2) and (4.3).

(4.4) COROLLARY. Let f be a monexpansive local isometry of a
connected finitely compact metric space (M, p) into itself. If f has
a fived (periodic) point, then f is an isometry onto.

(4.5) COROLLARY. Let f be a local isometry of a convex finitely
compact metric space (M, p) into itself. If f has a fixed (periodic)
point, then f is an isomelry onto.

REMARK. Theorems (4.2) and (4.3) extend the result of [6]; Corol-
laries (4.4) and (4.5) extend Theorem 1 of [5] to the case of general
local isometries of finitely compact metric spaces.

5. A condition on (M, p) under which local isometries are
isometries. In this section, by using (3.8), we extend Theorem 3 of
[5]. First, we shall prove

(5.1) PROPOSITION. Let f be a nonexpansive local isometry of a
finitely compact metric space (M, o) into itself. If (M, p) has a
transitive group of isometries, then there exists a sequence N,, n =
0,1, ---, of open and closed subsets of M such that M = Ur- N, and
Jor each n =0, f maps N, isometrically onto an open closed subset
of M.

Proof. Let ze M. Then, by assumption, there exists an isometry
g. of (M, p) onto itself such that ¢,(f(z)) = 2. Since g,of is a non-
expansive local isometry, it follows from (3.3) that there is an open
and closed set N, such that ze N, and g,of maps N, isometrically
onto itself. Hence ¢g;}(,) is open and closed, and f maps N, iso-
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metrically onto ¢;*(N,). Since (M, p) is separable, our assertion
follows.

The next two results follow immediately from (5.1) and (2.8)
(or, in a direct fashion, from (4.4) and (4.5)).

(5.2) THEOREM. If a comnected finitely compact metric space
(M, p) has a transitive group of isometries, then each nonerpansive
local isometry of (M, p) into itself is an isometry onto.

(5.8) THEOREM. If a convex finitely compact metric space (M, o)
has a transitive group of isometries, then each local isometry of (M, o)
into itself is an isometry onto.
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